summaryrefslogtreecommitdiff
path: root/lib/efi_selftest/efi_selftest_memory.c
blob: e71732dc6db93aa108a7372d281b7516311dc7bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// SPDX-License-Identifier: GPL-2.0+
/*
 * efi_selftest_memory
 *
 * Copyright (c) 2018 Heinrich Schuchardt <xypron.glpk@gmx.de>
 *
 * This unit test checks the following boottime services:
 * AllocatePages, FreePages, GetMemoryMap
 *
 * The memory type used for the device tree is checked.
 */

#include <efi_selftest.h>

#define EFI_ST_NUM_PAGES 8

static const efi_guid_t fdt_guid = EFI_FDT_GUID;
static struct efi_boot_services *boottime;
static u64 fdt_addr;

/**
 * setup() - setup unit test
 *
 * @handle:	handle of the loaded image
 * @systable:	system table
 * Return:	EFI_ST_SUCCESS for success
 */
static int setup(const efi_handle_t handle,
		 const struct efi_system_table *systable)
{
	size_t i;

	boottime = systable->boottime;

	for (i = 0; i < systable->nr_tables; ++i) {
		if (!memcmp(&systable->tables[i].guid, &fdt_guid,
			    sizeof(efi_guid_t))) {
			if (fdt_addr) {
				efi_st_error("Duplicate device tree\n");
				return EFI_ST_FAILURE;
			}
			fdt_addr = (uintptr_t)systable->tables[i].table;
		}
	}
	return EFI_ST_SUCCESS;
}

/**
 * find_in_memory_map() - check matching memory map entry exists
 *
 * @memory_map:		memory map
 * @desc_size:		number of memory map entries
 * @addr:		physical address to find in the map
 * @type:		expected memory type
 * Return:		EFI_ST_SUCCESS for success
 */
static int find_in_memory_map(efi_uintn_t map_size,
			      struct efi_mem_desc *memory_map,
			      efi_uintn_t desc_size,
			      u64 addr, int memory_type)
{
	efi_uintn_t i;
	bool found = false;

	for (i = 0; map_size; ++i, map_size -= desc_size) {
		struct efi_mem_desc *entry = &memory_map[i];

		if (entry->physical_start != entry->virtual_start) {
			efi_st_error("Physical and virtual addresses do not match\n");
			return EFI_ST_FAILURE;
		}

		if (addr >= entry->physical_start &&
		    addr < entry->physical_start +
			    (entry->num_pages << EFI_PAGE_SHIFT)) {
			if (found) {
				efi_st_error("Duplicate memory map entry\n");
				return EFI_ST_FAILURE;
			}
			found = true;
			if (memory_type != entry->type) {
				efi_st_error
					("Wrong memory type %d, expected %d\n",
					 entry->type, memory_type);
				return EFI_ST_FAILURE;
			}
		}
	}
	if (!found) {
		efi_st_error("Missing memory map entry\n");
		return EFI_ST_FAILURE;
	}
	return EFI_ST_SUCCESS;
}

/*
 * execute() - execute unit test
 *
 * Return:	EFI_ST_SUCCESS for success
 */
static int execute(void)
{
	u64 p1;
	u64 p2;
	efi_uintn_t map_size = 0;
	efi_uintn_t map_key;
	efi_uintn_t desc_size;
	u32 desc_version;
	struct efi_mem_desc *memory_map;
	efi_status_t ret;

	/* Allocate two page ranges with different memory type */
	ret = boottime->allocate_pages(EFI_ALLOCATE_ANY_PAGES,
				       EFI_RUNTIME_SERVICES_CODE,
				       EFI_ST_NUM_PAGES, &p1);
	if (ret != EFI_SUCCESS) {
		efi_st_error("AllocatePages did not return EFI_SUCCESS\n");
		return EFI_ST_FAILURE;
	}
	ret = boottime->allocate_pages(EFI_ALLOCATE_ANY_PAGES,
				       EFI_RUNTIME_SERVICES_DATA,
				       EFI_ST_NUM_PAGES, &p2);
	if (ret != EFI_SUCCESS) {
		efi_st_error("AllocatePages did not return EFI_SUCCESS\n");
		return EFI_ST_FAILURE;
	}

	/* Load memory map */
	ret = boottime->get_memory_map(&map_size, NULL, &map_key, &desc_size,
				       &desc_version);
	if (ret != EFI_BUFFER_TOO_SMALL) {
		efi_st_error
			("GetMemoryMap did not return EFI_BUFFER_TOO_SMALL\n");
		return EFI_ST_FAILURE;
	}
	/* Allocate extra space for newly allocated memory */
	map_size += sizeof(struct efi_mem_desc);
	ret = boottime->allocate_pool(EFI_BOOT_SERVICES_DATA, map_size,
				      (void **)&memory_map);
	if (ret != EFI_SUCCESS) {
		efi_st_error("AllocatePool did not return EFI_SUCCESS\n");
		return EFI_ST_FAILURE;
	}
	ret = boottime->get_memory_map(&map_size, memory_map, &map_key,
				       &desc_size, &desc_version);
	if (ret != EFI_SUCCESS) {
		efi_st_error("GetMemoryMap did not return EFI_SUCCESS\n");
		return EFI_ST_FAILURE;
	}

	/* Check memory map entries */
	if (find_in_memory_map(map_size, memory_map, desc_size, p1,
			       EFI_RUNTIME_SERVICES_CODE) != EFI_ST_SUCCESS)
		return EFI_ST_FAILURE;
	if (find_in_memory_map(map_size, memory_map, desc_size, p2,
			       EFI_RUNTIME_SERVICES_DATA) != EFI_ST_SUCCESS)
		return EFI_ST_FAILURE;

	/* Free memory */
	ret = boottime->free_pages(p1, EFI_ST_NUM_PAGES);
	if (ret != EFI_SUCCESS) {
		efi_st_error("FreePages did not return EFI_SUCCESS\n");
		return EFI_ST_FAILURE;
	}
	ret = boottime->free_pages(p2, EFI_ST_NUM_PAGES);
	if (ret != EFI_SUCCESS) {
		efi_st_error("FreePages did not return EFI_SUCCESS\n");
		return EFI_ST_FAILURE;
	}
	ret = boottime->free_pool(memory_map);
	if (ret != EFI_SUCCESS) {
		efi_st_error("FreePool did not return EFI_SUCCESS\n");
		return EFI_ST_FAILURE;
	}

	/* Check memory reservation for the device tree */
	if (fdt_addr &&
	    find_in_memory_map(map_size, memory_map, desc_size, fdt_addr,
			       EFI_BOOT_SERVICES_DATA) != EFI_ST_SUCCESS) {
		efi_st_error
			("Device tree not marked as boot services data\n");
		return EFI_ST_FAILURE;
	}
	return EFI_ST_SUCCESS;
}

EFI_UNIT_TEST(memory) = {
	.name = "memory",
	.phase = EFI_EXECUTE_BEFORE_BOOTTIME_EXIT,
	.setup = setup,
	.execute = execute,
};