summaryrefslogtreecommitdiff
path: root/drivers/ddr/altera/sdram_n5x.c
blob: 737a4e2ff18b2ad7cfe0f3ac5bc3ddf184a58d65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
 * Copyright (C) 2020-2022 Intel Corporation <www.intel.com>
 *
 */

#include <common.h>
#include <clk.h>
#include <div64.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <hang.h>
#include <ram.h>
#include <reset.h>
#include "sdram_soc64.h"
#include <wait_bit.h>
#include <asm/arch/firewall.h>
#include <asm/arch/handoff_soc64.h>
#include <asm/arch/misc.h>
#include <asm/arch/reset_manager.h>
#include <asm/arch/system_manager.h>
#include <asm/io.h>
#include <linux/err.h>
#include <linux/sizes.h>

DECLARE_GLOBAL_DATA_PTR;

/* MPFE NOC registers */
#define FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0	0xF8024050

/* Memory reset manager */
#define MEM_RST_MGR_STATUS	0x8

/* Register and bit in memory reset manager */
#define MEM_RST_MGR_STATUS_RESET_COMPLETE	BIT(0)
#define MEM_RST_MGR_STATUS_PWROKIN_STATUS	BIT(1)
#define MEM_RST_MGR_STATUS_CONTROLLER_RST	BIT(2)
#define MEM_RST_MGR_STATUS_AXI_RST		BIT(3)

#define TIMEOUT_200MS     200
#define TIMEOUT_5000MS    5000

/* DDR4 umctl2 */
#define DDR4_MSTR_OFFSET		0x0
#define DDR4_FREQ_RATIO			BIT(22)

#define DDR4_STAT_OFFSET		0x4
#define DDR4_STAT_SELFREF_TYPE		GENMASK(5, 4)
#define DDR4_STAT_SELFREF_TYPE_SHIFT	4
#define DDR4_STAT_OPERATING_MODE	GENMASK(2, 0)

#define DDR4_MRCTRL0_OFFSET		0x10
#define DDR4_MRCTRL0_MR_TYPE		BIT(0)
#define DDR4_MRCTRL0_MPR_EN		BIT(1)
#define DDR4_MRCTRL0_MR_RANK		GENMASK(5, 4)
#define DDR4_MRCTRL0_MR_RANK_SHIFT	4
#define DDR4_MRCTRL0_MR_ADDR		GENMASK(15, 12)
#define DDR4_MRCTRL0_MR_ADDR_SHIFT	12
#define DDR4_MRCTRL0_MR_WR		BIT(31)

#define DDR4_MRCTRL1_OFFSET		0x14
#define DDR4_MRCTRL1_MR_DATA		0x3FFFF

#define DDR4_MRSTAT_OFFSET		0x18
#define DDR4_MRSTAT_MR_WR_BUSY		BIT(0)

#define DDR4_MRCTRL2_OFFSET		0x1C

#define DDR4_PWRCTL_OFFSET			0x30
#define DDR4_PWRCTL_SELFREF_EN			BIT(0)
#define DDR4_PWRCTL_POWERDOWN_EN		BIT(1)
#define DDR4_PWRCTL_EN_DFI_DRAM_CLK_DISABLE	BIT(3)
#define DDR4_PWRCTL_SELFREF_SW			BIT(5)

#define DDR4_PWRTMG_OFFSET		0x34
#define DDR4_HWLPCTL_OFFSET		0x38
#define DDR4_RFSHCTL0_OFFSET		0x50
#define DDR4_RFSHCTL1_OFFSET		0x54

#define DDR4_RFSHCTL3_OFFSET			0x60
#define DDR4_RFSHCTL3_DIS_AUTO_REFRESH		BIT(0)
#define DDR4_RFSHCTL3_REFRESH_MODE		GENMASK(6, 4)
#define DDR4_RFSHCTL3_REFRESH_MODE_SHIFT	4

#define DDR4_ECCCFG0_OFFSET		0x70
#define DDR4_ECC_MODE			GENMASK(2, 0)
#define DDR4_DIS_SCRUB			BIT(4)
#define LPDDR4_ECCCFG0_ECC_REGION_MAP_GRANU_SHIFT	30
#define LPDDR4_ECCCFG0_ECC_REGION_MAP_SHIFT	8

#define DDR4_ECCCFG1_OFFSET		0x74
#define LPDDR4_ECCCFG1_ECC_REGIONS_PARITY_LOCK	BIT(4)

#define DDR4_CRCPARCTL0_OFFSET			0xC0
#define DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR	BIT(1)

#define DDR4_CRCPARCTL1_OFFSET			0xC4
#define DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE	BIT(8)
#define DDR4_CRCPARCTL1_ALERT_WAIT_FOR_SW	BIT(9)

#define DDR4_CRCPARSTAT_OFFSET			0xCC
#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_INT	BIT(16)
#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_FATL_INT	BIT(17)
#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_NO_SW	BIT(19)
#define DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW	BIT(29)

#define DDR4_INIT0_OFFSET			0xD0
#define DDR4_INIT0_SKIP_RAM_INIT		GENMASK(31, 30)

#define DDR4_RANKCTL_OFFSET			0xF4
#define DDR4_RANKCTL_DIFF_RANK_RD_GAP		GENMASK(7, 4)
#define DDR4_RANKCTL_DIFF_RANK_WR_GAP		GENMASK(11, 8)
#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB	BIT(24)
#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB	BIT(26)
#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_SHIFT	4
#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_SHIFT	8
#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB_SHIFT	24
#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB_SHIFT	26

#define DDR4_RANKCTL1_OFFSET	0xF8
#define DDR4_RANKCTL1_WR2RD_DR	GENMASK(5, 0)

#define DDR4_DRAMTMG2_OFFSET	0x108
#define DDR4_DRAMTMG2_WR2RD	GENMASK(5, 0)
#define DDR4_DRAMTMG2_RD2WR	GENMASK(13, 8)
#define DDR4_DRAMTMG2_RD2WR_SHIFT	8

#define DDR4_DRAMTMG9_OFFSET	0x124
#define DDR4_DRAMTMG9_W2RD_S	GENMASK(5, 0)

#define DDR4_DFITMG1_OFFSET	0x194
#define DDR4_DFITMG1_DFI_T_WRDATA_DELAY	GENMASK(20, 16)
#define DDR4_DFITMG1_DFI_T_WRDATA_SHIFT	16

#define DDR4_DFIMISC_OFFSET			0x1B0
#define DDR4_DFIMISC_DFI_INIT_COMPLETE_EN	BIT(0)
#define DDR4_DFIMISC_DFI_INIT_START		BIT(5)

#define DDR4_DFISTAT_OFFSET		0x1BC
#define DDR4_DFI_INIT_COMPLETE		BIT(0)

#define DDR4_DBG0_OFFSET		0x300

#define DDR4_DBG1_OFFSET		0x304
#define DDR4_DBG1_DISDQ			BIT(0)
#define DDR4_DBG1_DIS_HIF		BIT(1)

#define DDR4_DBGCAM_OFFSET			0x308
#define DDR4_DBGCAM_DBG_RD_Q_EMPTY		BIT(25)
#define DDR4_DBGCAM_DBG_WR_Q_EMPTY		BIT(26)
#define DDR4_DBGCAM_RD_DATA_PIPELINE_EMPTY	BIT(28)
#define DDR4_DBGCAM_WR_DATA_PIPELINE_EMPTY	BIT(29)

#define DDR4_SWCTL_OFFSET		0x320
#define DDR4_SWCTL_SW_DONE		BIT(0)

#define DDR4_SWSTAT_OFFSET		0x324
#define DDR4_SWSTAT_SW_DONE_ACK		BIT(0)

#define DDR4_PSTAT_OFFSET		0x3FC
#define DDR4_PSTAT_RD_PORT_BUSY_0	BIT(0)
#define DDR4_PSTAT_WR_PORT_BUSY_0	BIT(16)

#define DDR4_PCTRL0_OFFSET		0x490
#define DDR4_PCTRL0_PORT_EN		BIT(0)

#define DDR4_SBRCTL_OFFSET		0xF24
#define DDR4_SBRCTL_SCRUB_INTERVAL	0x1FFF00
#define DDR4_SBRCTL_SCRUB_EN		BIT(0)
#define DDR4_SBRCTL_SCRUB_WRITE		BIT(2)
#define DDR4_SBRCTL_SCRUB_BURST_1	BIT(4)

#define DDR4_SBRSTAT_OFFSET		0xF28
#define DDR4_SBRSTAT_SCRUB_BUSY BIT(0)
#define DDR4_SBRSTAT_SCRUB_DONE BIT(1)

#define DDR4_SBRWDATA0_OFFSET		0xF2C
#define DDR4_SBRWDATA1_OFFSET		0xF30
#define DDR4_SBRSTART0_OFFSET		0xF38
#define DDR4_SBRSTART1_OFFSET		0xF3C
#define DDR4_SBRRANGE0_OFFSET		0xF40
#define DDR4_SBRRANGE1_OFFSET		0xF44

/* DDR PHY */
#define DDR_PHY_TXODTDRVSTREN_B0_P0		0x2009A
#define DDR_PHY_RXPBDLYTG0_R0			0x200D0
#define DDR_PHY_DBYTE0_TXDQDLYTG0_U0_P0		0x201A0

#define DDR_PHY_DBYTE0_TXDQDLYTG0_U1_P0		0x203A0
#define DDR_PHY_DBYTE1_TXDQDLYTG0_U0_P0		0x221A0
#define DDR_PHY_DBYTE1_TXDQDLYTG0_U1_P0		0x223A0
#define DDR_PHY_TXDQDLYTG0_COARSE_DELAY		GENMASK(9, 6)
#define DDR_PHY_TXDQDLYTG0_COARSE_DELAY_SHIFT	6

#define DDR_PHY_CALRATE_OFFSET			0x40110
#define DDR_PHY_CALZAP_OFFSET			0x40112
#define DDR_PHY_SEQ0BDLY0_P0_OFFSET		0x40016
#define DDR_PHY_SEQ0BDLY1_P0_OFFSET		0x40018
#define DDR_PHY_SEQ0BDLY2_P0_OFFSET		0x4001A
#define DDR_PHY_SEQ0BDLY3_P0_OFFSET		0x4001C

#define DDR_PHY_MEMRESETL_OFFSET		0x400C0
#define DDR_PHY_MEMRESETL_VALUE			BIT(0)
#define DDR_PHY_PROTECT_MEMRESET		BIT(1)

#define DDR_PHY_CALBUSY_OFFSET			0x4012E
#define DDR_PHY_CALBUSY				BIT(0)

#define DDR_PHY_TRAIN_IMEM_OFFSET		0xA0000
#define DDR_PHY_TRAIN_DMEM_OFFSET		0xA8000

#define DMEM_MB_CDD_RR_1_0_OFFSET		0xA802C
#define DMEM_MB_CDD_RR_0_1_OFFSET		0xA8030
#define DMEM_MB_CDD_WW_1_0_OFFSET		0xA8038
#define DMEM_MB_CDD_WW_0_1_OFFSET		0xA803C
#define DMEM_MB_CDD_RW_1_1_OFFSET		0xA8046
#define DMEM_MB_CDD_RW_1_0_OFFSET		0xA8048
#define DMEM_MB_CDD_RW_0_1_OFFSET		0xA804A
#define DMEM_MB_CDD_RW_0_0_OFFSET		0xA804C

#define DMEM_MB_CDD_CHA_RR_1_0_OFFSET		0xA8026
#define DMEM_MB_CDD_CHA_RR_0_1_OFFSET		0xA8026
#define DMEM_MB_CDD_CHB_RR_1_0_OFFSET		0xA8058
#define DMEM_MB_CDD_CHB_RR_0_1_OFFSET		0xA805A
#define DMEM_MB_CDD_CHA_WW_1_0_OFFSET		0xA8030
#define DMEM_MB_CDD_CHA_WW_0_1_OFFSET		0xA8030
#define DMEM_MB_CDD_CHB_WW_1_0_OFFSET		0xA8062
#define DMEM_MB_CDD_CHB_WW_0_1_OFFSET		0xA8064

#define DMEM_MB_CDD_CHA_RW_1_1_OFFSET		0xA8028
#define DMEM_MB_CDD_CHA_RW_1_0_OFFSET		0xA8028
#define DMEM_MB_CDD_CHA_RW_0_1_OFFSET		0xA802A
#define DMEM_MB_CDD_CHA_RW_0_0_OFFSET		0xA802A

#define DMEM_MB_CDD_CHB_RW_1_1_OFFSET		0xA805A
#define DMEM_MB_CDD_CHB_RW_1_0_OFFSET		0xA805C
#define DMEM_MB_CDD_CHB_RW_0_1_OFFSET		0xA805c
#define DMEM_MB_CDD_CHB_RW_0_0_OFFSET		0xA805E

#define DDR_PHY_SEQ0DISABLEFLAG0_OFFSET		0x120018
#define DDR_PHY_SEQ0DISABLEFLAG1_OFFSET		0x12001A
#define DDR_PHY_SEQ0DISABLEFLAG2_OFFSET		0x12001C
#define DDR_PHY_SEQ0DISABLEFLAG3_OFFSET		0x12001E
#define DDR_PHY_SEQ0DISABLEFLAG4_OFFSET		0x120020
#define DDR_PHY_SEQ0DISABLEFLAG5_OFFSET		0x120022
#define DDR_PHY_SEQ0DISABLEFLAG6_OFFSET		0x120024
#define DDR_PHY_SEQ0DISABLEFLAG7_OFFSET		0x120026

#define DDR_PHY_UCCLKHCLKENABLES_OFFSET		0x180100
#define DDR_PHY_UCCLKHCLKENABLES_UCCLKEN	BIT(0)
#define DDR_PHY_UCCLKHCLKENABLES_HCLKEN		BIT(1)

#define DDR_PHY_UCTWRITEPROT_OFFSET		0x180066
#define DDR_PHY_UCTWRITEPROT			BIT(0)

#define DDR_PHY_APBONLY0_OFFSET			0x1A0000
#define DDR_PHY_MICROCONTMUXSEL			BIT(0)

#define DDR_PHY_UCTSHADOWREGS_OFFSET			0x1A0008
#define DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW	BIT(0)

#define DDR_PHY_DCTWRITEPROT_OFFSET		0x1A0062
#define DDR_PHY_DCTWRITEPROT			BIT(0)

#define DDR_PHY_UCTWRITEONLYSHADOW_OFFSET	0x1A0064
#define DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET	0x1A0068

#define DDR_PHY_MICRORESET_OFFSET		0x1A0132
#define DDR_PHY_MICRORESET_STALL		BIT(0)
#define DDR_PHY_MICRORESET_RESET		BIT(3)

#define DDR_PHY_TXODTDRVSTREN_B0_P1		0x22009A

/* For firmware training */
#define HW_DBG_TRACE_CONTROL_OFFSET	0x18
#define FW_TRAINING_COMPLETED_STAT	0x07
#define FW_TRAINING_FAILED_STAT		0xFF
#define FW_COMPLETION_MSG_ONLY_MODE	0xFF
#define FW_STREAMING_MSG_ID		0x08
#define GET_LOWHW_DATA(x)		((x) & 0xFFFF)
#define GET_LOWB_DATA(x)		((x) & 0xFF)
#define GET_HIGHB_DATA(x)		(((x) & 0xFF00) >> 8)

/* Operating mode */
#define OPM_INIT			0x000
#define OPM_NORMAL			0x001
#define OPM_PWR_D0WN			0x010
#define OPM_SELF_SELFREF		0x011
#define OPM_DDR4_DEEP_PWR_DOWN		0x100

/* Refresh mode */
#define FIXED_1X		0
#define FIXED_2X		BIT(0)
#define FIXED_4X		BIT(4)

/* Address of mode register */
#define MR0	0x0000
#define MR1	0x0001
#define MR2	0x0010
#define MR3	0x0011
#define MR4	0x0100
#define MR5	0x0101
#define MR6	0x0110
#define MR7	0x0111

/* MR rank */
#define RANK0		0x1
#define RANK1		0x2
#define ALL_RANK	0x3

#define MR5_BIT4	BIT(4)

/* Value for ecc_region_map */
#define ALL_PROTECTED	0x7F

/* Region size for ECCCFG0.ecc_region_map */
enum region_size {
	ONE_EIGHT,
	ONE_SIXTEENTH,
	ONE_THIRTY_SECOND,
	ONE_SIXTY_FOURTH
};

enum ddr_type {
	DDRTYPE_LPDDR4_0,
	DDRTYPE_LPDDR4_1,
	DDRTYPE_DDR4,
	DDRTYPE_UNKNOWN
};

/* Reset type */
enum reset_type {
	POR_RESET,
	WARM_RESET,
	COLD_RESET
};

/* DDR handoff structure */
struct ddr_handoff {
	/* Memory reset manager base */
	phys_addr_t mem_reset_base;

	/* First controller attributes */
	phys_addr_t cntlr_handoff_base;
	phys_addr_t cntlr_base;
	size_t cntlr_total_length;
	enum ddr_type cntlr_t;
	size_t cntlr_handoff_length;

	/* Second controller attributes*/
	phys_addr_t cntlr2_handoff_base;
	phys_addr_t cntlr2_base;
	size_t cntlr2_total_length;
	enum ddr_type cntlr2_t;
	size_t cntlr2_handoff_length;

	/* PHY attributes */
	phys_addr_t phy_handoff_base;
	phys_addr_t phy_base;
	size_t phy_total_length;
	size_t phy_handoff_length;

	/* PHY engine attributes */
	phys_addr_t phy_engine_handoff_base;
	size_t phy_engine_total_length;
	size_t phy_engine_handoff_length;

	/* Calibration attributes */
	phys_addr_t train_imem_base;
	phys_addr_t train_dmem_base;
	size_t train_imem_length;
	size_t train_dmem_length;
};

/* Message mode */
enum message_mode {
	MAJOR_MESSAGE,
	STREAMING_MESSAGE
};

static int clr_ca_parity_error_status(phys_addr_t umctl2_base)
{
	int ret;

	debug("%s: Clear C/A parity error status in MR5[4]\n", __func__);

	/* Set mode register MRS */
	clrbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MPR_EN);

	/* Set mode register to write operation */
	setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MR_TYPE);

	/* Set the address of mode rgister to 0x101(MR5) */
	setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET,
		     (MR5 << DDR4_MRCTRL0_MR_ADDR_SHIFT) &
		     DDR4_MRCTRL0_MR_ADDR);

	/* Set MR rank to rank 1 */
	setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET,
		     (RANK1 << DDR4_MRCTRL0_MR_RANK_SHIFT) &
		     DDR4_MRCTRL0_MR_RANK);

	/* Clear C/A parity error status in MR5[4] */
	clrbits_le32(umctl2_base + DDR4_MRCTRL1_OFFSET, MR5_BIT4);

	/* Trigger mode register read or write operation */
	setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MR_WR);

	/* Wait for retry done */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_MRSTAT_OFFSET), DDR4_MRSTAT_MR_WR_BUSY,
				false, TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" no outstanding MR transaction\n");
		return ret;
	}

	return 0;
}

static int ddr_retry_software_sequence(phys_addr_t umctl2_base)
{
	u32 value;
	int ret;

	/* Check software can perform MRS/MPR/PDA? */
	value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
		      DDR4_CRCPARSTAT_DFI_ALERT_ERR_NO_SW;

	if (value) {
		/* Clear interrupt bit for DFI alert error */
		setbits_le32(umctl2_base + DDR4_CRCPARCTL0_OFFSET,
			     DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR);
	}

	debug("%s: Software can perform MRS/MPR/PDA\n", __func__);

	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_MRSTAT_OFFSET),
				DDR4_MRSTAT_MR_WR_BUSY,
				false, TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" no outstanding MR transaction\n");
		return ret;
	}

	ret = clr_ca_parity_error_status(umctl2_base);
	if (ret)
		return ret;

	if (!value) {
		/* Clear interrupt bit for DFI alert error */
		setbits_le32(umctl2_base + DDR4_CRCPARCTL0_OFFSET,
			     DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR);
	}

	return 0;
}

static int ensure_retry_procedure_complete(phys_addr_t umctl2_base)
{
	u32 value;
	u32 start = get_timer(0);
	int ret;

	/* Check parity/crc/error window is emptied ? */
	value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
		      DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW;

	/* Polling until parity/crc/error window is emptied */
	while (value) {
		if (get_timer(start) > TIMEOUT_200MS) {
			debug("%s: Timeout while waiting for",
			      __func__);
			debug(" parity/crc/error window empty\n");
			return -ETIMEDOUT;
		}

		/* Check software intervention is enabled? */
		value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) &
			      DDR4_CRCPARCTL1_ALERT_WAIT_FOR_SW;
		if (value) {
			debug("%s: Software intervention is enabled\n",
			      __func__);

			/* Check dfi alert error interrupt is set? */
			value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
				      DDR4_CRCPARSTAT_DFI_ALERT_ERR_INT;

			if (value) {
				ret = ddr_retry_software_sequence(umctl2_base);
				debug("%s: DFI alert error interrupt ",
				      __func__);
				debug("is set\n");

				if (ret)
					return ret;
			}

			/*
			 * Check fatal parity error interrupt is set?
			 */
			value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
				      DDR4_CRCPARSTAT_DFI_ALERT_ERR_FATL_INT;
			if (value) {
				printf("%s: Fatal parity error  ",
				       __func__);
				printf("interrupt is set, Hang it!!\n");
				hang();
			}
		}

		value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
			      DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW;

		udelay(1);
		WATCHDOG_RESET();
	}

	return 0;
}

static int enable_quasi_dynamic_reg_grp3(phys_addr_t umctl2_base,
					 enum ddr_type umctl2_type)
{
	u32 i, value, backup;
	int ret = 0;

	/* Disable input traffic per port */
	clrbits_le32(umctl2_base + DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN);

	/* Polling AXI port until idle */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_PSTAT_OFFSET),
				DDR4_PSTAT_WR_PORT_BUSY_0 |
				DDR4_PSTAT_RD_PORT_BUSY_0, false,
				TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" controller idle\n");
		return ret;
	}

	/* Backup user setting */
	backup = readl(umctl2_base + DDR4_DBG1_OFFSET);

	/* Disable input traffic to the controller */
	setbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DIS_HIF);

	/*
	 * Ensure CAM/data pipelines are empty.
	 * Poll until CAM/data pipelines are set at least twice,
	 * timeout at 200ms
	 */
	for (i = 0; i < 2; i++) {
		ret = wait_for_bit_le32((const void *)(umctl2_base +
					DDR4_DBGCAM_OFFSET),
					DDR4_DBGCAM_WR_DATA_PIPELINE_EMPTY |
					DDR4_DBGCAM_RD_DATA_PIPELINE_EMPTY |
					DDR4_DBGCAM_DBG_WR_Q_EMPTY |
					DDR4_DBGCAM_DBG_RD_Q_EMPTY, true,
					TIMEOUT_200MS, false);
		if (ret) {
			debug("%s: loop(%u): Timeout while waiting for",
			      __func__, i + 1);
			debug(" CAM/data pipelines are empty\n");

			goto out;
		}
	}

	if (umctl2_type == DDRTYPE_DDR4) {
		/* Check DDR4 retry is enabled ? */
		value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) &
			      DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE;

		if (value) {
			debug("%s: DDR4 retry is enabled\n", __func__);

			ret = ensure_retry_procedure_complete(umctl2_base);
			if (ret) {
				debug("%s: Timeout while waiting for",
				      __func__);
				debug(" retry procedure complete\n");

				goto out;
			}
		}
	}

	debug("%s: Quasi-dynamic group 3 registers are enabled\n", __func__);

out:
	/* Restore user setting */
	writel(backup, umctl2_base + DDR4_DBG1_OFFSET);

	return ret;
}

static enum ddr_type get_ddr_type(phys_addr_t ddr_type_location)
{
	u32 ddr_type_magic = readl(ddr_type_location);

	if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_DDR4_TYPE)
		return DDRTYPE_DDR4;

	if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_LPDDR4_0_TYPE)
		return DDRTYPE_LPDDR4_0;

	if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_LPDDR4_1_TYPE)
		return DDRTYPE_LPDDR4_1;

	return DDRTYPE_UNKNOWN;
}

static void use_lpddr4_interleaving(bool set)
{
	if (set) {
		printf("Starting LPDDR4 interleaving configuration ...\n");
		setbits_le32(FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0,
			     BIT(5));
	} else {
		printf("Starting LPDDR4 non-interleaving configuration ...\n");
		clrbits_le32(FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0,
			     BIT(5));
	}
}

static void use_ddr4(enum ddr_type type)
{
	if (type == DDRTYPE_DDR4) {
		printf("Starting DDR4 configuration ...\n");
		setbits_le32(socfpga_get_sysmgr_addr() + SYSMGR_SOC64_DDR_MODE,
			     SYSMGR_SOC64_DDR_MODE_MSK);
	} else if (type == DDRTYPE_LPDDR4_0)  {
		printf("Starting LPDDR4 configuration ...\n");
		clrbits_le32(socfpga_get_sysmgr_addr() + SYSMGR_SOC64_DDR_MODE,
			     SYSMGR_SOC64_DDR_MODE_MSK);

		use_lpddr4_interleaving(false);
	}
}

static int scrubber_ddr_config(phys_addr_t umctl2_base,
			       enum ddr_type umctl2_type)
{
	u32 backup[9];
	int ret;

	/* Reset to default value, prevent scrubber stop due to lower power */
	writel(0, umctl2_base + DDR4_PWRCTL_OFFSET);

	/* Backup user settings */
	backup[0] = readl(umctl2_base + DDR4_SBRCTL_OFFSET);
	backup[1] = readl(umctl2_base + DDR4_SBRWDATA0_OFFSET);
	backup[2] = readl(umctl2_base + DDR4_SBRSTART0_OFFSET);
	if (umctl2_type == DDRTYPE_DDR4) {
		backup[3] = readl(umctl2_base + DDR4_SBRWDATA1_OFFSET);
		backup[4] = readl(umctl2_base + DDR4_SBRSTART1_OFFSET);
	}
	backup[5] = readl(umctl2_base + DDR4_SBRRANGE0_OFFSET);
	backup[6] = readl(umctl2_base + DDR4_SBRRANGE1_OFFSET);
	backup[7] = readl(umctl2_base + DDR4_ECCCFG0_OFFSET);
	backup[8] = readl(umctl2_base + DDR4_ECCCFG1_OFFSET);

	if (umctl2_type != DDRTYPE_DDR4) {
		/* Lock ECC region, ensure this regions is not being accessed */
		setbits_le32(umctl2_base + DDR4_ECCCFG1_OFFSET,
			     LPDDR4_ECCCFG1_ECC_REGIONS_PARITY_LOCK);
	}
	/* Disable input traffic per port */
	clrbits_le32(umctl2_base + DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN);
	/* Disables scrubber */
	clrbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN);
	/* Polling all scrub writes data have been sent */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_BUSY,
				false, TIMEOUT_5000MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" sending all scrub data\n");
		return ret;
	}

	/* LPDDR4 supports inline ECC only */
	if (umctl2_type != DDRTYPE_DDR4) {
		/*
		 * Setting all regions for protected, this is required for
		 * srubber to init whole LPDDR4 expect ECC region
		 */
		writel(((ONE_EIGHT <<
		       LPDDR4_ECCCFG0_ECC_REGION_MAP_GRANU_SHIFT) |
		       (ALL_PROTECTED << LPDDR4_ECCCFG0_ECC_REGION_MAP_SHIFT)),
		       umctl2_base + DDR4_ECCCFG0_OFFSET);
	}

	/* Scrub_burst = 1, scrub_mode = 1(performs writes) */
	writel(DDR4_SBRCTL_SCRUB_BURST_1 | DDR4_SBRCTL_SCRUB_WRITE,
	       umctl2_base + DDR4_SBRCTL_OFFSET);

	/* Zeroing whole DDR */
	writel(0, umctl2_base + DDR4_SBRWDATA0_OFFSET);
	writel(0, umctl2_base + DDR4_SBRSTART0_OFFSET);
	if (umctl2_type == DDRTYPE_DDR4) {
		writel(0, umctl2_base + DDR4_SBRWDATA1_OFFSET);
		writel(0, umctl2_base + DDR4_SBRSTART1_OFFSET);
	}
	writel(0, umctl2_base + DDR4_SBRRANGE0_OFFSET);
	writel(0, umctl2_base + DDR4_SBRRANGE1_OFFSET);

	/* Enables scrubber */
	setbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN);
	/* Polling all scrub writes commands have been sent */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_DONE,
				true, TIMEOUT_5000MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" sending all scrub commands\n");
		return ret;
	}

	/* Polling all scrub writes data have been sent */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_BUSY,
				false, TIMEOUT_5000MS, false);
	if (ret) {
		printf("%s: Timeout while waiting for", __func__);
		printf(" sending all scrub data\n");
		return ret;
	}

	/* Disables scrubber */
	clrbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN);

	/* Restore user settings */
	writel(backup[0], umctl2_base + DDR4_SBRCTL_OFFSET);
	writel(backup[1], umctl2_base + DDR4_SBRWDATA0_OFFSET);
	writel(backup[2], umctl2_base + DDR4_SBRSTART0_OFFSET);
	if (umctl2_type == DDRTYPE_DDR4) {
		writel(backup[3], umctl2_base + DDR4_SBRWDATA1_OFFSET);
		writel(backup[4], umctl2_base + DDR4_SBRSTART1_OFFSET);
	}
	writel(backup[5], umctl2_base + DDR4_SBRRANGE0_OFFSET);
	writel(backup[6], umctl2_base + DDR4_SBRRANGE1_OFFSET);
	writel(backup[7], umctl2_base + DDR4_ECCCFG0_OFFSET);
	writel(backup[8], umctl2_base + DDR4_ECCCFG1_OFFSET);

	/* Enables ECC scrub on scrubber */
	if (!(readl(umctl2_base + DDR4_SBRCTL_OFFSET) &
	    DDR4_SBRCTL_SCRUB_WRITE)) {
		/* Enables scrubber */
		setbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET,
			     DDR4_SBRCTL_SCRUB_EN);
	}

	return 0;
}

static void handoff_process(struct ddr_handoff *ddr_handoff_info,
			    phys_addr_t handoff_base, size_t length,
			    phys_addr_t base)
{
	u32 handoff_table[length];
	u32 i, value = 0;

	/* Execute configuration handoff */
	socfpga_handoff_read((void *)handoff_base, handoff_table, length);

	for (i = 0; i < length; i = i + 2) {
		debug("%s: wr = 0x%08x ",  __func__, handoff_table[i + 1]);
		if (ddr_handoff_info && base == ddr_handoff_info->phy_base) {
			/*
			 * Convert PHY odd offset to even offset that
			 * supported by ARM processor.
			 */
			value = handoff_table[i] << 1;

			writew(handoff_table[i + 1],
			       (uintptr_t)(value + base));
			debug("rd = 0x%08x ",
			      readw((uintptr_t)(value + base)));
			debug("PHY offset: 0x%08x ", handoff_table[i + 1]);
		} else {
			value = handoff_table[i];
			writel(handoff_table[i + 1], (uintptr_t)(value +
			       base));
			 debug("rd = 0x%08x ",
			       readl((uintptr_t)(value + base)));
		}

		debug("Absolute addr: 0x%08llx, APB offset: 0x%08x\n",
		      value + base, value);
	}
}

static int init_umctl2(phys_addr_t umctl2_handoff_base,
		       phys_addr_t umctl2_base, enum ddr_type umctl2_type,
		       size_t umctl2_handoff_length,
		       u32 *user_backup)
{
	int ret;

	if (umctl2_type == DDRTYPE_DDR4)
		printf("Initializing DDR4 controller ...\n");
	else if (umctl2_type == DDRTYPE_LPDDR4_0)
		printf("Initializing LPDDR4_0 controller ...\n");
	else if (umctl2_type == DDRTYPE_LPDDR4_1)
		printf("Initializing LPDDR4_1 controller ...\n");

	/* Prevent controller from issuing read/write to SDRAM */
	setbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DISDQ);

	/* Put SDRAM into self-refresh */
	setbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_EN);

	/* Enable quasi-dynamic programing of the controller registers */
	clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	/* Ensure the controller is in initialization mode */
	ret = wait_for_bit_le32((const void *)(umctl2_base + DDR4_STAT_OFFSET),
				DDR4_STAT_OPERATING_MODE, false, TIMEOUT_200MS,
				false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" init operating mode\n");
		return ret;
	}

	debug("%s: UMCTL2 handoff base address = 0x%p table length = 0x%08x\n",
	      __func__, (u32 *)umctl2_handoff_base,
	      (u32)umctl2_handoff_length);

	handoff_process(NULL, umctl2_handoff_base, umctl2_handoff_length,
			umctl2_base);

	/* Backup user settings, restore after DDR up running */
	*user_backup = readl(umctl2_base + DDR4_PWRCTL_OFFSET);

	/* Disable self resfresh */
	clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_EN);

	if (umctl2_type == DDRTYPE_LPDDR4_0 ||
	    umctl2_type == DDRTYPE_LPDDR4_1) {
		/* Setting selfref_sw to 1, based on lpddr4 requirement */
		setbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET,
			     DDR4_PWRCTL_SELFREF_SW);

		/* Backup user settings, restore after DDR up running */
		user_backup++;
		*user_backup = readl(umctl2_base + DDR4_INIT0_OFFSET) &
				     DDR4_INIT0_SKIP_RAM_INIT;

		/*
		 * Setting INIT0.skip_dram_init to 0x3, based on lpddr4
		 * requirement
		 */
		setbits_le32(umctl2_base + DDR4_INIT0_OFFSET,
			     DDR4_INIT0_SKIP_RAM_INIT);
	}

	/* Complete quasi-dynamic register programming */
	setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	/* Enable controller from issuing read/write to SDRAM */
	clrbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DISDQ);

	return 0;
}

static int phy_pre_handoff_config(phys_addr_t umctl2_base,
				  enum ddr_type umctl2_type)
{
	int ret;
	u32 value;

	if (umctl2_type == DDRTYPE_DDR4) {
		/* Check DDR4 retry is enabled ? */
		value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) &
			      DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE;

		if (value) {
			debug("%s: DDR4 retry is enabled\n", __func__);
			debug("%s: Disable auto refresh is not supported\n",
			      __func__);
		} else {
			/* Disable auto refresh */
			setbits_le32(umctl2_base + DDR4_RFSHCTL3_OFFSET,
				     DDR4_RFSHCTL3_DIS_AUTO_REFRESH);
		}
	}

	/* Disable selfref_en & powerdown_en, nvr disable dfi dram clk */
	clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET,
		     DDR4_PWRCTL_EN_DFI_DRAM_CLK_DISABLE |
		     DDR4_PWRCTL_POWERDOWN_EN | DDR4_PWRCTL_SELFREF_EN);

	/* Enable quasi-dynamic programing of the controller registers */
	clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
	if (ret)
		return ret;

	/* Masking dfi init complete */
	clrbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
		     DDR4_DFIMISC_DFI_INIT_COMPLETE_EN);

	/* Complete quasi-dynamic register programming */
	setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	/* Polling programming done */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_SWSTAT_OFFSET), DDR4_SWSTAT_SW_DONE_ACK,
				true, TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" programming done\n");
	}

	return ret;
}

static int init_phy(struct ddr_handoff *ddr_handoff_info)
{
	int ret;

	printf("Initializing DDR PHY ...\n");

	if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 ||
	    ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) {
		ret = phy_pre_handoff_config(ddr_handoff_info->cntlr_base,
					     ddr_handoff_info->cntlr_t);
		if (ret)
			return ret;
	}

	if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) {
		ret = phy_pre_handoff_config
			(ddr_handoff_info->cntlr2_base,
			 ddr_handoff_info->cntlr2_t);
		if (ret)
			return ret;
	}

	/* Execute PHY configuration handoff */
	handoff_process(ddr_handoff_info, ddr_handoff_info->phy_handoff_base,
			ddr_handoff_info->phy_handoff_length,
			ddr_handoff_info->phy_base);

	printf("DDR PHY configuration is completed\n");

	return 0;
}

static void phy_init_engine(struct ddr_handoff *handoff)
{
	printf("Load PHY Init Engine ...\n");

	/* Execute PIE production code handoff */
	handoff_process(handoff, handoff->phy_engine_handoff_base,
			handoff->phy_engine_handoff_length, handoff->phy_base);

	printf("End of loading PHY Init Engine\n");
}

int populate_ddr_handoff(struct ddr_handoff *handoff)
{
	phys_addr_t next_section_header;

	/* DDR handoff */
	handoff->mem_reset_base = SOC64_HANDOFF_DDR_MEMRESET_BASE;
	debug("%s: DDR memory reset base = 0x%x\n", __func__,
	      (u32)handoff->mem_reset_base);
	debug("%s: DDR memory reset address = 0x%x\n", __func__,
	      readl(handoff->mem_reset_base));

	/* Beginning of DDR controller handoff */
	handoff->cntlr_handoff_base = SOC64_HANDOFF_DDR_UMCTL2_SECTION;
	debug("%s: cntlr handoff base = 0x%x\n", __func__,
	      (u32)handoff->cntlr_handoff_base);

	/* Get 1st DDR type */
	handoff->cntlr_t = get_ddr_type(handoff->cntlr_handoff_base +
					SOC64_HANDOFF_DDR_UMCTL2_TYPE_OFFSET);
	if (handoff->cntlr_t == DDRTYPE_LPDDR4_1 ||
	    handoff->cntlr_t == DDRTYPE_UNKNOWN) {
		debug("%s: Wrong DDR handoff format, the 1st DDR ", __func__);
		debug("type must be DDR4 or LPDDR4_0\n");
		return -ENOEXEC;
	}

	/* 1st cntlr base physical address */
	handoff->cntlr_base = readl(handoff->cntlr_handoff_base +
				    SOC64_HANDOFF_DDR_UMCTL2_BASE_ADDR_OFFSET);
	debug("%s: cntlr base = 0x%x\n", __func__, (u32)handoff->cntlr_base);

	/* Get the total length of DDR cntlr handoff section */
	handoff->cntlr_total_length = readl(handoff->cntlr_handoff_base +
					    SOC64_HANDOFF_OFFSET_LENGTH);
	debug("%s: Umctl2 total length in byte = 0x%x\n", __func__,
	      (u32)handoff->cntlr_total_length);

	/* Get the length of user setting data in DDR cntlr handoff section */
	handoff->cntlr_handoff_length = socfpga_get_handoff_size((void *)
						handoff->cntlr_handoff_base);
	debug("%s: Umctl2 handoff length in word(32-bit) = 0x%x\n", __func__,
	      (u32)handoff->cntlr_handoff_length);

	/* Wrong format on user setting data */
	if (handoff->cntlr_handoff_length < 0) {
		debug("%s: Wrong format on user setting data\n", __func__);
		return -ENOEXEC;
	}

	/* Get the next handoff section address */
	next_section_header = handoff->cntlr_handoff_base +
				handoff->cntlr_total_length;
	debug("%s: Next handoff section header location = 0x%llx\n", __func__,
	      next_section_header);

	/*
	 * Checking next section handoff is cntlr or PHY, and changing
	 * subsequent implementation accordingly
	 */
	if (readl(next_section_header) == SOC64_HANDOFF_DDR_UMCTL2_MAGIC) {
		/* Get the next cntlr handoff section address */
		handoff->cntlr2_handoff_base = next_section_header;
		debug("%s: umctl2 2nd handoff base = 0x%x\n", __func__,
		      (u32)handoff->cntlr2_handoff_base);

		/* Get 2nd DDR type */
		handoff->cntlr2_t = get_ddr_type(handoff->cntlr2_handoff_base +
					SOC64_HANDOFF_DDR_UMCTL2_TYPE_OFFSET);
		if (handoff->cntlr2_t == DDRTYPE_LPDDR4_0 ||
		    handoff->cntlr2_t == DDRTYPE_UNKNOWN) {
			debug("%s: Wrong DDR handoff format, the 2nd DDR ",
			      __func__);
			debug("type must be LPDDR4_1\n");
			return -ENOEXEC;
		}

		/* 2nd umctl2 base physical address */
		handoff->cntlr2_base =
			readl(handoff->cntlr2_handoff_base +
			      SOC64_HANDOFF_DDR_UMCTL2_BASE_ADDR_OFFSET);
		debug("%s: cntlr2 base = 0x%x\n", __func__,
		      (u32)handoff->cntlr2_base);

		/* Get the total length of 2nd DDR umctl2 handoff section */
		handoff->cntlr2_total_length =
			readl(handoff->cntlr2_handoff_base +
			      SOC64_HANDOFF_OFFSET_LENGTH);
		debug("%s: Umctl2_2nd total length in byte = 0x%x\n", __func__,
		      (u32)handoff->cntlr2_total_length);

		/*
		 * Get the length of user setting data in DDR umctl2 handoff
		 * section
		 */
		handoff->cntlr2_handoff_length =
			socfpga_get_handoff_size((void *)
						 handoff->cntlr2_handoff_base);
		debug("%s: cntlr2 handoff length in word(32-bit) = 0x%x\n",
		      __func__,
		     (u32)handoff->cntlr2_handoff_length);

		/* Wrong format on user setting data */
		if (handoff->cntlr2_handoff_length < 0) {
			debug("%s: Wrong format on umctl2 user setting data\n",
			      __func__);
			return -ENOEXEC;
		}

		/* Get the next handoff section address */
		next_section_header = handoff->cntlr2_handoff_base +
					handoff->cntlr2_total_length;
		debug("%s: Next handoff section header location = 0x%llx\n",
		      __func__, next_section_header);
	}

	/* Checking next section handoff is PHY ? */
	if (readl(next_section_header) == SOC64_HANDOFF_DDR_PHY_MAGIC) {
		/* DDR PHY handoff */
		handoff->phy_handoff_base = next_section_header;
		debug("%s: PHY handoff base = 0x%x\n", __func__,
		      (u32)handoff->phy_handoff_base);

		/* PHY base physical address */
		handoff->phy_base = readl(handoff->phy_handoff_base +
					SOC64_HANDOFF_DDR_PHY_BASE_OFFSET);
		debug("%s: PHY base = 0x%x\n", __func__,
		      (u32)handoff->phy_base);

		/* Get the total length of PHY handoff section */
		handoff->phy_total_length = readl(handoff->phy_handoff_base +
						SOC64_HANDOFF_OFFSET_LENGTH);
		debug("%s: PHY total length in byte = 0x%x\n", __func__,
		      (u32)handoff->phy_total_length);

		/*
		 * Get the length of user setting data in DDR PHY handoff
		 * section
		 */
		handoff->phy_handoff_length = socfpga_get_handoff_size((void *)
						handoff->phy_handoff_base);
		debug("%s: PHY handoff length in word(32-bit) = 0x%x\n",
		      __func__, (u32)handoff->phy_handoff_length);

		/* Wrong format on PHY user setting data */
		if (handoff->phy_handoff_length < 0) {
			debug("%s: Wrong format on PHY user setting data\n",
			      __func__);
			return -ENOEXEC;
		}

		/* Get the next handoff section address */
		next_section_header = handoff->phy_handoff_base +
					handoff->phy_total_length;
		debug("%s: Next handoff section header location = 0x%llx\n",
		      __func__, next_section_header);
	} else {
		debug("%s: Wrong format for DDR handoff, expect PHY",
		      __func__);
		debug(" handoff section after umctl2 handoff section\n");
		return -ENOEXEC;
	}

	/* Checking next section handoff is PHY init Engine ? */
	if (readl(next_section_header) ==
		SOC64_HANDOFF_DDR_PHY_INIT_ENGINE_MAGIC) {
		/* DDR PHY Engine handoff */
		handoff->phy_engine_handoff_base = next_section_header;
		debug("%s: PHY init engine handoff base = 0x%x\n", __func__,
		      (u32)handoff->phy_engine_handoff_base);

		/* Get the total length of PHY init engine handoff section */
		handoff->phy_engine_total_length =
				readl(handoff->phy_engine_handoff_base +
				      SOC64_HANDOFF_OFFSET_LENGTH);
		debug("%s: PHY engine total length in byte = 0x%x\n", __func__,
		      (u32)handoff->phy_engine_total_length);

		/*
		 * Get the length of user setting data in DDR PHY init engine
		 * handoff section
		 */
		handoff->phy_engine_handoff_length =
			socfpga_get_handoff_size((void *)
					handoff->phy_engine_handoff_base);
		debug("%s: PHY engine handoff length in word(32-bit) = 0x%x\n",
		      __func__, (u32)handoff->phy_engine_handoff_length);

		/* Wrong format on PHY init engine setting data */
		if (handoff->phy_engine_handoff_length < 0) {
			debug("%s: Wrong format on PHY init engine ",
			      __func__);
			debug("user setting data\n");
			return -ENOEXEC;
		}
	} else {
		debug("%s: Wrong format for DDR handoff, expect PHY",
		      __func__);
		debug(" init engine handoff section after PHY handoff\n");
		debug(" section\n");
		return -ENOEXEC;
	}

	handoff->train_imem_base = handoff->phy_base +
						DDR_PHY_TRAIN_IMEM_OFFSET;
	debug("%s: PHY train IMEM base = 0x%x\n",
	      __func__, (u32)handoff->train_imem_base);

	handoff->train_dmem_base = handoff->phy_base +
						DDR_PHY_TRAIN_DMEM_OFFSET;
	debug("%s: PHY train DMEM base = 0x%x\n",
	      __func__, (u32)handoff->train_dmem_base);

	handoff->train_imem_length = SOC64_HANDOFF_DDR_TRAIN_IMEM_LENGTH;
	debug("%s: PHY train IMEM length = 0x%x\n",
	      __func__, (u32)handoff->train_imem_length);

	handoff->train_dmem_length = SOC64_HANDOFF_DDR_TRAIN_DMEM_LENGTH;
	debug("%s: PHY train DMEM length = 0x%x\n",
	      __func__, (u32)handoff->train_dmem_length);

	return 0;
}

int enable_ddr_clock(struct udevice *dev)
{
	struct clk *ddr_clk;
	int ret;

	/* Enable clock before init DDR */
	ddr_clk = devm_clk_get(dev, "mem_clk");
	if (!IS_ERR(ddr_clk)) {
		ret = clk_enable(ddr_clk);
		if (ret) {
			printf("%s: Failed to enable DDR clock\n", __func__);
			return ret;
		}
	} else {
		ret = PTR_ERR(ddr_clk);
		debug("%s: Failed to get DDR clock from dts\n", __func__);
		return ret;
	}

	printf("%s: DDR clock is enabled\n", __func__);

	return 0;
}

static int ddr_start_dfi_init(phys_addr_t umctl2_base,
			      enum ddr_type umctl2_type)
{
	int ret;

	debug("%s: Start DFI init\n", __func__);

	/* Enable quasi-dynamic programing of controller registers */
	clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
	if (ret)
		return ret;

	/* Start DFI init sequence */
	setbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
		     DDR4_DFIMISC_DFI_INIT_START);

	/* Complete quasi-dynamic register programming */
	setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	/* Polling programming done */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_SWSTAT_OFFSET),
				DDR4_SWSTAT_SW_DONE_ACK, true,
				TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" programming done\n");
	}

	return ret;
}

static int ddr_check_dfi_init_complete(phys_addr_t umctl2_base,
				       enum ddr_type umctl2_type)
{
	int ret;

	/* Polling DFI init complete */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_DFISTAT_OFFSET),
				DDR4_DFI_INIT_COMPLETE, true,
				TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" DFI init done\n");
		return ret;
	}

	debug("%s: DFI init completed.\n", __func__);

	/* Enable quasi-dynamic programing of controller registers */
	clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
	if (ret)
		return ret;

	/* Stop DFI init sequence */
	clrbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
		     DDR4_DFIMISC_DFI_INIT_START);

	/* Complete quasi-dynamic register programming */
	setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	/* Polling programming done */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_SWSTAT_OFFSET),
				DDR4_SWSTAT_SW_DONE_ACK, true,
				TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" programming done\n");
		return ret;
	}

	debug("%s:DDR programming done\n", __func__);

	return ret;
}

static int ddr_trigger_sdram_init(phys_addr_t umctl2_base,
				  enum ddr_type umctl2_type)
{
	int ret;

	/* Enable quasi-dynamic programing of controller registers */
	clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
	if (ret)
		return ret;

	/* Unmasking dfi init complete */
	setbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
		     DDR4_DFIMISC_DFI_INIT_COMPLETE_EN);

	/* Software exit from self-refresh */
	clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_SW);

	/* Complete quasi-dynamic register programming */
	setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	/* Polling programming done */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_SWSTAT_OFFSET),
				DDR4_SWSTAT_SW_DONE_ACK, true,
				TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" programming done\n");
		return ret;
	}

	debug("%s:DDR programming done\n", __func__);
	return ret;
}

static int ddr_post_handoff_config(phys_addr_t umctl2_base,
				   enum ddr_type umctl2_type)
{
	int ret = 0;
	u32 value;
	u32 start = get_timer(0);

	do {
		if (get_timer(start) > TIMEOUT_200MS) {
			debug("%s: Timeout while waiting for",
			      __func__);
			debug(" DDR enters normal operating mode\n");
			return -ETIMEDOUT;
		}

		udelay(1);
		WATCHDOG_RESET();

		/* Polling until SDRAM entered normal operating mode */
		value = readl(umctl2_base + DDR4_STAT_OFFSET) &
			      DDR4_STAT_OPERATING_MODE;
	} while (value != OPM_NORMAL);

	printf("DDR entered normal operating mode\n");

	/* Enabling auto refresh */
	clrbits_le32(umctl2_base + DDR4_RFSHCTL3_OFFSET,
		     DDR4_RFSHCTL3_DIS_AUTO_REFRESH);

	/* Checking ECC is enabled? */
	value = readl(umctl2_base + DDR4_ECCCFG0_OFFSET) & DDR4_ECC_MODE;
	if (value) {
		printf("ECC is enabled\n");
		ret = scrubber_ddr_config(umctl2_base, umctl2_type);
		if (ret)
			printf("Failed to enable ECC\n");
	}

	return ret;
}

static int configure_training_firmware(struct ddr_handoff *ddr_handoff_info,
				       const void *train_imem,
				       const void *train_dmem)
{
	int ret = 0;

	printf("Configuring training firmware ...\n");

	/* Reset SDRAM */
	writew(DDR_PHY_PROTECT_MEMRESET,
	       (uintptr_t)(ddr_handoff_info->phy_base +
	       DDR_PHY_MEMRESETL_OFFSET));

	/* Enable access to the PHY configuration registers */
	clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_APBONLY0_OFFSET,
		     DDR_PHY_MICROCONTMUXSEL);

	/* Copy train IMEM bin */
	memcpy((void *)ddr_handoff_info->train_imem_base, train_imem,
	       ddr_handoff_info->train_imem_length);

	ret = memcmp((void *)ddr_handoff_info->train_imem_base, train_imem,
		     ddr_handoff_info->train_imem_length);
	if (ret) {
		debug("%s: Failed to copy train IMEM binary\n", __func__);
		/* Isolate the APB access from internal CSRs */
		setbits_le16(ddr_handoff_info->phy_base +
			     DDR_PHY_APBONLY0_OFFSET, DDR_PHY_MICROCONTMUXSEL);
		return ret;
	}

	memcpy((void *)ddr_handoff_info->train_dmem_base, train_dmem,
	       ddr_handoff_info->train_dmem_length);

	ret = memcmp((void *)ddr_handoff_info->train_dmem_base, train_dmem,
		     ddr_handoff_info->train_dmem_length);
	if (ret)
		debug("%s: Failed to copy train DMEM binary\n", __func__);

	/* Isolate the APB access from internal CSRs */
	setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_APBONLY0_OFFSET,
		     DDR_PHY_MICROCONTMUXSEL);

	return ret;
}

static void calibrating_sdram(struct ddr_handoff *ddr_handoff_info)
{
	/* Init mailbox protocol - set 1 to DCTWRITEPROT[0] */
	setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET,
		     DDR_PHY_DCTWRITEPROT);

	/* Init mailbox protocol - set 1 to UCTWRITEPROT[0] */
	setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_UCTWRITEPROT_OFFSET,
		     DDR_PHY_UCTWRITEPROT);

	/* Reset and stalling ARC processor */
	setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET,
		     DDR_PHY_MICRORESET_RESET | DDR_PHY_MICRORESET_STALL);

	/* Release ARC processor */
	clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET,
		     DDR_PHY_MICRORESET_RESET);

	/* Starting PHY firmware execution */
	clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET,
		     DDR_PHY_MICRORESET_STALL);
}

static int get_mail(struct ddr_handoff *handoff, enum message_mode mode,
		    u32 *message_id)
{
	int ret;

	/* Polling major messages from PMU */
	ret = wait_for_bit_le16((const void *)(handoff->phy_base +
				DDR_PHY_UCTSHADOWREGS_OFFSET),
				DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW,
				false, TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for",
		      __func__);
		debug(" major messages from PMU\n");
		return ret;
	}

	*message_id = readw((uintptr_t)(handoff->phy_base +
			    DDR_PHY_UCTWRITEONLYSHADOW_OFFSET));

	if (mode == STREAMING_MESSAGE)
		*message_id |= readw((uintptr_t)((handoff->phy_base +
				     DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET))) <<
				     SZ_16;

	/* Ack the receipt of the major message */
	clrbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET,
		     DDR_PHY_DCTWRITEPROT);

	ret = wait_for_bit_le16((const void *)(handoff->phy_base +
				DDR_PHY_UCTSHADOWREGS_OFFSET),
				DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW,
				true, TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for",
		      __func__);
		debug(" ack the receipt of the major message completed\n");
		return ret;
	}

	/* Complete protocol */
	setbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET,
		     DDR_PHY_DCTWRITEPROT);

	return ret;
}

static int get_mail_streaming(struct ddr_handoff *handoff,
			      enum message_mode mode, u32 *index)
{
	int ret;

	*index = readw((uintptr_t)(handoff->phy_base +
		       DDR_PHY_UCTWRITEONLYSHADOW_OFFSET));

	if (mode == STREAMING_MESSAGE)
		*index |= readw((uintptr_t)((handoff->phy_base +
				DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET))) <<
				SZ_16;

	/* Ack the receipt of the major message */
	clrbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET,
		     DDR_PHY_DCTWRITEPROT);

	ret = wait_for_bit_le16((const void *)(handoff->phy_base +
				DDR_PHY_UCTSHADOWREGS_OFFSET),
				DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW,
				true, TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for",
		      __func__);
		debug(" ack the receipt of the major message completed\n");
		return ret;
	}

	/* Complete protocol */
	setbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET,
		     DDR_PHY_DCTWRITEPROT);

	return 0;
}

static int decode_streaming_message(struct ddr_handoff *ddr_handoff_info,
				    u32 *streaming_index)
{
	int i = 0, ret;
	u32 temp;

	temp = *streaming_index;

	while (i < GET_LOWHW_DATA(temp)) {
		ret = get_mail(ddr_handoff_info, STREAMING_MESSAGE,
			       streaming_index);
		if (ret)
			return ret;

		printf("args[%d]: 0x%x ", i, *streaming_index);
		i++;
	}

	return 0;
}

static int poll_for_training_complete(struct ddr_handoff *ddr_handoff_info)
{
	int ret;
	u32 message_id = 0;
	u32 streaming_index = 0;

	do {
		ret = get_mail(ddr_handoff_info, MAJOR_MESSAGE, &message_id);
		if (ret)
			return ret;

		 printf("Major message id = 0%x\n", message_id);

		if (message_id == FW_STREAMING_MSG_ID) {
			ret = get_mail_streaming(ddr_handoff_info,
						 STREAMING_MESSAGE,
						 &streaming_index);
			if (ret)
				return ret;

			printf("streaming index 0%x : ", streaming_index);

			decode_streaming_message(ddr_handoff_info,
						 &streaming_index);

			printf("\n");
		}
	} while ((message_id != FW_TRAINING_COMPLETED_STAT) &&
	       (message_id != FW_TRAINING_FAILED_STAT));

	if (message_id == FW_TRAINING_COMPLETED_STAT) {
		printf("DDR firmware training completed\n");
	} else if (message_id == FW_TRAINING_FAILED_STAT) {
		printf("DDR firmware training failed\n");
		hang();
	}

	return 0;
}

static void enable_phy_clk_for_csr_access(struct ddr_handoff *handoff,
					  bool enable)
{
	if (enable) {
		/* Enable PHY clk */
		setbits_le16((uintptr_t)(handoff->phy_base +
			     DDR_PHY_UCCLKHCLKENABLES_OFFSET),
			     DDR_PHY_UCCLKHCLKENABLES_UCCLKEN |
			     DDR_PHY_UCCLKHCLKENABLES_HCLKEN);
	} else {
		/* Disable PHY clk */
		clrbits_le16((uintptr_t)(handoff->phy_base +
			     DDR_PHY_UCCLKHCLKENABLES_OFFSET),
			     DDR_PHY_UCCLKHCLKENABLES_UCCLKEN |
			     DDR_PHY_UCCLKHCLKENABLES_HCLKEN);
	}
}

/* helper function for updating train result to umctl2 RANKCTL register */
static void set_cal_res_to_rankctrl(u32 reg_addr, u16 update_value,
				    u32 mask, u32 msb_mask, u32 shift)
{
	u32 reg, value;

	reg = readl((uintptr_t)reg_addr);

	debug("max value divided by 2 is 0x%x\n", update_value);
	debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
	debug("update with train result\n");

	value = (reg & mask) >> shift;

	value += update_value + 3;

	/* reg value greater than 0xF, set one to diff_rank_wr_gap_msb */
	if (value > 0xF)
		setbits_le32((u32 *)(uintptr_t)reg_addr, msb_mask);
	else
		clrbits_le32((u32 *)(uintptr_t)reg_addr, msb_mask);

	reg = readl((uintptr_t)reg_addr);

	value = (value << shift) & mask;

	/* update register */
	writel((reg & (~mask)) | value, (uintptr_t)reg_addr);

	reg = readl((uintptr_t)reg_addr);
	debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
	debug("update with train result\n");
}

/* helper function for updating train result to register */
static void set_cal_res_to_reg(u32 reg_addr, u16 update_value, u32 mask,
			       u32 shift)
{
	u32 reg, value;

	reg = readl((uintptr_t)reg_addr);

	debug("max value divided by 2 is 0x%x\n", update_value);
	debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
	debug("update with train result\n");

	value = (reg & mask) >> shift;

	value = ((value + update_value + 3) << shift) & mask;

	/* update register */
	writel((reg & (~mask)) | value, (uintptr_t)reg_addr);

	reg = readl((uintptr_t)reg_addr);
	debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
	debug("update with train result\n");
}

static u16 get_max_txdqsdlytg0_ux_p0(struct ddr_handoff *handoff, u32 reg,
				     u8 numdbyte, u16 upd_val)
{
	u32 b_addr;
	u16 val;
	u8 byte;

	/* Getting max value from DBYTEx TxDqsDlyTg0_ux_p0 */
	for (byte = 0; byte < numdbyte; byte++) {
		b_addr = byte << 13;

		/* TxDqsDlyTg0[9:6] is the coarse delay */
		val = (readw((uintptr_t)(handoff->phy_base +
			     reg + b_addr)) &
			     DDR_PHY_TXDQDLYTG0_COARSE_DELAY) >>
			     DDR_PHY_TXDQDLYTG0_COARSE_DELAY_SHIFT;

		upd_val = max(val, upd_val);
	}

	return upd_val;
}

static int set_cal_res_to_umctl2(struct ddr_handoff *handoff,
				 phys_addr_t umctl2_base,
				 enum ddr_type umctl2_type)
{
	int ret;
	u8 numdbyte = 0x8;
	u16 upd_val, val;
	u32 dramtmg2_reg_addr, rankctl_reg_addr, reg_addr;

	/* Enable quasi-dynamic programing of the controller registers */
	clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
	if (ret)
		return ret;

	/* Enable access to the PHY configuration registers */
	clrbits_le16(handoff->phy_base + DDR_PHY_APBONLY0_OFFSET,
		     DDR_PHY_MICROCONTMUXSEL);

	if (umctl2_type == DDRTYPE_DDR4) {
		val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
				     DMEM_MB_CDD_WW_1_0_OFFSET)));

		upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
					DMEM_MB_CDD_WW_0_1_OFFSET)));
	} else if (umctl2_type == DDRTYPE_LPDDR4_0) {
		val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
				    DMEM_MB_CDD_CHA_WW_1_0_OFFSET)));

		upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
					 DMEM_MB_CDD_CHA_WW_0_1_OFFSET)));
	} else if (umctl2_type == DDRTYPE_LPDDR4_1) {
		val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
				     DMEM_MB_CDD_CHB_WW_1_0_OFFSET)));

		upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
					DMEM_MB_CDD_CHB_WW_0_1_OFFSET)));
	}

	upd_val = max(val, upd_val);
	debug("max value is 0x%x\n", upd_val);

	/* Divided by two is required when running in freq ratio 1:2 */
	if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO))
		upd_val = DIV_ROUND_CLOSEST(upd_val, 2);

	debug("Update train value to umctl2 RANKCTL.diff_rank_wr_gap\n");
	rankctl_reg_addr = umctl2_base + DDR4_RANKCTL_OFFSET;
	/* Update train value to umctl2 RANKCTL.diff_rank_wr_gap */
	set_cal_res_to_rankctrl(rankctl_reg_addr, upd_val,
				DDR4_RANKCTL_DIFF_RANK_WR_GAP,
				DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB,
				DDR4_RANKCTL_DIFF_RANK_WR_GAP_SHIFT);

	debug("Update train value to umctl2 DRAMTMG2.W2RD\n");
	dramtmg2_reg_addr = umctl2_base + DDR4_DRAMTMG2_OFFSET;
	/* Update train value to umctl2 dramtmg2.wr2rd */
	set_cal_res_to_reg(dramtmg2_reg_addr, upd_val, DDR4_DRAMTMG2_WR2RD, 0);

	if (umctl2_type == DDRTYPE_DDR4) {
		debug("Update train value to umctl2 DRAMTMG9.W2RD_S\n");
		reg_addr = umctl2_base + DDR4_DRAMTMG9_OFFSET;
		/* Update train value to umctl2 dramtmg9.wr2rd_s */
		set_cal_res_to_reg(reg_addr, upd_val, DDR4_DRAMTMG9_W2RD_S, 0);
	}

	if (umctl2_type == DDRTYPE_DDR4) {
		val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
				     DMEM_MB_CDD_RR_1_0_OFFSET)));

		upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
					DMEM_MB_CDD_RR_0_1_OFFSET)));
	} else if (umctl2_type == DDRTYPE_LPDDR4_0) {
		val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
				    DMEM_MB_CDD_CHA_RR_1_0_OFFSET)));

		upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
					 DMEM_MB_CDD_CHA_RR_0_1_OFFSET)));
	} else if (umctl2_type == DDRTYPE_LPDDR4_1) {
		val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
				     DMEM_MB_CDD_CHB_RR_1_0_OFFSET)));

		upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
					DMEM_MB_CDD_CHB_RR_0_1_OFFSET)));
	}

	upd_val = max(val, upd_val);
	debug("max value is 0x%x\n", upd_val);

	/* Divided by two is required when running in freq ratio 1:2 */
	if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO))
		upd_val = DIV_ROUND_CLOSEST(upd_val, 2);

	debug("Update train value to umctl2 RANKCTL.diff_rank_rd_gap\n");
	/* Update train value to umctl2 RANKCTL.diff_rank_rd_gap */
	set_cal_res_to_rankctrl(rankctl_reg_addr, upd_val,
				DDR4_RANKCTL_DIFF_RANK_RD_GAP,
				DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB,
				DDR4_RANKCTL_DIFF_RANK_RD_GAP_SHIFT);

	if (umctl2_type == DDRTYPE_DDR4) {
		val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
				     DMEM_MB_CDD_RW_1_1_OFFSET)));

		upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
					DMEM_MB_CDD_RW_1_0_OFFSET)));

		upd_val = max(val, upd_val);

		val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
				     DMEM_MB_CDD_RW_0_1_OFFSET)));

		upd_val = max(val, upd_val);

		val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
				    DMEM_MB_CDD_RW_0_0_OFFSET)));

		upd_val = max(val, upd_val);
	} else if (umctl2_type == DDRTYPE_LPDDR4_0) {
		val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
				    DMEM_MB_CDD_CHA_RW_1_1_OFFSET)));

		upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
					 DMEM_MB_CDD_CHA_RW_1_0_OFFSET)));

		upd_val = max(val, upd_val);

		val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
				    DMEM_MB_CDD_CHA_RW_0_1_OFFSET)));

		upd_val = max(val, upd_val);

		val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
				     DMEM_MB_CDD_CHA_RW_0_0_OFFSET)));

		upd_val = max(val, upd_val);
	} else if (umctl2_type == DDRTYPE_LPDDR4_1) {
		val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
				     DMEM_MB_CDD_CHB_RW_1_1_OFFSET)));

		upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
					DMEM_MB_CDD_CHB_RW_1_0_OFFSET)));

		upd_val = max(val, upd_val);

		val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
				     DMEM_MB_CDD_CHB_RW_0_1_OFFSET)));

		upd_val = max(val, upd_val);

		val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
				    DMEM_MB_CDD_CHB_RW_0_0_OFFSET)));

		upd_val = max(val, upd_val);
	}

	debug("max value is 0x%x\n", upd_val);

	/* Divided by two is required when running in freq ratio 1:2 */
	if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO))
		upd_val = DIV_ROUND_CLOSEST(upd_val, 2);

	debug("Update train value to umctl2 dramtmg2.rd2wr\n");
	/* Update train value to umctl2 dramtmg2.rd2wr */
	set_cal_res_to_reg(dramtmg2_reg_addr, upd_val, DDR4_DRAMTMG2_RD2WR,
			   DDR4_DRAMTMG2_RD2WR_SHIFT);

	/* Checking ECC is enabled?, lpddr4 using inline ECC */
	val = readl(umctl2_base + DDR4_ECCCFG0_OFFSET) & DDR4_ECC_MODE;
	if (val && umctl2_type == DDRTYPE_DDR4)
		numdbyte = 0x9;

	upd_val = 0;

	/* Getting max value from DBYTEx TxDqsDlyTg0_u0_p0 */
	upd_val = get_max_txdqsdlytg0_ux_p0(handoff,
					    DDR_PHY_DBYTE0_TXDQDLYTG0_U0_P0,
					    numdbyte, upd_val);

	/* Getting max value from DBYTEx TxDqsDlyTg0_u1_p0 */
	upd_val = get_max_txdqsdlytg0_ux_p0(handoff,
					    DDR_PHY_DBYTE0_TXDQDLYTG0_U1_P0,
					    numdbyte, upd_val);

	debug("TxDqsDlyTg0 max value is 0x%x\n", upd_val);

	/* Divided by two is required when running in freq ratio 1:2 */
	if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO))
		upd_val = DIV_ROUND_CLOSEST(upd_val, 2);

	reg_addr = umctl2_base + DDR4_DFITMG1_OFFSET;
	/* Update train value to umctl2 dfitmg1.dfi_wrdata_delay */
	set_cal_res_to_reg(reg_addr, upd_val, DDR4_DFITMG1_DFI_T_WRDATA_DELAY,
			   DDR4_DFITMG1_DFI_T_WRDATA_SHIFT);

	/* Complete quasi-dynamic register programming */
	setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);

	/* Polling programming done */
	ret = wait_for_bit_le32((const void *)(umctl2_base +
				DDR4_SWSTAT_OFFSET), DDR4_SWSTAT_SW_DONE_ACK,
				true, TIMEOUT_200MS, false);
	if (ret) {
		debug("%s: Timeout while waiting for", __func__);
		debug(" programming done\n");
	}

	/* Isolate the APB access from internal CSRs */
	setbits_le16(handoff->phy_base + DDR_PHY_APBONLY0_OFFSET,
		     DDR_PHY_MICROCONTMUXSEL);

	return ret;
}

static int update_training_result(struct ddr_handoff *ddr_handoff_info)
{
	int ret = 0;

	/* Updating training result to first DDR controller */
	if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 ||
	    ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) {
		ret = set_cal_res_to_umctl2(ddr_handoff_info,
					    ddr_handoff_info->cntlr_base,
					    ddr_handoff_info->cntlr_t);
		if (ret) {
			debug("%s: Failed to update train result to ",
			      __func__);
			debug("first DDR controller\n");
			return ret;
		}
	}

	/* Updating training result to 2nd DDR controller */
	if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) {
		ret = set_cal_res_to_umctl2(ddr_handoff_info,
					    ddr_handoff_info->cntlr2_base,
					    ddr_handoff_info->cntlr2_t);
		if (ret) {
			debug("%s: Failed to update train result to ",
			      __func__);
			debug("2nd DDR controller\n");
		}
	}

	return ret;
}

static int start_ddr_calibration(struct ddr_handoff *ddr_handoff_info)
{
	int ret;

	/* Implement 1D training firmware */
	ret = configure_training_firmware(ddr_handoff_info,
		(const void *)SOC64_HANDOFF_DDR_TRAIN_IMEM_1D_SECTION,
		(const void *)SOC64_HANDOFF_DDR_TRAIN_DMEM_1D_SECTION);
	if (ret) {
		debug("%s: Failed to configure 1D training firmware\n",
		      __func__);
		return ret;
	}

	calibrating_sdram(ddr_handoff_info);

	ret = poll_for_training_complete(ddr_handoff_info);
	if (ret) {
		debug("%s: Failed to get FW training completed\n",
		      __func__);
		return ret;
	}

	/* Updating training result to DDR controller */
	ret = update_training_result(ddr_handoff_info);
	if (ret)
		return ret;

	/* Implement 2D training firmware */
	ret = configure_training_firmware(ddr_handoff_info,
		(const void *)SOC64_HANDOFF_DDR_TRAIN_IMEM_2D_SECTION,
		(const void *)SOC64_HANDOFF_DDR_TRAIN_DMEM_2D_SECTION);
	if (ret) {
		debug("%s: Failed to update train result to ", __func__);
		debug("DDR controller\n");
		return ret;
	}

	calibrating_sdram(ddr_handoff_info);

	ret = poll_for_training_complete(ddr_handoff_info);
	if (ret)
		debug("%s: Failed to get FW training completed\n",
		      __func__);

	return ret;
}

static int init_controller(struct ddr_handoff *ddr_handoff_info,
			   u32 *user_backup, u32 *user_backup_2nd)
{
	int ret = 0;

	if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4  ||
	    ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) {
		/* Initialize 1st DDR controller */
		ret = init_umctl2(ddr_handoff_info->cntlr_handoff_base,
				  ddr_handoff_info->cntlr_base,
				  ddr_handoff_info->cntlr_t,
				  ddr_handoff_info->cntlr_handoff_length,
				  user_backup);
		if (ret) {
			debug("%s: Failed to inilialize first controller\n",
			      __func__);
			return ret;
		}
	}

	if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) {
		/* Initialize 2nd DDR controller */
		ret = init_umctl2(ddr_handoff_info->cntlr2_handoff_base,
				  ddr_handoff_info->cntlr2_base,
				  ddr_handoff_info->cntlr2_t,
				  ddr_handoff_info->cntlr2_handoff_length,
				  user_backup_2nd);
		if (ret)
			debug("%s: Failed to inilialize 2nd controller\n",
			      __func__);
	}

	return ret;
}

static int dfi_init(struct ddr_handoff *ddr_handoff_info)
{
	int ret;

	ret = ddr_start_dfi_init(ddr_handoff_info->cntlr_base,
				 ddr_handoff_info->cntlr_t);
	if (ret)
		return ret;

	if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1)
		ret = ddr_start_dfi_init(ddr_handoff_info->cntlr2_base,
					 ddr_handoff_info->cntlr2_t);

	return ret;
}

static int check_dfi_init(struct ddr_handoff *handoff)
{
	int ret;

	ret = ddr_check_dfi_init_complete(handoff->cntlr_base,
					  handoff->cntlr_t);
	if (ret)
		return ret;

	if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1)
		ret = ddr_check_dfi_init_complete(handoff->cntlr2_base,
						  handoff->cntlr2_t);

	return ret;
}

static int trigger_sdram_init(struct ddr_handoff *handoff)
{
	int ret;

	ret = ddr_trigger_sdram_init(handoff->cntlr_base,
				     handoff->cntlr_t);
	if (ret)
		return ret;

	if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1)
		ret = ddr_trigger_sdram_init(handoff->cntlr2_base,
					     handoff->cntlr2_t);

	return ret;
}

static int ddr_post_config(struct ddr_handoff *handoff)
{
	int ret;

	ret = ddr_post_handoff_config(handoff->cntlr_base,
				      handoff->cntlr_t);
	if (ret)
		return ret;

	if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1)
		ret = ddr_post_handoff_config(handoff->cntlr2_base,
					      handoff->cntlr2_t);

	return ret;
}

static bool is_ddr_retention_enabled(u32 boot_scratch_cold0_reg)
{
	return boot_scratch_cold0_reg &
	       ALT_SYSMGR_SCRATCH_REG_0_DDR_RETENTION_MASK;
}

static bool is_ddr_bitstream_sha_matching(u32 boot_scratch_cold0_reg)
{
	return boot_scratch_cold0_reg & ALT_SYSMGR_SCRATCH_REG_0_DDR_SHA_MASK;
}

static enum reset_type get_reset_type(u32 boot_scratch_cold0_reg)
{
	return (boot_scratch_cold0_reg &
		ALT_SYSMGR_SCRATCH_REG_0_DDR_RESET_TYPE_MASK) >>
		ALT_SYSMGR_SCRATCH_REG_0_DDR_RESET_TYPE_SHIFT;
}

void reset_type_debug_print(u32 boot_scratch_cold0_reg)
{
	switch (get_reset_type(boot_scratch_cold0_reg)) {
	case POR_RESET:
		debug("%s: POR is triggered\n", __func__);
		break;
	case WARM_RESET:
		debug("%s: Warm reset is triggered\n", __func__);
		break;
	case COLD_RESET:
		debug("%s: Cold reset is triggered\n", __func__);
		break;
	default:
		debug("%s: Invalid reset type\n", __func__);
	}
}

bool is_ddr_init(void)
{
	u32 reg = readl(socfpga_get_sysmgr_addr() +
			SYSMGR_SOC64_BOOT_SCRATCH_COLD0);

	reset_type_debug_print(reg);

	if (get_reset_type(reg) == POR_RESET) {
		debug("%s: DDR init is required\n", __func__);
		return true;
	}

	if (get_reset_type(reg) == WARM_RESET) {
		debug("%s: DDR init is skipped\n", __func__);
		return false;
	}

	if (get_reset_type(reg) == COLD_RESET) {
		if (is_ddr_retention_enabled(reg) &&
		    is_ddr_bitstream_sha_matching(reg)) {
			debug("%s: DDR retention bit is set\n", __func__);
			debug("%s: Matching in DDR bistream\n", __func__);
			debug("%s: DDR init is skipped\n", __func__);
			return false;
		}
	}

	debug("%s: DDR init is required\n", __func__);
	return true;
}

int sdram_mmr_init_full(struct udevice *dev)
{
	u32 user_backup[2], user_backup_2nd[2];
	int ret;
	struct bd_info bd;
	struct ddr_handoff ddr_handoff_info;
	struct altera_sdram_priv *priv = dev_get_priv(dev);

	printf("Checking SDRAM configuration in progress ...\n");
	ret = populate_ddr_handoff(&ddr_handoff_info);
		if (ret) {
			debug("%s: Failed to populate DDR handoff\n",
			      __func__);
			return ret;
		}

	/* Set the MPFE NoC mux to correct DDR controller type */
	use_ddr4(ddr_handoff_info.cntlr_t);

	if (is_ddr_init()) {
		printf("SDRAM init in progress ...\n");

		/*
		 * Polling reset complete, must be high to ensure DDR subsystem
		 * in complete reset state before init DDR clock and DDR
		 * controller
		 */
		ret = wait_for_bit_le32((const void *)((uintptr_t)(readl
					(ddr_handoff_info.mem_reset_base) +
					MEM_RST_MGR_STATUS)),
					MEM_RST_MGR_STATUS_RESET_COMPLETE,
					true, TIMEOUT_200MS, false);
		if (ret) {
			debug("%s: Timeout while waiting for", __func__);
			debug(" reset complete done\n");
			return ret;
		}

		ret = enable_ddr_clock(dev);
		if (ret)
			return ret;

		ret = init_controller(&ddr_handoff_info, user_backup,
				      user_backup_2nd);
		if (ret) {
			debug("%s: Failed to inilialize DDR controller\n",
			      __func__);
			return ret;
		}

		/* Release the controller from reset */
		setbits_le32((uintptr_t)
			     (readl(ddr_handoff_info.mem_reset_base) +
			     MEM_RST_MGR_STATUS), MEM_RST_MGR_STATUS_AXI_RST |
			     MEM_RST_MGR_STATUS_CONTROLLER_RST |
			     MEM_RST_MGR_STATUS_RESET_COMPLETE);

		printf("DDR controller configuration is completed\n");

		/* Initialize DDR PHY */
		ret = init_phy(&ddr_handoff_info);
		if (ret) {
			debug("%s: Failed to inilialize DDR PHY\n", __func__);
			return ret;
		}

		enable_phy_clk_for_csr_access(&ddr_handoff_info, true);

		ret = start_ddr_calibration(&ddr_handoff_info);
		if (ret) {
			debug("%s: Failed to calibrate DDR\n", __func__);
			return ret;
		}

		enable_phy_clk_for_csr_access(&ddr_handoff_info, false);

		/* Reset ARC processor when no using for security purpose */
		setbits_le16(ddr_handoff_info.phy_base +
			     DDR_PHY_MICRORESET_OFFSET,
			     DDR_PHY_MICRORESET_RESET);

		/* DDR freq set to support DDR4-3200 */
		phy_init_engine(&ddr_handoff_info);

		ret = dfi_init(&ddr_handoff_info);
		if (ret)
			return ret;

		ret = check_dfi_init(&ddr_handoff_info);
		if (ret)
			return ret;

		ret = trigger_sdram_init(&ddr_handoff_info);
		if (ret)
			return ret;

		ret = ddr_post_config(&ddr_handoff_info);
		if (ret)
			return ret;

		/* Restore user settings */
		writel(user_backup[0], ddr_handoff_info.cntlr_base +
		       DDR4_PWRCTL_OFFSET);

		if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_0)
			setbits_le32(ddr_handoff_info.cntlr_base +
				     DDR4_INIT0_OFFSET, user_backup[1]);

		if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_1) {
			/* Restore user settings */
			writel(user_backup_2nd[0],
			       ddr_handoff_info.cntlr2_base +
			       DDR4_PWRCTL_OFFSET);

			setbits_le32(ddr_handoff_info.cntlr2_base +
				     DDR4_INIT0_OFFSET, user_backup_2nd[1]);
		}

		/* Enable input traffic per port */
		setbits_le32(ddr_handoff_info.cntlr_base + DDR4_PCTRL0_OFFSET,
			     DDR4_PCTRL0_PORT_EN);

		if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_1) {
			/* Enable input traffic per port */
			setbits_le32(ddr_handoff_info.cntlr2_base +
				     DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN);
		}

		printf("DDR init success\n");
	}

	/* Get bank configuration from devicetree */
	ret = fdtdec_decode_ram_size(gd->fdt_blob, NULL, 0, NULL,
				     (phys_size_t *)&gd->ram_size, &bd);
	if (ret) {
		debug("%s: Failed to decode memory node\n",  __func__);
		return -1;
	}

	printf("DDR: %lld MiB\n", gd->ram_size >> 20);

	priv->info.base = bd.bi_dram[0].start;
	priv->info.size = gd->ram_size;

	sdram_size_check(&bd);

	sdram_set_firewall(&bd);

	return 0;
}