summaryrefslogtreecommitdiff
path: root/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_decimate_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_decimate_q15.c')
-rw-r--r--platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_decimate_q15.c696
1 files changed, 696 insertions, 0 deletions
diff --git a/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_decimate_q15.c b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_decimate_q15.c
new file mode 100644
index 0000000..c3a0875
--- /dev/null
+++ b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_decimate_q15.c
@@ -0,0 +1,696 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
+*
+* $Date: 12. March 2014
+* $Revision: V1.4.4
+*
+* Project: CMSIS DSP Library
+* Title: arm_fir_decimate_q15.c
+*
+* Description: Q15 FIR Decimator.
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_decimate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 FIR decimator.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ *
+ * \par
+ * Refer to the function <code>arm_fir_decimate_fast_q15()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
+ */
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer coefficient buffer */
+ q31_t x0, x1, c0, c1; /* Temporary variables to hold state and coefficient values */
+ q63_t sum0; /* Accumulators */
+ q63_t acc0, acc1;
+ q15_t *px0, *px1;
+ uint32_t blkCntN3;
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1u);
+
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize / 2;
+ blkCntN3 = outBlockSize - (2 * blkCnt);
+
+
+ while(blkCnt > 0u)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = 2 * S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while(--i);
+
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ px0 = pState;
+
+ px1 = pState + S->M;
+
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while(tapCnt > 0u)
+ {
+ /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+ x0 = *__SIMD32(px0)++;
+
+ x1 = *__SIMD32(px1)++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLALD(x0, c0, acc0);
+
+ acc1 = __SMLALD(x1, c0, acc1);
+
+ /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+ x0 = *__SIMD32(px0)++;
+
+ x1 = *__SIMD32(px1)++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLALD(x0, c0, acc0);
+
+ acc1 = __SMLALD(x1, c0, acc1);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4u;
+
+ while(tapCnt > 0u)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px0++;
+
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 = __SMLALD(x0, c0, acc0);
+ acc1 = __SMLALD(x1, c0, acc1);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M * 2;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+ *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+
+
+ while(blkCntN3 > 0u)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while(--i);
+
+ /*Set sum to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while(tapCnt > 0u)
+ {
+ /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */
+ c0 = *__SIMD32(pb)++;
+
+ /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */
+ x0 = *__SIMD32(px)++;
+
+ /* Read the b[numTaps-3] and b[numTaps-4] coefficient */
+ c1 = *__SIMD32(pb)++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLALD(x0, c0, sum0);
+
+ /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */
+ x0 = *__SIMD32(px)++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLALD(x0, c1, sum0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4u;
+
+ while(tapCnt > 0u)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 = __SMLALD(x0, c0, sum0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCntN3--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1u) >> 2u;
+
+ /* copy data */
+ while(i > 0u)
+ {
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1u) % 0x04u;
+
+ /* copy data */
+ while(i > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+#else
+
+
+void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer coefficient buffer */
+ q15_t x0, x1, c0; /* Temporary variables to hold state and coefficient values */
+ q63_t sum0; /* Accumulators */
+ q63_t acc0, acc1;
+ q15_t *px0, *px1;
+ uint32_t blkCntN3;
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1u);
+
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize / 2;
+ blkCntN3 = outBlockSize - (2 * blkCnt);
+
+ while(blkCnt > 0u)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = 2 * S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while(--i);
+
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ px0 = pState;
+
+ px1 = pState + S->M;
+
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while(tapCnt > 0u)
+ {
+ /* Read the Read b[numTaps-1] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-1] for sample 0 and for sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-2] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-3] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-3] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-4] for sample 0 and sample 1 */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4u;
+
+ while(tapCnt > 0u)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px0++;
+ x1 = *px1++;
+
+ /* Perform the multiply-accumulate */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M * 2;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+
+ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+ *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ while(blkCntN3 > 0u)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while(--i);
+
+ /*Set sum to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = numTaps >> 2;
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-4 coefficients. */
+ while(tapCnt > 0u)
+ {
+ /* Read the Read b[numTaps-1] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-1] and sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-2] and sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-3] coefficients */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-3] sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *pb++;
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = numTaps % 0x4u;
+
+ while(tapCnt > 0u)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += x0 * c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /* Store filter output, smlad returns the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCntN3--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = (numTaps - 1u) >> 2u;
+
+ /* copy data */
+ while(i > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ i = (numTaps - 1u) % 0x04u;
+
+ /* copy data */
+ while(i > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+}
+
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+#else
+
+
+void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px; /* Temporary pointer for state buffer */
+ q15_t *pb; /* Temporary pointer coefficient buffer */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ q63_t sum0; /* Accumulators */
+ uint32_t numTaps = S->numTaps; /* Number of taps */
+ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */
+
+
+
+/* Run the below code for Cortex-M0 */
+
+ /* S->pState buffer contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + (numTaps - 1u);
+
+ /* Total number of output samples to be computed */
+ blkCnt = outBlockSize;
+
+ while(blkCnt > 0u)
+ {
+ /* Copy decimation factor number of new input samples into the state buffer */
+ i = S->M;
+
+ do
+ {
+ *pStateCurnt++ = *pSrc++;
+
+ } while(--i);
+
+ /*Set sum to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ tapCnt = numTaps;
+
+ while(tapCnt > 0u)
+ {
+ /* Read coefficients */
+ c0 = *pb++;
+
+ /* Fetch 1 state variable */
+ x0 = *px++;
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q31_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by the decimation factor
+ * to process the next group of decimation factor number samples */
+ pState = pState + S->M;
+
+ /*Store filter output , smlad will return the values in 2.14 format */
+ /* so downsacle by 15 to get output in 1.15 */
+ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ i = numTaps - 1u;
+
+ /* copy data */
+ while(i > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+
+}
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+
+
+/**
+ * @} end of FIR_decimate group
+ */