summaryrefslogtreecommitdiff
path: root/drivers/remoteproc/rproc-uclass.c
blob: 50bcc9030e98482865b33f1d7a6161ccb363f765 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
// SPDX-License-Identifier: GPL-2.0+
/*
 * (C) Copyright 2015
 * Texas Instruments Incorporated - http://www.ti.com/
 */

#define LOG_CATEGORY UCLASS_REMOTEPROC

#define pr_fmt(fmt) "%s: " fmt, __func__
#include <common.h>
#include <elf.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <virtio_ring.h>
#include <remoteproc.h>
#include <asm/io.h>
#include <dm/device-internal.h>
#include <dm.h>
#include <dm/uclass.h>
#include <dm/uclass-internal.h>
#include <linux/compat.h>

DECLARE_GLOBAL_DATA_PTR;

struct resource_table {
	u32 ver;
	u32 num;
	u32 reserved[2];
	u32 offset[0];
} __packed;

typedef int (*handle_resource_t) (struct udevice *, void *, int offset, int avail);

static struct resource_table *rsc_table;

/**
 * for_each_remoteproc_device() - iterate through the list of rproc devices
 * @fn: check function to call per match, if this function returns fail,
 *	iteration is aborted with the resultant error value
 * @skip_dev:	Device to skip calling the callback about.
 * @data:	Data to pass to the callback function
 *
 * Return: 0 if none of the callback returned a non 0 result, else returns the
 * result from the callback function
 */
static int for_each_remoteproc_device(int (*fn) (struct udevice *dev,
					struct dm_rproc_uclass_pdata *uc_pdata,
					const void *data),
				      struct udevice *skip_dev,
				      const void *data)
{
	struct udevice *dev;
	struct dm_rproc_uclass_pdata *uc_pdata;
	int ret;

	for (ret = uclass_find_first_device(UCLASS_REMOTEPROC, &dev); dev;
	     ret = uclass_find_next_device(&dev)) {
		if (ret || dev == skip_dev)
			continue;
		uc_pdata = dev_get_uclass_plat(dev);
		ret = fn(dev, uc_pdata, data);
		if (ret)
			return ret;
	}

	return 0;
}

/**
 * _rproc_name_is_unique() - iteration helper to check if rproc name is unique
 * @dev:	device that we are checking name for
 * @uc_pdata:	uclass platform data
 * @data:	compare data (this is the name we want to ensure is unique)
 *
 * Return: 0 is there is no match(is unique); if there is a match(we dont
 * have a unique name), return -EINVAL.
 */
static int _rproc_name_is_unique(struct udevice *dev,
				 struct dm_rproc_uclass_pdata *uc_pdata,
				 const void *data)
{
	const char *check_name = data;

	/* devices not yet populated with data - so skip them */
	if (!uc_pdata->name || !check_name)
		return 0;

	/* Return 0 to search further if we dont match */
	if (strlen(uc_pdata->name) != strlen(check_name))
		return 0;

	if (!strcmp(uc_pdata->name, check_name))
		return -EINVAL;

	return 0;
}

/**
 * rproc_name_is_unique() - Check if the rproc name is unique
 * @check_dev:	Device we are attempting to ensure is unique
 * @check_name:	Name we are trying to ensure is unique.
 *
 * Return: true if we have a unique name, false if name is not unique.
 */
static bool rproc_name_is_unique(struct udevice *check_dev,
				 const char *check_name)
{
	int ret;

	ret = for_each_remoteproc_device(_rproc_name_is_unique,
					 check_dev, check_name);
	return ret ? false : true;
}

/**
 * rproc_pre_probe() - Pre probe accessor for the uclass
 * @dev:	device for which we are preprobing
 *
 * Parses and fills up the uclass pdata for use as needed by core and
 * remote proc drivers.
 *
 * Return: 0 if all wernt ok, else appropriate error value.
 */
static int rproc_pre_probe(struct udevice *dev)
{
	struct dm_rproc_uclass_pdata *uc_pdata;
	const struct dm_rproc_ops *ops;

	uc_pdata = dev_get_uclass_plat(dev);

	/* See if we need to populate via fdt */

	if (!dev_get_plat(dev)) {
#if CONFIG_IS_ENABLED(OF_CONTROL)
		bool tmp;
		debug("'%s': using fdt\n", dev->name);
		uc_pdata->name = dev_read_string(dev, "remoteproc-name");

		/* Default is internal memory mapped */
		uc_pdata->mem_type = RPROC_INTERNAL_MEMORY_MAPPED;
		tmp = dev_read_bool(dev, "remoteproc-internal-memory-mapped");
		if (tmp)
			uc_pdata->mem_type = RPROC_INTERNAL_MEMORY_MAPPED;
#else
		/* Nothing much we can do about this, can we? */
		return -EINVAL;
#endif

	} else {
		struct dm_rproc_uclass_pdata *pdata = dev_get_plat(dev);

		debug("'%s': using legacy data\n", dev->name);
		if (pdata->name)
			uc_pdata->name = pdata->name;
		uc_pdata->mem_type = pdata->mem_type;
		uc_pdata->driver_plat_data = pdata->driver_plat_data;
	}

	/* Else try using device Name */
	if (!uc_pdata->name)
		uc_pdata->name = dev->name;
	if (!uc_pdata->name) {
		debug("Unnamed device!");
		return -EINVAL;
	}

	if (!rproc_name_is_unique(dev, uc_pdata->name)) {
		debug("%s duplicate name '%s'\n", dev->name, uc_pdata->name);
		return -EINVAL;
	}

	ops = rproc_get_ops(dev);
	if (!ops) {
		debug("%s driver has no ops?\n", dev->name);
		return -EINVAL;
	}

	if (!ops->load || !ops->start) {
		debug("%s driver has missing mandatory ops?\n", dev->name);
		return -EINVAL;
	}

	return 0;
}

/**
 * rproc_post_probe() - post probe accessor for the uclass
 * @dev:	deivce we finished probing
 *
 * initiate init function after the probe is completed. This allows
 * the remote processor drivers to split up the initializations between
 * probe and init as needed.
 *
 * Return: if the remote proc driver has a init routine, invokes it and
 * hands over the return value. overall, 0 if all went well, else appropriate
 * error value.
 */
static int rproc_post_probe(struct udevice *dev)
{
	const struct dm_rproc_ops *ops;

	ops = rproc_get_ops(dev);
	if (!ops) {
		debug("%s driver has no ops?\n", dev->name);
		return -EINVAL;
	}

	if (ops->init)
		return ops->init(dev);

	return 0;
}

/**
 * rproc_add_res() - After parsing the resource table add the mappings
 * @dev:	device we finished probing
 * @mapping: rproc_mem_entry for the resource
 *
 * Return: if the remote proc driver has a add_res routine, invokes it and
 * hands over the return value. overall, 0 if all went well, else appropriate
 * error value.
 */
static int rproc_add_res(struct udevice *dev, struct rproc_mem_entry *mapping)
{
	const struct dm_rproc_ops *ops = rproc_get_ops(dev);

	if (!ops->add_res)
		return -ENOSYS;

	return ops->add_res(dev, mapping);
}

/**
 * rproc_alloc_mem() - After parsing the resource table allocat mem
 * @dev:	device we finished probing
 * @len: rproc_mem_entry for the resource
 * @align: alignment for the resource
 *
 * Return: if the remote proc driver has a add_res routine, invokes it and
 * hands over the return value. overall, 0 if all went well, else appropriate
 * error value.
 */
static void *rproc_alloc_mem(struct udevice *dev, unsigned long len,
			     unsigned long align)
{
	const struct dm_rproc_ops *ops;

	ops = rproc_get_ops(dev);
	if (!ops) {
		debug("%s driver has no ops?\n", dev->name);
		return NULL;
	}

	if (ops->alloc_mem)
		return ops->alloc_mem(dev, len, align);

	return NULL;
}

/**
 * rproc_config_pagetable() - Configure page table for remote processor
 * @dev:	device we finished probing
 * @virt: Virtual address of the resource
 * @phys: Physical address the resource
 * @len: length the resource
 *
 * Return: if the remote proc driver has a add_res routine, invokes it and
 * hands over the return value. overall, 0 if all went well, else appropriate
 * error value.
 */
static int rproc_config_pagetable(struct udevice *dev, unsigned int virt,
				  unsigned int phys, unsigned int len)
{
	const struct dm_rproc_ops *ops;

	ops = rproc_get_ops(dev);
	if (!ops) {
		debug("%s driver has no ops?\n", dev->name);
		return -EINVAL;
	}

	if (ops->config_pagetable)
		return ops->config_pagetable(dev, virt, phys, len);

	return 0;
}

UCLASS_DRIVER(rproc) = {
	.id = UCLASS_REMOTEPROC,
	.name = "remoteproc",
	.flags = DM_UC_FLAG_SEQ_ALIAS,
	.pre_probe = rproc_pre_probe,
	.post_probe = rproc_post_probe,
	.per_device_plat_auto	= sizeof(struct dm_rproc_uclass_pdata),
};

/* Remoteproc subsystem access functions */
/**
 * _rproc_probe_dev() - iteration helper to probe a rproc device
 * @dev:	device to probe
 * @uc_pdata:	uclass data allocated for the device
 * @data:	unused
 *
 * Return: 0 if all ok, else appropriate error value.
 */
static int _rproc_probe_dev(struct udevice *dev,
			    struct dm_rproc_uclass_pdata *uc_pdata,
			    const void *data)
{
	int ret;

	ret = device_probe(dev);

	if (ret)
		debug("%s: Failed to initialize - %d\n", dev->name, ret);
	return ret;
}

/**
 * _rproc_dev_is_probed() - check if the device has been probed
 * @dev:	device to check
 * @uc_pdata:	unused
 * @data:	unused
 *
 * Return: -EAGAIN if not probed else return 0
 */
static int _rproc_dev_is_probed(struct udevice *dev,
			    struct dm_rproc_uclass_pdata *uc_pdata,
			    const void *data)
{
	if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
		return 0;

	return -EAGAIN;
}

bool rproc_is_initialized(void)
{
	int ret = for_each_remoteproc_device(_rproc_dev_is_probed, NULL, NULL);
	return ret ? false : true;
}

int rproc_init(void)
{
	int ret;

	if (rproc_is_initialized()) {
		debug("Already initialized\n");
		return -EINVAL;
	}

	ret = for_each_remoteproc_device(_rproc_probe_dev, NULL, NULL);
	return ret;
}

int rproc_dev_init(int id)
{
	struct udevice *dev = NULL;
	int ret;

	ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
	if (ret) {
		debug("Unknown remote processor id '%d' requested(%d)\n",
		      id, ret);
		return ret;
	}

	ret = device_probe(dev);
	if (ret)
		debug("%s: Failed to initialize - %d\n", dev->name, ret);

	return ret;
}

int rproc_load(int id, ulong addr, ulong size)
{
	struct udevice *dev = NULL;
	struct dm_rproc_uclass_pdata *uc_pdata;
	const struct dm_rproc_ops *ops;
	int ret;

	ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
	if (ret) {
		debug("Unknown remote processor id '%d' requested(%d)\n",
		      id, ret);
		return ret;
	}

	uc_pdata = dev_get_uclass_plat(dev);

	ops = rproc_get_ops(dev);
	if (!ops) {
		debug("%s driver has no ops?\n", dev->name);
		return -EINVAL;
	}

	debug("Loading to '%s' from address 0x%08lX size of %lu bytes\n",
	      uc_pdata->name, addr, size);
	if (ops->load)
		return ops->load(dev, addr, size);

	debug("%s: data corruption?? mandatory function is missing!\n",
	      dev->name);

	return -EINVAL;
};

/*
 * Completely internal helper enums..
 * Keeping this isolated helps this code evolve independent of other
 * parts..
 */
enum rproc_ops {
	RPROC_START,
	RPROC_STOP,
	RPROC_RESET,
	RPROC_PING,
	RPROC_RUNNING,
};

/**
 * _rproc_ops_wrapper() - wrapper for invoking remote proc driver callback
 * @id:		id of the remote processor
 * @op:		one of rproc_ops that indicate what operation to invoke
 *
 * Most of the checks and verification for remoteproc operations are more
 * or less same for almost all operations. This allows us to put a wrapper
 * and use the common checks to allow the driver to function appropriately.
 *
 * Return: 0 if all ok, else appropriate error value.
 */
static int _rproc_ops_wrapper(int id, enum rproc_ops op)
{
	struct udevice *dev = NULL;
	struct dm_rproc_uclass_pdata *uc_pdata;
	const struct dm_rproc_ops *ops;
	int (*fn)(struct udevice *dev);
	bool mandatory = false;
	char *op_str;
	int ret;

	ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
	if (ret) {
		debug("Unknown remote processor id '%d' requested(%d)\n",
		      id, ret);
		return ret;
	}

	uc_pdata = dev_get_uclass_plat(dev);

	ops = rproc_get_ops(dev);
	if (!ops) {
		debug("%s driver has no ops?\n", dev->name);
		return -EINVAL;
	}
	switch (op) {
	case RPROC_START:
		fn = ops->start;
		mandatory = true;
		op_str = "Starting";
		break;
	case RPROC_STOP:
		fn = ops->stop;
		op_str = "Stopping";
		break;
	case RPROC_RESET:
		fn = ops->reset;
		op_str = "Resetting";
		break;
	case RPROC_RUNNING:
		fn = ops->is_running;
		op_str = "Checking if running:";
		break;
	case RPROC_PING:
		fn = ops->ping;
		op_str = "Pinging";
		break;
	default:
		debug("what is '%d' operation??\n", op);
		return -EINVAL;
	}

	debug("%s %s...\n", op_str, uc_pdata->name);
	if (fn)
		return fn(dev);

	if (mandatory)
		debug("%s: data corruption?? mandatory function is missing!\n",
		      dev->name);

	return -ENOSYS;
}

int rproc_start(int id)
{
	return _rproc_ops_wrapper(id, RPROC_START);
};

int rproc_stop(int id)
{
	return _rproc_ops_wrapper(id, RPROC_STOP);
};

int rproc_reset(int id)
{
	return _rproc_ops_wrapper(id, RPROC_RESET);
};

int rproc_ping(int id)
{
	return _rproc_ops_wrapper(id, RPROC_PING);
};

int rproc_is_running(int id)
{
	return _rproc_ops_wrapper(id, RPROC_RUNNING);
};


static int handle_trace(struct udevice *dev, struct fw_rsc_trace *rsc,
			int offset, int avail)
{
	if (sizeof(*rsc) > avail) {
		debug("trace rsc is truncated\n");
		return -EINVAL;
	}

	/*
	 * make sure reserved bytes are zeroes
	 */
	if (rsc->reserved) {
		debug("trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	debug("trace rsc: da 0x%x, len 0x%x\n", rsc->da, rsc->len);

	return 0;
}

static int handle_devmem(struct udevice *dev, struct fw_rsc_devmem *rsc,
			 int offset, int avail)
{
	struct rproc_mem_entry *mapping;

	if (sizeof(*rsc) > avail) {
		debug("devmem rsc is truncated\n");
		return -EINVAL;
	}

	/*
	 * make sure reserved bytes are zeroes
	 */
	if (rsc->reserved) {
		debug("devmem rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	debug("devmem rsc: pa 0x%x, da 0x%x, len 0x%x\n",
	      rsc->pa, rsc->da, rsc->len);

	rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len);

	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping)
		return -ENOMEM;

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->dma = rsc->pa;
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	rproc_add_res(dev, mapping);

	debug("mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
	      rsc->pa, rsc->da, rsc->len);

	return 0;
}

static int handle_carveout(struct udevice *dev, struct fw_rsc_carveout *rsc,
			   int offset, int avail)
{
	struct rproc_mem_entry *mapping;

	if (sizeof(*rsc) > avail) {
		debug("carveout rsc is truncated\n");
		return -EINVAL;
	}

	/*
	 * make sure reserved bytes are zeroes
	 */
	if (rsc->reserved) {
		debug("carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	debug("carveout rsc: da %x, pa %x, len %x, flags %x\n",
	      rsc->da, rsc->pa, rsc->len, rsc->flags);

	rsc->pa = (uintptr_t)rproc_alloc_mem(dev, rsc->len, 8);
	if (!rsc->pa) {
		debug
		    ("failed to allocate carveout rsc: da %x, pa %x, len %x, flags %x\n",
		     rsc->da, rsc->pa, rsc->len, rsc->flags);
		return -ENOMEM;
	}
	rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len);

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping)
		return -ENOMEM;

	/*
	 * We'll need this info later when we'll want to unmap
	 * everything (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the
	 * resource table, so we must maintain this info independently.
	 */
	mapping->dma = rsc->pa;
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	rproc_add_res(dev, mapping);

	debug("carveout mapped 0x%x to 0x%x\n", rsc->da, rsc->pa);

	return 0;
}

#define RPROC_PAGE_SHIFT 12
#define RPROC_PAGE_SIZE  BIT(RPROC_PAGE_SHIFT)
#define RPROC_PAGE_ALIGN(x) (((x) + (RPROC_PAGE_SIZE - 1)) & ~(RPROC_PAGE_SIZE - 1))

static int alloc_vring(struct udevice *dev, struct fw_rsc_vdev *rsc, int i)
{
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	int size;
	int order;
	void *pa;

	debug("vdev rsc: vring%d: da %x, qsz %d, align %d\n",
	      i, vring->da, vring->num, vring->align);

	/*
	 * verify queue size and vring alignment are sane
	 */
	if (!vring->num || !vring->align) {
		debug("invalid qsz (%d) or alignment (%d)\n", vring->num,
		      vring->align);
		return -EINVAL;
	}

	/*
	 * actual size of vring (in bytes)
	 */
	size = RPROC_PAGE_ALIGN(vring_size(vring->num, vring->align));
	order = vring->align >> RPROC_PAGE_SHIFT;

	pa = rproc_alloc_mem(dev, size, order);
	if (!pa) {
		debug("failed to allocate vring rsc\n");
		return -ENOMEM;
	}
	debug("alloc_mem(%#x, %d): %p\n", size, order, pa);
	vring->da = (uintptr_t)pa;

	return !pa;
}

static int handle_vdev(struct udevice *dev, struct fw_rsc_vdev *rsc,
		       int offset, int avail)
{
	int i, ret;
	void *pa;

	/*
	 * make sure resource isn't truncated
	 */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
	    + rsc->config_len > avail) {
		debug("vdev rsc is truncated\n");
		return -EINVAL;
	}

	/*
	 * make sure reserved bytes are zeroes
	 */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		debug("vdev rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	debug("vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
	      rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

	/*
	 * we currently support only two vrings per rvdev
	 */
	if (rsc->num_of_vrings > 2) {
		debug("too many vrings: %d\n", rsc->num_of_vrings);
		return -EINVAL;
	}

	/*
	 * allocate the vrings
	 */
	for (i = 0; i < rsc->num_of_vrings; i++) {
		ret = alloc_vring(dev, rsc, i);
		if (ret)
			goto alloc_error;
	}

	pa = rproc_alloc_mem(dev, RPMSG_TOTAL_BUF_SPACE, 6);
	if (!pa) {
		debug("failed to allocate vdev rsc\n");
		return -ENOMEM;
	}
	debug("vring buffer alloc_mem(%#x, 6): %p\n", RPMSG_TOTAL_BUF_SPACE,
	      pa);

	return 0;

 alloc_error:
	return ret;
}

/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
static handle_resource_t loading_handlers[RSC_LAST] = {
	[RSC_CARVEOUT] = (handle_resource_t)handle_carveout,
	[RSC_DEVMEM] = (handle_resource_t)handle_devmem,
	[RSC_TRACE] = (handle_resource_t)handle_trace,
	[RSC_VDEV] = (handle_resource_t)handle_vdev,
};

/*
 * handle firmware resource entries before booting the remote processor
 */
static int handle_resources(struct udevice *dev, int len,
			    handle_resource_t handlers[RSC_LAST])
{
	handle_resource_t handler;
	int ret = 0, i;

	for (i = 0; i < rsc_table->num; i++) {
		int offset = rsc_table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)rsc_table + offset;
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/*
		 * make sure table isn't truncated
		 */
		if (avail < 0) {
			debug("rsc table is truncated\n");
			return -EINVAL;
		}

		debug("rsc: type %d\n", hdr->type);

		if (hdr->type >= RSC_LAST) {
			debug("unsupported resource %d\n", hdr->type);
			continue;
		}

		handler = handlers[hdr->type];
		if (!handler)
			continue;

		ret = handler(dev, rsc, offset + sizeof(*hdr), avail);
		if (ret)
			break;
	}

	return ret;
}

static int
handle_intmem_to_l3_mapping(struct udevice *dev,
			    struct rproc_intmem_to_l3_mapping *l3_mapping)
{
	u32 i = 0;

	for (i = 0; i < l3_mapping->num_entries; i++) {
		struct l3_map *curr_map = &l3_mapping->mappings[i];
		struct rproc_mem_entry *mapping;

		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
		if (!mapping)
			return -ENOMEM;

		mapping->dma = curr_map->l3_addr;
		mapping->da = curr_map->priv_addr;
		mapping->len = curr_map->len;
		rproc_add_res(dev, mapping);
	}

	return 0;
}

static Elf32_Shdr *rproc_find_table(unsigned int addr)
{
	Elf32_Ehdr *ehdr;	/* Elf header structure pointer */
	Elf32_Shdr *shdr;	/* Section header structure pointer */
	Elf32_Shdr sectionheader;
	int i;
	u8 *elf_data;
	char *name_table;
	struct resource_table *ptable;

	ehdr = (Elf32_Ehdr *)(uintptr_t)addr;
	elf_data = (u8 *)ehdr;
	shdr = (Elf32_Shdr *)(elf_data + ehdr->e_shoff);
	memcpy(&sectionheader, &shdr[ehdr->e_shstrndx], sizeof(sectionheader));
	name_table = (char *)(elf_data + sectionheader.sh_offset);

	for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
		memcpy(&sectionheader, shdr, sizeof(sectionheader));
		u32 size = sectionheader.sh_size;
		u32 offset = sectionheader.sh_offset;

		if (strcmp
		    (name_table + sectionheader.sh_name, ".resource_table"))
			continue;

		ptable = (struct resource_table *)(elf_data + offset);

		/*
		 * make sure table has at least the header
		 */
		if (sizeof(struct resource_table) > size) {
			debug("header-less resource table\n");
			return NULL;
		}

		/*
		 * we don't support any version beyond the first
		 */
		if (ptable->ver != 1) {
			debug("unsupported fw ver: %d\n", ptable->ver);
			return NULL;
		}

		/*
		 * make sure reserved bytes are zeroes
		 */
		if (ptable->reserved[0] || ptable->reserved[1]) {
			debug("non zero reserved bytes\n");
			return NULL;
		}

		/*
		 * make sure the offsets array isn't truncated
		 */
		if (ptable->num * sizeof(ptable->offset[0]) +
		    sizeof(struct resource_table) > size) {
			debug("resource table incomplete\n");
			return NULL;
		}

		return shdr;
	}

	return NULL;
}

struct resource_table *rproc_find_resource_table(struct udevice *dev,
						 unsigned int addr,
						 int *tablesz)
{
	Elf32_Shdr *shdr;
	Elf32_Shdr sectionheader;
	struct resource_table *ptable;
	u8 *elf_data = (u8 *)(uintptr_t)addr;

	shdr = rproc_find_table(addr);
	if (!shdr) {
		debug("%s: failed to get resource section header\n", __func__);
		return NULL;
	}

	memcpy(&sectionheader, shdr, sizeof(sectionheader));
	ptable = (struct resource_table *)(elf_data + sectionheader.sh_offset);
	if (tablesz)
		*tablesz = sectionheader.sh_size;

	return ptable;
}

unsigned long rproc_parse_resource_table(struct udevice *dev, struct rproc *cfg)
{
	struct resource_table *ptable = NULL;
	int tablesz;
	int ret;
	unsigned long addr;

	addr = cfg->load_addr;

	ptable = rproc_find_resource_table(dev, addr, &tablesz);
	if (!ptable) {
		debug("%s : failed to find resource table\n", __func__);
		return 0;
	}

	debug("%s : found resource table\n", __func__);
	rsc_table = kzalloc(tablesz, GFP_KERNEL);
	if (!rsc_table) {
		debug("resource table alloc failed!\n");
		return 0;
	}

	/*
	 * Copy the resource table into a local buffer before handling the
	 * resource table.
	 */
	memcpy(rsc_table, ptable, tablesz);
	if (cfg->intmem_to_l3_mapping)
		handle_intmem_to_l3_mapping(dev, cfg->intmem_to_l3_mapping);
	ret = handle_resources(dev, tablesz, loading_handlers);
	if (ret) {
		debug("handle_resources failed: %d\n", ret);
		return 0;
	}

	/*
	 * Instead of trying to mimic the kernel flow of copying the
	 * processed resource table into its post ELF load location in DDR
	 * copying it into its original location.
	 */
	memcpy(ptable, rsc_table, tablesz);
	free(rsc_table);
	rsc_table = NULL;

	return 1;
}