summaryrefslogtreecommitdiff
path: root/drivers/ram/k3-ddrss/k3-ddrss.c
blob: 322e8e86deb781283ac0a28ad51d04131cba323c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
// SPDX-License-Identifier: GPL-2.0+
/*
 * Texas Instruments' K3 DDRSS driver
 *
 * Copyright (C) 2020-2021 Texas Instruments Incorporated - http://www.ti.com/
 */

#include <common.h>
#include <config.h>
#include <time.h>
#include <clk.h>
#include <div64.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <fdt_support.h>
#include <ram.h>
#include <hang.h>
#include <log.h>
#include <asm/io.h>
#include <power-domain.h>
#include <wait_bit.h>
#include <power/regulator.h>

#include "lpddr4_obj_if.h"
#include "lpddr4_if.h"
#include "lpddr4_structs_if.h"
#include "lpddr4_ctl_regs.h"

#define SRAM_MAX 512

#define CTRLMMR_DDR4_FSP_CLKCHNG_REQ_OFFS	0x80
#define CTRLMMR_DDR4_FSP_CLKCHNG_ACK_OFFS	0xc0

#define DDRSS_V2A_CTL_REG			0x0020
#define DDRSS_ECC_CTRL_REG			0x0120

#define DDRSS_ECC_CTRL_REG_ECC_EN		BIT(0)
#define DDRSS_ECC_CTRL_REG_RMW_EN		BIT(1)
#define DDRSS_ECC_CTRL_REG_ECC_CK		BIT(2)
#define DDRSS_ECC_CTRL_REG_WR_ALLOC		BIT(4)

#define DDRSS_ECC_R0_STR_ADDR_REG		0x0130
#define DDRSS_ECC_R0_END_ADDR_REG		0x0134
#define DDRSS_ECC_R1_STR_ADDR_REG		0x0138
#define DDRSS_ECC_R1_END_ADDR_REG		0x013c
#define DDRSS_ECC_R2_STR_ADDR_REG		0x0140
#define DDRSS_ECC_R2_END_ADDR_REG		0x0144
#define DDRSS_ECC_1B_ERR_CNT_REG		0x0150
#define DDRSS_V2A_INT_SET_REG			0x00a8

#define DDRSS_V2A_INT_SET_REG_ECC1BERR_EN	BIT(3)
#define DDRSS_V2A_INT_SET_REG_ECC2BERR_EN	BIT(4)
#define DDRSS_V2A_INT_SET_REG_ECCM1BERR_EN	BIT(5)

#define SINGLE_DDR_SUBSYSTEM	0x1
#define MULTI_DDR_SUBSYSTEM	0x2

#define MULTI_DDR_CFG0  0x00114100
#define MULTI_DDR_CFG1  0x00114104
#define DDR_CFG_LOAD    0x00114110

enum intrlv_gran {
	GRAN_128B,
	GRAN_512B,
	GRAN_2KB,
	GRAN_4KB,
	GRAN_16KB,
	GRAN_32KB,
	GRAN_512KB,
	GRAN_1GB,
	GRAN_1_5GB,
	GRAN_2GB,
	GRAN_3GB,
	GRAN_4GB,
	GRAN_6GB,
	GRAN_8GB,
	GRAN_16GB
};

enum intrlv_size {
	SIZE_0,
	SIZE_128MB,
	SIZE_256MB,
	SIZE_512MB,
	SIZE_1GB,
	SIZE_2GB,
	SIZE_3GB,
	SIZE_4GB,
	SIZE_6GB,
	SIZE_8GB,
	SIZE_12GB,
	SIZE_16GB,
	SIZE_32GB
};

struct k3_ddrss_data {
	u32 flags;
};

enum ecc_enable {
	DISABLE_ALL = 0,
	ENABLE_0,
	ENABLE_1,
	ENABLE_ALL
};

enum emif_config {
	INTERLEAVE_ALL = 0,
	SEPR0,
	SEPR1
};

enum emif_active {
	EMIF_0 = 1,
	EMIF_1,
	EMIF_ALL
};

struct k3_msmc {
	enum intrlv_gran gran;
	enum intrlv_size size;
	enum ecc_enable enable;
	enum emif_config config;
	enum emif_active active;
};

#define K3_DDRSS_MAX_ECC_REGIONS		3

struct k3_ddrss_ecc_region {
	u64 start;
	u64 range;
};

struct k3_ddrss_desc {
	struct udevice *dev;
	void __iomem *ddrss_ss_cfg;
	void __iomem *ddrss_ctrl_mmr;
	void __iomem *ddrss_ctl_cfg;
	struct power_domain ddrcfg_pwrdmn;
	struct power_domain ddrdata_pwrdmn;
	struct clk ddr_clk;
	struct clk osc_clk;
	u32 ddr_freq0;
	u32 ddr_freq1;
	u32 ddr_freq2;
	u32 ddr_fhs_cnt;
	u32 dram_class;
	struct udevice *vtt_supply;
	u32 instance;
	lpddr4_obj *driverdt;
	lpddr4_config config;
	lpddr4_privatedata pd;
	struct k3_ddrss_ecc_region ecc_regions[K3_DDRSS_MAX_ECC_REGIONS];
	u64 ecc_reserved_space;
	bool ti_ecc_enabled;
	unsigned long long ddr_bank_base[CONFIG_NR_DRAM_BANKS];
	unsigned long long ddr_bank_size[CONFIG_NR_DRAM_BANKS];
	unsigned long long ddr_ram_size;
};

struct reginitdata {
	u32 ctl_regs[LPDDR4_INTR_CTL_REG_COUNT];
	u16 ctl_regs_offs[LPDDR4_INTR_CTL_REG_COUNT];
	u32 pi_regs[LPDDR4_INTR_PHY_INDEP_REG_COUNT];
	u16 pi_regs_offs[LPDDR4_INTR_PHY_INDEP_REG_COUNT];
	u32 phy_regs[LPDDR4_INTR_PHY_REG_COUNT];
	u16 phy_regs_offs[LPDDR4_INTR_PHY_REG_COUNT];
};

#define TH_MACRO_EXP(fld, str) (fld##str)

#define TH_FLD_MASK(fld)  TH_MACRO_EXP(fld, _MASK)
#define TH_FLD_SHIFT(fld) TH_MACRO_EXP(fld, _SHIFT)
#define TH_FLD_WIDTH(fld) TH_MACRO_EXP(fld, _WIDTH)
#define TH_FLD_WOCLR(fld) TH_MACRO_EXP(fld, _WOCLR)
#define TH_FLD_WOSET(fld) TH_MACRO_EXP(fld, _WOSET)

#define str(s) #s
#define xstr(s) str(s)

#define CTL_SHIFT 11
#define PHY_SHIFT 11
#define PI_SHIFT 10

#define DENALI_CTL_0_DRAM_CLASS_DDR4		0xA
#define DENALI_CTL_0_DRAM_CLASS_LPDDR4		0xB

#define TH_OFFSET_FROM_REG(REG, SHIFT, offset) do {\
	char *i, *pstr = xstr(REG); offset = 0;\
	for (i = &pstr[SHIFT]; *i != '\0'; ++i) {\
		offset = offset * 10 + (*i - '0'); } \
	} while (0)

static u32 k3_lpddr4_read_ddr_type(const lpddr4_privatedata *pd)
{
	u32 status = 0U;
	u32 offset = 0U;
	u32 regval = 0U;
	u32 dram_class = 0U;
	struct k3_ddrss_desc *ddrss = (struct k3_ddrss_desc *)pd->ddr_instance;

	TH_OFFSET_FROM_REG(LPDDR4__DRAM_CLASS__REG, CTL_SHIFT, offset);
	status = ddrss->driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, &regval);
	if (status > 0U) {
		printf("%s: Failed to read DRAM_CLASS\n", __func__);
		hang();
	}

	dram_class = ((regval & TH_FLD_MASK(LPDDR4__DRAM_CLASS__FLD)) >>
		TH_FLD_SHIFT(LPDDR4__DRAM_CLASS__FLD));
	return dram_class;
}

static void k3_lpddr4_freq_update(struct k3_ddrss_desc *ddrss)
{
	unsigned int req_type, counter;

	for (counter = 0; counter < ddrss->ddr_fhs_cnt; counter++) {
		if (wait_for_bit_le32(ddrss->ddrss_ctrl_mmr +
				      CTRLMMR_DDR4_FSP_CLKCHNG_REQ_OFFS + ddrss->instance * 0x10, 0x80,
				      true, 10000, false)) {
			printf("Timeout during frequency handshake\n");
			hang();
		}

		req_type = readl(ddrss->ddrss_ctrl_mmr +
				 CTRLMMR_DDR4_FSP_CLKCHNG_REQ_OFFS + ddrss->instance * 0x10) & 0x03;

		debug("%s: received freq change req: req type = %d, req no. = %d, instance = %d\n",
		      __func__, req_type, counter, ddrss->instance);

		if (req_type == 1)
			clk_set_rate(&ddrss->ddr_clk, ddrss->ddr_freq1);
		else if (req_type == 2)
			clk_set_rate(&ddrss->ddr_clk, ddrss->ddr_freq2);
		else if (req_type == 0)
			clk_set_rate(&ddrss->ddr_clk, ddrss->ddr_freq0);
		else
			printf("%s: Invalid freq request type\n", __func__);

		writel(0x1, ddrss->ddrss_ctrl_mmr +
		       CTRLMMR_DDR4_FSP_CLKCHNG_ACK_OFFS + ddrss->instance * 0x10);
		if (wait_for_bit_le32(ddrss->ddrss_ctrl_mmr +
				      CTRLMMR_DDR4_FSP_CLKCHNG_REQ_OFFS + ddrss->instance * 0x10, 0x80,
				      false, 10, false)) {
			printf("Timeout during frequency handshake\n");
			hang();
		}
		writel(0x0, ddrss->ddrss_ctrl_mmr +
		       CTRLMMR_DDR4_FSP_CLKCHNG_ACK_OFFS + ddrss->instance * 0x10);
	}
}

static void k3_lpddr4_ack_freq_upd_req(const lpddr4_privatedata *pd)
{
	struct k3_ddrss_desc *ddrss = (struct k3_ddrss_desc *)pd->ddr_instance;

	debug("--->>> LPDDR4 Initialization is in progress ... <<<---\n");

	switch (ddrss->dram_class) {
	case DENALI_CTL_0_DRAM_CLASS_DDR4:
		break;
	case DENALI_CTL_0_DRAM_CLASS_LPDDR4:
		k3_lpddr4_freq_update(ddrss);
		break;
	default:
		printf("Unrecognized dram_class cannot update frequency!\n");
	}
}

static int k3_ddrss_init_freq(struct k3_ddrss_desc *ddrss)
{
	int ret;
	lpddr4_privatedata *pd = &ddrss->pd;

	ddrss->dram_class = k3_lpddr4_read_ddr_type(pd);

	switch (ddrss->dram_class) {
	case DENALI_CTL_0_DRAM_CLASS_DDR4:
		/* Set to ddr_freq1 from DT for DDR4 */
		ret = clk_set_rate(&ddrss->ddr_clk, ddrss->ddr_freq1);
		break;
	case DENALI_CTL_0_DRAM_CLASS_LPDDR4:
		ret = clk_set_rate(&ddrss->ddr_clk, ddrss->ddr_freq0);
		break;
	default:
		ret = -EINVAL;
		printf("Unrecognized dram_class cannot init frequency!\n");
	}

	if (ret < 0)
		dev_err(ddrss->dev, "ddr clk init failed: %d\n", ret);
	else
		ret = 0;

	return ret;
}

static void k3_lpddr4_info_handler(const lpddr4_privatedata *pd,
				   lpddr4_infotype infotype)
{
	if (infotype == LPDDR4_DRV_SOC_PLL_UPDATE)
		k3_lpddr4_ack_freq_upd_req(pd);
}

static int k3_ddrss_power_on(struct k3_ddrss_desc *ddrss)
{
	int ret;

	debug("%s(ddrss=%p)\n", __func__, ddrss);

	ret = power_domain_on(&ddrss->ddrcfg_pwrdmn);
	if (ret) {
		dev_err(ddrss->dev, "power_domain_on() failed: %d\n", ret);
		return ret;
	}

	ret = power_domain_on(&ddrss->ddrdata_pwrdmn);
	if (ret) {
		dev_err(ddrss->dev, "power_domain_on() failed: %d\n", ret);
		return ret;
	}

	ret = device_get_supply_regulator(ddrss->dev, "vtt-supply",
					  &ddrss->vtt_supply);
	if (ret) {
		dev_dbg(ddrss->dev, "vtt-supply not found.\n");
	} else {
		ret = regulator_set_value(ddrss->vtt_supply, 3300000);
		if (ret)
			return ret;
		dev_dbg(ddrss->dev, "VTT regulator enabled, volt = %d\n",
			regulator_get_value(ddrss->vtt_supply));
	}

	return 0;
}

static int k3_ddrss_ofdata_to_priv(struct udevice *dev)
{
	struct k3_ddrss_desc *ddrss = dev_get_priv(dev);
	struct k3_ddrss_data *ddrss_data = (struct k3_ddrss_data *)dev_get_driver_data(dev);
	phys_addr_t reg;
	int ret;

	debug("%s(dev=%p)\n", __func__, dev);

	reg = dev_read_addr_name(dev, "cfg");
	if (reg == FDT_ADDR_T_NONE) {
		dev_err(dev, "No reg property for DDRSS wrapper logic\n");
		return -EINVAL;
	}
	ddrss->ddrss_ctl_cfg = (void *)reg;

	reg = dev_read_addr_name(dev, "ctrl_mmr_lp4");
	if (reg == FDT_ADDR_T_NONE) {
		dev_err(dev, "No reg property for CTRL MMR\n");
		return -EINVAL;
	}
	ddrss->ddrss_ctrl_mmr = (void *)reg;

	reg = dev_read_addr_name(dev, "ss_cfg");
	if (reg == FDT_ADDR_T_NONE) {
		dev_dbg(dev, "No reg property for SS Config region, but this is optional so continuing.\n");
		ddrss->ddrss_ss_cfg = NULL;
	} else {
		ddrss->ddrss_ss_cfg = (void *)reg;
	}

	ret = power_domain_get_by_index(dev, &ddrss->ddrcfg_pwrdmn, 0);
	if (ret) {
		dev_err(dev, "power_domain_get() failed: %d\n", ret);
		return ret;
	}

	ret = power_domain_get_by_index(dev, &ddrss->ddrdata_pwrdmn, 1);
	if (ret) {
		dev_err(dev, "power_domain_get() failed: %d\n", ret);
		return ret;
	}

	ret = clk_get_by_index(dev, 0, &ddrss->ddr_clk);
	if (ret)
		dev_err(dev, "clk get failed%d\n", ret);

	ret = clk_get_by_index(dev, 1, &ddrss->osc_clk);
	if (ret)
		dev_err(dev, "clk get failed for osc clk %d\n", ret);

	/* Reading instance number for multi ddr subystems */
	if (ddrss_data->flags & MULTI_DDR_SUBSYSTEM) {
		ret = dev_read_u32(dev, "instance", &ddrss->instance);
		if (ret) {
			dev_err(dev, "missing instance property");
			return -EINVAL;
		}
	} else {
		ddrss->instance = 0;
	}

	ret = dev_read_u32(dev, "ti,ddr-freq0", &ddrss->ddr_freq0);
	if (ret) {
		ddrss->ddr_freq0 = clk_get_rate(&ddrss->osc_clk);
		dev_dbg(dev,
			"ddr freq0 not populated, using bypass frequency.\n");
	}

	ret = dev_read_u32(dev, "ti,ddr-freq1", &ddrss->ddr_freq1);
	if (ret)
		dev_err(dev, "ddr freq1 not populated %d\n", ret);

	ret = dev_read_u32(dev, "ti,ddr-freq2", &ddrss->ddr_freq2);
	if (ret)
		dev_err(dev, "ddr freq2 not populated %d\n", ret);

	ret = dev_read_u32(dev, "ti,ddr-fhs-cnt", &ddrss->ddr_fhs_cnt);
	if (ret)
		dev_err(dev, "ddr fhs cnt not populated %d\n", ret);

	ddrss->ti_ecc_enabled = dev_read_bool(dev, "ti,ecc-enable");

	return ret;
}

void k3_lpddr4_probe(struct k3_ddrss_desc *ddrss)
{
	u32 status = 0U;
	u16 configsize = 0U;
	lpddr4_config *config = &ddrss->config;

	status = ddrss->driverdt->probe(config, &configsize);

	if ((status != 0) || (configsize != sizeof(lpddr4_privatedata))
	    || (configsize > SRAM_MAX)) {
		printf("%s: FAIL\n", __func__);
		hang();
	} else {
		debug("%s: PASS\n", __func__);
	}
}

void k3_lpddr4_init(struct k3_ddrss_desc *ddrss)
{
	u32 status = 0U;
	lpddr4_config *config = &ddrss->config;
	lpddr4_obj *driverdt = ddrss->driverdt;
	lpddr4_privatedata *pd = &ddrss->pd;

	if ((sizeof(*pd) != sizeof(lpddr4_privatedata)) || (sizeof(*pd) > SRAM_MAX)) {
		printf("%s: FAIL\n", __func__);
		hang();
	}

	config->ctlbase = (struct lpddr4_ctlregs_s *)ddrss->ddrss_ctl_cfg;
	config->infohandler = (lpddr4_infocallback) k3_lpddr4_info_handler;

	status = driverdt->init(pd, config);

	/* linking ddr instance to lpddr4  */
	pd->ddr_instance = (void *)ddrss;

	if ((status > 0U) ||
	    (pd->ctlbase != (struct lpddr4_ctlregs_s *)config->ctlbase) ||
	    (pd->ctlinterrupthandler != config->ctlinterrupthandler) ||
	    (pd->phyindepinterrupthandler != config->phyindepinterrupthandler)) {
		printf("%s: FAIL\n", __func__);
		hang();
	} else {
		debug("%s: PASS\n", __func__);
	}
}

void populate_data_array_from_dt(struct k3_ddrss_desc *ddrss,
				 struct reginitdata *reginit_data)
{
	int ret, i;

	ret = dev_read_u32_array(ddrss->dev, "ti,ctl-data",
				 (u32 *)reginit_data->ctl_regs,
				 LPDDR4_INTR_CTL_REG_COUNT);
	if (ret)
		printf("Error reading ctrl data %d\n", ret);

	for (i = 0; i < LPDDR4_INTR_CTL_REG_COUNT; i++)
		reginit_data->ctl_regs_offs[i] = i;

	ret = dev_read_u32_array(ddrss->dev, "ti,pi-data",
				 (u32 *)reginit_data->pi_regs,
				 LPDDR4_INTR_PHY_INDEP_REG_COUNT);
	if (ret)
		printf("Error reading PI data\n");

	for (i = 0; i < LPDDR4_INTR_PHY_INDEP_REG_COUNT; i++)
		reginit_data->pi_regs_offs[i] = i;

	ret = dev_read_u32_array(ddrss->dev, "ti,phy-data",
				 (u32 *)reginit_data->phy_regs,
				 LPDDR4_INTR_PHY_REG_COUNT);
	if (ret)
		printf("Error reading PHY data %d\n", ret);

	for (i = 0; i < LPDDR4_INTR_PHY_REG_COUNT; i++)
		reginit_data->phy_regs_offs[i] = i;
}

void k3_lpddr4_hardware_reg_init(struct k3_ddrss_desc *ddrss)
{
	u32 status = 0U;
	struct reginitdata reginitdata;
	lpddr4_obj *driverdt = ddrss->driverdt;
	lpddr4_privatedata *pd = &ddrss->pd;

	populate_data_array_from_dt(ddrss, &reginitdata);

	status = driverdt->writectlconfig(pd, reginitdata.ctl_regs,
					  reginitdata.ctl_regs_offs,
					  LPDDR4_INTR_CTL_REG_COUNT);
	if (!status)
		status = driverdt->writephyindepconfig(pd, reginitdata.pi_regs,
						       reginitdata.pi_regs_offs,
						       LPDDR4_INTR_PHY_INDEP_REG_COUNT);
	if (!status)
		status = driverdt->writephyconfig(pd, reginitdata.phy_regs,
						  reginitdata.phy_regs_offs,
						  LPDDR4_INTR_PHY_REG_COUNT);
	if (status) {
		printf("%s: FAIL\n", __func__);
		hang();
	}
}

void k3_lpddr4_start(struct k3_ddrss_desc *ddrss)
{
	u32 status = 0U;
	u32 regval = 0U;
	u32 offset = 0U;
	lpddr4_obj *driverdt = ddrss->driverdt;
	lpddr4_privatedata *pd = &ddrss->pd;

	TH_OFFSET_FROM_REG(LPDDR4__START__REG, CTL_SHIFT, offset);

	status = driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, &regval);
	if ((status > 0U) || ((regval & TH_FLD_MASK(LPDDR4__START__FLD)) != 0U)) {
		printf("%s: Pre start FAIL\n", __func__);
		hang();
	}

	status = driverdt->start(pd);
	if (status > 0U) {
		printf("%s: FAIL\n", __func__);
		hang();
	}

	status = driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, &regval);
	if ((status > 0U) || ((regval & TH_FLD_MASK(LPDDR4__START__FLD)) != 1U)) {
		printf("%s: Post start FAIL\n", __func__);
		hang();
	} else {
		debug("%s: Post start PASS\n", __func__);
	}
}

static void k3_ddrss_set_ecc_range_r0(u32 base, u64 start_address, u64 size)
{
	writel((start_address) >> 16, base + DDRSS_ECC_R0_STR_ADDR_REG);
	writel((start_address + size - 1) >> 16, base + DDRSS_ECC_R0_END_ADDR_REG);
}

#define BIST_MODE_MEM_INIT		4
#define BIST_MEM_INIT_TIMEOUT		10000 /* 1msec loops per block = 10s */
static void k3_lpddr4_bist_init_mem_region(struct k3_ddrss_desc *ddrss,
					   u64 addr, u64 size,
					   u32 pattern)
{
	lpddr4_obj *driverdt = ddrss->driverdt;
	lpddr4_privatedata *pd = &ddrss->pd;
	u32 status, offset, regval;
	bool int_status;
	int i = 0;

	/* Set BIST_START_ADDR_0 [31:0] */
	regval = (u32)(addr & TH_FLD_MASK(LPDDR4__BIST_START_ADDRESS_0__FLD));
	TH_OFFSET_FROM_REG(LPDDR4__BIST_START_ADDRESS_0__REG, CTL_SHIFT, offset);
	driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval);

	/* Set BIST_START_ADDR_1 [32 or 34:32] */
	regval = (u32)(addr >> TH_FLD_WIDTH(LPDDR4__BIST_START_ADDRESS_0__FLD));
	regval &= TH_FLD_MASK(LPDDR4__BIST_START_ADDRESS_1__FLD);
	TH_OFFSET_FROM_REG(LPDDR4__BIST_START_ADDRESS_1__REG, CTL_SHIFT, offset);
	driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval);

	/* Set ADDR_SPACE = log2(size) */
	regval = (u32)(ilog2(size) << TH_FLD_SHIFT(LPDDR4__ADDR_SPACE__FLD));
	TH_OFFSET_FROM_REG(LPDDR4__ADDR_SPACE__REG, CTL_SHIFT, offset);
	driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval);

	/* Enable the BIST data check. On 32bit lpddr4 (e.g J7) this shares a
	 * register with ADDR_SPACE and BIST_GO.
	 */
	TH_OFFSET_FROM_REG(LPDDR4__BIST_DATA_CHECK__REG, CTL_SHIFT, offset);
	driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, &regval);
	regval |= TH_FLD_MASK(LPDDR4__BIST_DATA_CHECK__FLD);
	driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval);
	/* Clear the address check bit */
	TH_OFFSET_FROM_REG(LPDDR4__BIST_ADDR_CHECK__REG, CTL_SHIFT, offset);
	driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, &regval);
	regval &= ~TH_FLD_MASK(LPDDR4__BIST_ADDR_CHECK__FLD);
	driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval);

	/* Set BIST_TEST_MODE[2:0] to memory initialize (4) */
	regval = BIST_MODE_MEM_INIT;
	TH_OFFSET_FROM_REG(LPDDR4__BIST_TEST_MODE__REG, CTL_SHIFT, offset);
	driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval);

	/* Set BIST_DATA_PATTERN[31:0] */
	TH_OFFSET_FROM_REG(LPDDR4__BIST_DATA_PATTERN_0__REG, CTL_SHIFT, offset);
	driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, pattern);

	/* Set BIST_DATA_PATTERN[63:32] */
	TH_OFFSET_FROM_REG(LPDDR4__BIST_DATA_PATTERN_1__REG, CTL_SHIFT, offset);
	driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, pattern);

	udelay(1000);

	/* Enable the programmed BIST operation - BIST_GO = 1 */
	TH_OFFSET_FROM_REG(LPDDR4__BIST_GO__REG, CTL_SHIFT, offset);
	driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, &regval);
	regval |= TH_FLD_MASK(LPDDR4__BIST_GO__FLD);
	driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval);

	/* Wait for the BIST_DONE interrupt */
	while (i < BIST_MEM_INIT_TIMEOUT) {
		status = driverdt->checkctlinterrupt(pd, LPDDR4_INTR_BIST_DONE,
						     &int_status);
		if (!status & int_status) {
			/* Clear LPDDR4_INTR_BIST_DONE */
			driverdt->ackctlinterrupt(pd, LPDDR4_INTR_BIST_DONE);
			break;
		}
		udelay(1000);
		i++;
	}

	/* Before continuing we have to stop BIST - BIST_GO = 0 */
	TH_OFFSET_FROM_REG(LPDDR4__BIST_GO__REG, CTL_SHIFT, offset);
	driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, 0);

	/* Timeout hit while priming the memory. We can't continue,
	 * since the memory is not fully initialized and we most
	 * likely get an uncorrectable error exception while booting.
	 */
	if (i == BIST_MEM_INIT_TIMEOUT) {
		printf("ERROR: Timeout while priming the memory.\n");
		hang();
	}
}

static void k3_ddrss_lpddr4_preload_full_mem(struct k3_ddrss_desc *ddrss,
					     u64 total_size, u32 pattern)
{
	u32 done, max_size2;

	/* Get the max size (log2) supported in this config (16/32 lpddr4)
	 * from the start_addess width - 16bit: 8G, 32bit: 32G
	 */
	max_size2 = TH_FLD_WIDTH(LPDDR4__BIST_START_ADDRESS_0__FLD) +
		    TH_FLD_WIDTH(LPDDR4__BIST_START_ADDRESS_1__FLD) + 1;

	/* ECC is enabled in dt but we can't preload the memory if
	 * the memory configuration is recognized and supported.
	 */
	if (!total_size || total_size > (1ull << max_size2) ||
	    total_size & (total_size - 1)) {
		printf("ECC: the memory configuration is not supported\n");
		hang();
	}
	printf("ECC is enabled, priming DDR which will take several seconds.\n");
	done = get_timer(0);
	k3_lpddr4_bist_init_mem_region(ddrss, 0, total_size, pattern);
	printf("ECC: priming DDR completed in %lu msec\n", get_timer(done));
}

static void k3_ddrss_ddr_bank_base_size_calc(struct k3_ddrss_desc *ddrss)
{
	int bank, na, ns, len, parent;
	const fdt32_t *ptr, *end;

	for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
		ddrss->ddr_bank_base[bank] = 0;
		ddrss->ddr_bank_size[bank] = 0;
	}

	ofnode mem = ofnode_null();

	do {
		mem = ofnode_by_prop_value(mem, "device_type", "memory", 7);
	} while (!ofnode_is_enabled(mem));

	const void *fdt = ofnode_to_fdt(mem);
	int node = ofnode_to_offset(mem);
	const char *property = "reg";

	parent = fdt_parent_offset(fdt, node);
	na = fdt_address_cells(fdt, parent);
	ns = fdt_size_cells(fdt, parent);
	ptr = fdt_getprop(fdt, node, property, &len);
	end = ptr + len / sizeof(*ptr);

	for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
		if (ptr + na + ns <= end) {
			if (CONFIG_IS_ENABLED(OF_TRANSLATE))
				ddrss->ddr_bank_base[bank] = fdt_translate_address(fdt, node, ptr);
			else
				ddrss->ddr_bank_base[bank] = fdtdec_get_number(ptr, na);

			ddrss->ddr_bank_size[bank] = fdtdec_get_number(&ptr[na], ns);
		}

		ptr += na + ns;
	}

	for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++)
		ddrss->ddr_ram_size += ddrss->ddr_bank_size[bank];
}

static void k3_ddrss_lpddr4_ecc_calc_reserved_mem(struct k3_ddrss_desc *ddrss)
{
	fdtdec_setup_mem_size_base_lowest();

	ddrss->ecc_reserved_space = ddrss->ddr_ram_size;
	do_div(ddrss->ecc_reserved_space, 9);

	/* Round to clean number */
	ddrss->ecc_reserved_space = 1ull << (fls(ddrss->ecc_reserved_space));
}

static void k3_ddrss_lpddr4_ecc_init(struct k3_ddrss_desc *ddrss)
{
	u64 ecc_region_start = ddrss->ecc_regions[0].start;
	u64 ecc_range = ddrss->ecc_regions[0].range;
	u32 base = (u32)ddrss->ddrss_ss_cfg;
	u32 val;

	/* Only Program region 0 which covers full ddr space */
	k3_ddrss_set_ecc_range_r0(base, ecc_region_start - ddrss->ddr_bank_base[0], ecc_range);

	/* Enable ECC, RMW, WR_ALLOC */
	writel(DDRSS_ECC_CTRL_REG_ECC_EN | DDRSS_ECC_CTRL_REG_RMW_EN |
	       DDRSS_ECC_CTRL_REG_WR_ALLOC, base + DDRSS_ECC_CTRL_REG);

	/* Preload the full memory with 0's using the BIST engine of
	 * the LPDDR4 controller.
	 */
	k3_ddrss_lpddr4_preload_full_mem(ddrss, ddrss->ddr_ram_size, 0);

	/* Clear Error Count Register */
	writel(0x1, base + DDRSS_ECC_1B_ERR_CNT_REG);

	writel(DDRSS_V2A_INT_SET_REG_ECC1BERR_EN | DDRSS_V2A_INT_SET_REG_ECC2BERR_EN |
		   DDRSS_V2A_INT_SET_REG_ECCM1BERR_EN, base + DDRSS_V2A_INT_SET_REG);

	/* Enable ECC Check */
	val = readl(base + DDRSS_ECC_CTRL_REG);
	val |= DDRSS_ECC_CTRL_REG_ECC_CK;
	writel(val, base + DDRSS_ECC_CTRL_REG);
}

static int k3_ddrss_probe(struct udevice *dev)
{
	int ret;
	struct k3_ddrss_desc *ddrss = dev_get_priv(dev);

	debug("%s(dev=%p)\n", __func__, dev);

	ret = k3_ddrss_ofdata_to_priv(dev);
	if (ret)
		return ret;

	ddrss->dev = dev;
	ret = k3_ddrss_power_on(ddrss);
	if (ret)
		return ret;

	k3_ddrss_ddr_bank_base_size_calc(ddrss);

	if (IS_ENABLED(CONFIG_SOC_K3_AM625) || IS_ENABLED(CONFIG_SOC_K3_AM642)) {
		/* AM62x SIP supports only up to 512 MB SDRAM */
		/* AM64x supports only up to 2 GB SDRAM */
		writel((((ilog2(ddrss->ddr_ram_size) - 16) << 5) | 0xF),
			  ddrss->ddrss_ss_cfg + DDRSS_V2A_CTL_REG);
		writel(0x0, ddrss->ddrss_ss_cfg + DDRSS_ECC_CTRL_REG);
	}

	ddrss->driverdt = lpddr4_getinstance();

	k3_lpddr4_probe(ddrss);
	k3_lpddr4_init(ddrss);
	k3_lpddr4_hardware_reg_init(ddrss);

	ret = k3_ddrss_init_freq(ddrss);
	if (ret)
		return ret;

	k3_lpddr4_start(ddrss);

	if (ddrss->ti_ecc_enabled) {
		if (!ddrss->ddrss_ss_cfg) {
			printf("%s: ss_cfg is required if ecc is enabled but not provided.",
			       __func__);
			return -EINVAL;
		}

		k3_ddrss_lpddr4_ecc_calc_reserved_mem(ddrss);

		/* Always configure one region that covers full DDR space */
		ddrss->ecc_regions[0].start = ddrss->ddr_bank_base[0];
		ddrss->ecc_regions[0].range = ddrss->ddr_ram_size - ddrss->ecc_reserved_space;
		k3_ddrss_lpddr4_ecc_init(ddrss);
	}

	return ret;
}

int k3_ddrss_ddr_fdt_fixup(struct udevice *dev, void *blob, struct bd_info *bd)
{
	int bank;
	struct k3_ddrss_desc *ddrss = dev_get_priv(dev);

	for (bank = CONFIG_NR_DRAM_BANKS - 1; bank >= 0; bank--) {
		if (ddrss->ecc_reserved_space > ddrss->ddr_bank_size[bank]) {
			ddrss->ecc_reserved_space -= ddrss->ddr_bank_size[bank];
			ddrss->ddr_bank_size[bank] = 0;
		} else {
			ddrss->ddr_bank_size[bank] -= ddrss->ecc_reserved_space;
			break;
		}
	}

	return fdt_fixup_memory_banks(blob, ddrss->ddr_bank_base,
				      ddrss->ddr_bank_size, CONFIG_NR_DRAM_BANKS);
}

static int k3_ddrss_get_info(struct udevice *dev, struct ram_info *info)
{
	return 0;
}

static const struct ram_ops k3_ddrss_ops = {
	.get_info = k3_ddrss_get_info,
};

static const struct k3_ddrss_data k3_data = {
	.flags = SINGLE_DDR_SUBSYSTEM,
};

static const struct k3_ddrss_data j721s2_data = {
	.flags = MULTI_DDR_SUBSYSTEM,
};

static const struct udevice_id k3_ddrss_ids[] = {
	{.compatible = "ti,am62a-ddrss", .data = (ulong)&k3_data, },
	{.compatible = "ti,am64-ddrss", .data = (ulong)&k3_data, },
	{.compatible = "ti,j721e-ddrss", .data = (ulong)&k3_data, },
	{.compatible = "ti,j721s2-ddrss", .data = (ulong)&j721s2_data, },
	{}
};

U_BOOT_DRIVER(k3_ddrss) = {
	.name			= "k3_ddrss",
	.id			= UCLASS_RAM,
	.of_match		= k3_ddrss_ids,
	.ops			= &k3_ddrss_ops,
	.probe			= k3_ddrss_probe,
	.priv_auto		= sizeof(struct k3_ddrss_desc),
};

static int k3_msmc_set_config(struct k3_msmc *msmc)
{
	u32 ddr_cfg0 = 0;
	u32 ddr_cfg1 = 0;

	ddr_cfg0 |= msmc->gran << 24;
	ddr_cfg0 |= msmc->size << 16;
	/* heartbeat_per, bit[4:0] setting to 3 is advisable */
	ddr_cfg0 |= 3;

	/* Program MULTI_DDR_CFG0 */
	writel(ddr_cfg0, MULTI_DDR_CFG0);

	ddr_cfg1 |= msmc->enable << 16;
	ddr_cfg1 |= msmc->config << 8;
	ddr_cfg1 |= msmc->active;

	/* Program MULTI_DDR_CFG1 */
	writel(ddr_cfg1, MULTI_DDR_CFG1);

	/* Program DDR_CFG_LOAD */
	writel(0x60000000, DDR_CFG_LOAD);

	return 0;
}

static int k3_msmc_probe(struct udevice *dev)
{
	struct k3_msmc *msmc = dev_get_priv(dev);
	int ret = 0;

	/* Read the granular size from DT */
	ret = dev_read_u32(dev, "intrlv-gran", &msmc->gran);
	if (ret) {
		dev_err(dev, "missing intrlv-gran property");
		return -EINVAL;
	}

	/* Read the interleave region from DT */
	ret = dev_read_u32(dev, "intrlv-size", &msmc->size);
	if (ret) {
		dev_err(dev, "missing intrlv-size property");
		return -EINVAL;
	}

	/* Read ECC enable config */
	ret = dev_read_u32(dev, "ecc-enable", &msmc->enable);
	if (ret) {
		dev_err(dev, "missing ecc-enable property");
		return -EINVAL;
	}

	/* Read EMIF configuration */
	ret = dev_read_u32(dev, "emif-config", &msmc->config);
	if (ret) {
		dev_err(dev, "missing emif-config property");
		return -EINVAL;
	}

	/* Read EMIF active */
	ret = dev_read_u32(dev, "emif-active", &msmc->active);
	if (ret) {
		dev_err(dev, "missing emif-active property");
		return -EINVAL;
	}

	ret = k3_msmc_set_config(msmc);
	if (ret) {
		dev_err(dev, "error setting msmc config");
		return -EINVAL;
	}

	return 0;
}

static const struct udevice_id k3_msmc_ids[] = {
	{ .compatible = "ti,j721s2-msmc"},
	{}
};

U_BOOT_DRIVER(k3_msmc) = {
	.name = "k3_msmc",
	.of_match = k3_msmc_ids,
	.id = UCLASS_MISC,
	.probe = k3_msmc_probe,
	.priv_auto = sizeof(struct k3_msmc),
	.flags = DM_FLAG_DEFAULT_PD_CTRL_OFF,
};