/* SPDX-License-Identifier: BSD-3-Clause */ /* * This is from the Android Project, * Repository: https://android.googlesource.com/platform/system/tools/mkbootimg * File: include/bootimg/bootimg.h * Commit: e55998a0f2b61b685d5eb4a486ca3a0c680b1a2f * * Copyright (C) 2007 The Android Open Source Project */ #ifndef _ANDROID_IMAGE_H_ #define _ANDROID_IMAGE_H_ #include #include #define ANDR_BOOT_MAGIC "ANDROID!" #define ANDR_BOOT_MAGIC_SIZE 8 #define ANDR_BOOT_NAME_SIZE 16 #define ANDR_BOOT_ARGS_SIZE 512 #define ANDR_BOOT_EXTRA_ARGS_SIZE 1024 #define ANDR_VENDOR_BOOT_MAGIC "VNDRBOOT" #define ANDR_VENDOR_BOOT_MAGIC_SIZE 8 #define ANDR_VENDOR_BOOT_ARGS_SIZE 2048 #define ANDR_VENDOR_BOOT_NAME_SIZE 16 #define VENDOR_RAMDISK_TYPE_NONE 0 #define VENDOR_RAMDISK_TYPE_PLATFORM 1 #define VENDOR_RAMDISK_TYPE_RECOVERY 2 #define VENDOR_RAMDISK_TYPE_DLKM 3 #define VENDOR_RAMDISK_NAME_SIZE 32 #define VENDOR_RAMDISK_TABLE_ENTRY_BOARD_ID_SIZE 16 /* The bootloader expects the structure of andr_img_hdr with header * version 0 to be as follows: */ /* Boot metric variables (in millisecond) */ struct boot_metric { u32 bll_1; /* 1th bootloader load duration */ u32 ble_1; /* 1th bootloader exec duration */ u32 kl; /* kernel image load duration */ u32 kd; /* kernel image decompress duration */ u32 avb; /* avb verify boot.img duration */ u32 odt; /* overlay device tree duration */ u32 sw; /* system wait for UI interaction duration*/ }; typedef struct boot_metric boot_metric; struct andr_img_hdr { /* Must be ANDR_BOOT_MAGIC. */ char magic[ANDR_BOOT_MAGIC_SIZE]; u32 kernel_size; /* size in bytes */ u32 kernel_addr; /* physical load addr */ u32 ramdisk_size; /* size in bytes */ u32 ramdisk_addr; /* physical load addr */ u32 second_size; /* size in bytes */ u32 second_addr; /* physical load addr */ u32 tags_addr; /* physical addr for kernel tags */ u32 page_size; /* flash page size we assume */ /* Version of the boot image header. */ u32 header_version; /* Operating system version and security patch level. * For version "A.B.C" and patch level "Y-M-D": * (7 bits for each of A, B, C; 7 bits for (Y-2000), 4 bits for M) * os_version = A[31:25] B[24:18] C[17:11] (Y-2000)[10:4] M[3:0] */ u32 os_version; char name[ANDR_BOOT_NAME_SIZE]; /* asciiz product name */ char cmdline[ANDR_BOOT_ARGS_SIZE]; u32 id[8]; /* timestamp / checksum / sha1 / etc */ /* Supplemental command line data; kept here to maintain * binary compatibility with older versions of mkbootimg. */ char extra_cmdline[ANDR_BOOT_EXTRA_ARGS_SIZE]; /* Fields in boot_img_hdr_v1 and newer. */ u32 recovery_dtbo_size; /* size in bytes for recovery DTBO/ACPIO image */ u64 recovery_dtbo_offset; /* offset to recovery dtbo/acpio in boot image */ u32 header_size; /* Fields in boot_img_hdr_v2 and newer. */ u32 dtb_size; /* size in bytes for DTB image */ u64 dtb_addr; /* physical load address for DTB image */ } __attribute__((packed)); struct boot_img_hdr_v3 { // Must be BOOT_MAGIC. uint8_t magic[ANDR_BOOT_MAGIC_SIZE]; uint32_t kernel_size; /* size in bytes */ uint32_t ramdisk_size; /* size in bytes */ // Operating system version and security patch level. // For version "A.B.C" and patch level "Y-M-D": // (7 bits for each of A, B, C; 7 bits for (Y-2000), 4 bits for M) // os_version = A[31:25] B[24:18] C[17:11] (Y-2000)[10:4] M[3:0] uint32_t os_version; #if __cplusplus void SetOsVersion(unsigned major, unsigned minor, unsigned patch) { os_version &= ((1 << 11) - 1); os_version |= (((major & 0x7f) << 25) | ((minor & 0x7f) << 18) | ((patch & 0x7f) << 11)); } void SetOsPatchLevel(unsigned year, unsigned month) { os_version &= ~((1 << 11) - 1); os_version |= (((year - 2000) & 0x7f) << 4) | ((month & 0xf) << 0); } #endif uint32_t header_size; uint32_t reserved[4]; // Version of the boot image header. uint32_t header_version; uint8_t cmdline[ANDR_BOOT_ARGS_SIZE + ANDR_BOOT_EXTRA_ARGS_SIZE]; } __attribute__((packed)); struct vendor_boot_img_hdr_v3 { // Must be ANDR_VENDOR_BOOT_MAGIC. uint8_t magic[ANDR_VENDOR_BOOT_MAGIC_SIZE]; // Version of the vendor boot image header. uint32_t header_version; uint32_t page_size; /* flash page size we assume */ uint32_t kernel_addr; /* physical load addr */ uint32_t ramdisk_addr; /* physical load addr */ uint32_t vendor_ramdisk_size; /* size in bytes */ uint8_t cmdline[ANDR_VENDOR_BOOT_ARGS_SIZE]; uint32_t tags_addr; /* physical addr for kernel tags (if required) */ uint8_t name[ANDR_VENDOR_BOOT_NAME_SIZE]; /* asciiz product name */ uint32_t header_size; uint32_t dtb_size; /* size in bytes for DTB image */ uint64_t dtb_addr; /* physical load address for DTB image */ } __attribute__((packed)); /* When a boot header is of version 0, the structure of boot image is as * follows: * * +-----------------+ * | boot header | 1 page * +-----------------+ * | kernel | i pages * +-----------------+ * | ramdisk | m pages * +-----------------+ * | second stage | n pages * +-----------------+ * | recovery dtbo | o pages * +-----------------+ * * i = (kernel_size + page_size - 1) / page_size * m = (ramdisk_size + page_size - 1) / page_size * n = (second_size + page_size - 1) / page_size * o = (recovery_dtbo_size + page_size - 1) / page_size * * 0. all entities are page_size aligned in flash * 1. kernel and ramdisk are required (size != 0) * 2. second is optional (second_size == 0 -> no second) * 3. load each element (kernel, ramdisk, second) at * the specified physical address (kernel_addr, etc) * 4. prepare tags at tag_addr. kernel_args[] is * appended to the kernel commandline in the tags. * 5. r0 = 0, r1 = MACHINE_TYPE, r2 = tags_addr * 6. if second_size != 0: jump to second_addr * else: jump to kernel_addr */ /* When the boot image header has a version of 2, the structure of the boot * image is as follows: * * +---------------------+ * | boot header | 1 page * +---------------------+ * | kernel | n pages * +---------------------+ * | ramdisk | m pages * +---------------------+ * | second stage | o pages * +---------------------+ * | recovery dtbo/acpio | p pages * +---------------------+ * | dtb | q pages * +---------------------+ * * n = (kernel_size + page_size - 1) / page_size * m = (ramdisk_size + page_size - 1) / page_size * o = (second_size + page_size - 1) / page_size * p = (recovery_dtbo_size + page_size - 1) / page_size * q = (dtb_size + page_size - 1) / page_size * * 0. all entities are page_size aligned in flash * 1. kernel, ramdisk and DTB are required (size != 0) * 2. recovery_dtbo/recovery_acpio is required for recovery.img in non-A/B * devices(recovery_dtbo_size != 0) * 3. second is optional (second_size == 0 -> no second) * 4. load each element (kernel, ramdisk, second, dtb) at * the specified physical address (kernel_addr, etc) * 5. If booting to recovery mode in a non-A/B device, extract recovery * dtbo/acpio and apply the correct set of overlays on the base device tree * depending on the hardware/product revision. * 6. prepare tags at tag_addr. kernel_args[] is * appended to the kernel commandline in the tags. * 7. r0 = 0, r1 = MACHINE_TYPE, r2 = tags_addr * 8. if second_size != 0: jump to second_addr * else: jump to kernel_addr */ /* When the boot image header has a version of 3, the structure of the boot * image is as follows: * * +---------------------+ * | boot header | 4096 bytes * +---------------------+ * | kernel | m pages * +---------------------+ * | ramdisk | n pages * +---------------------+ * * m = (kernel_size + 4096 - 1) / 4096 * n = (ramdisk_size + 4096 - 1) / 4096 * * Note that in version 3 of the boot image header, page size is fixed at 4096 bytes. * * The structure of the vendor boot image (introduced with version 3 and * required to be present when a v3 boot image is used) is as follows: * * +---------------------+ * | vendor boot header | o pages * +---------------------+ * | vendor ramdisk | p pages * +---------------------+ * | dtb | q pages * +---------------------+ * o = (2112 + page_size - 1) / page_size * p = (vendor_ramdisk_size + page_size - 1) / page_size * q = (dtb_size + page_size - 1) / page_size * * 0. all entities in the boot image are 4096-byte aligned in flash, all * entities in the vendor boot image are page_size (determined by the vendor * and specified in the vendor boot image header) aligned in flash * 1. kernel, ramdisk, vendor ramdisk, and DTB are required (size != 0) * 2. load the kernel and DTB at the specified physical address (kernel_addr, * dtb_addr) * 3. load the vendor ramdisk at ramdisk_addr * 4. load the generic ramdisk immediately following the vendor ramdisk in * memory * 5. set up registers for kernel entry as required by your architecture * 6. if the platform has a second stage bootloader jump to it (must be * contained outside boot and vendor boot partitions), otherwise * jump to kernel_addr */ /* When the boot image header has a version of 4, the structure of the boot * image is as follows: * * +---------------------+ * | boot header | 4096 bytes * +---------------------+ * | kernel | m pages * +---------------------+ * | ramdisk | n pages * +---------------------+ * | boot signature | g pages * +---------------------+ * * m = (kernel_size + 4096 - 1) / 4096 * n = (ramdisk_size + 4096 - 1) / 4096 * g = (signature_size + 4096 - 1) / 4096 * * Note that in version 4 of the boot image header, page size is fixed at 4096 * bytes. * * The structure of the vendor boot image version 4, which is required to be * present when a version 4 boot image is used, is as follows: * * +------------------------+ * | vendor boot header | o pages * +------------------------+ * | vendor ramdisk section | p pages * +------------------------+ * | dtb | q pages * +------------------------+ * | vendor ramdisk table | r pages * +------------------------+ * | bootconfig | s pages * +------------------------+ * * o = (2128 + page_size - 1) / page_size * p = (vendor_ramdisk_size + page_size - 1) / page_size * q = (dtb_size + page_size - 1) / page_size * r = (vendor_ramdisk_table_size + page_size - 1) / page_size * s = (vendor_bootconfig_size + page_size - 1) / page_size * * Note that in version 4 of the vendor boot image, multiple vendor ramdisks can * be included in the vendor boot image. The bootloader can select a subset of * ramdisks to load at runtime. To help the bootloader select the ramdisks, each * ramdisk is tagged with a type tag and a set of hardware identifiers * describing the board, soc or platform that this ramdisk is intended for. * * The vendor ramdisk section is consist of multiple ramdisk images concatenated * one after another, and vendor_ramdisk_size is the size of the section, which * is the total size of all the ramdisks included in the vendor boot image. * * The vendor ramdisk table holds the size, offset, type, name and hardware * identifiers of each ramdisk. The type field denotes the type of its content. * The vendor ramdisk names are unique. The hardware identifiers are specified * in the board_id field in each table entry. The board_id field is consist of a * vector of unsigned integer words, and the encoding scheme is defined by the * hardware vendor. * * For the different type of ramdisks, there are: * - VENDOR_RAMDISK_TYPE_NONE indicates the value is unspecified. * - VENDOR_RAMDISK_TYPE_PLATFORM ramdisks contain platform specific bits, so * the bootloader should always load these into memory. * - VENDOR_RAMDISK_TYPE_RECOVERY ramdisks contain recovery resources, so * the bootloader should load these when booting into recovery. * - VENDOR_RAMDISK_TYPE_DLKM ramdisks contain dynamic loadable kernel * modules. * * Version 4 of the vendor boot image also adds a bootconfig section to the end * of the image. This section contains Boot Configuration parameters known at * build time. The bootloader is responsible for placing this section directly * after the generic ramdisk, followed by the bootconfig trailer, before * entering the kernel. * * 0. all entities in the boot image are 4096-byte aligned in flash, all * entities in the vendor boot image are page_size (determined by the vendor * and specified in the vendor boot image header) aligned in flash * 1. kernel, ramdisk, and DTB are required (size != 0) * 2. load the kernel and DTB at the specified physical address (kernel_addr, * dtb_addr) * 3. load the vendor ramdisks at ramdisk_addr * 4. load the generic ramdisk immediately following the vendor ramdisk in * memory * 5. load the bootconfig immediately following the generic ramdisk. Add * additional bootconfig parameters followed by the bootconfig trailer. * 6. set up registers for kernel entry as required by your architecture * 7. if the platform has a second stage bootloader jump to it (must be * contained outside boot and vendor boot partitions), otherwise * jump to kernel_addr */ struct boot_img_hdr_v4 { // Must be BOOT_MAGIC. uint8_t magic[ANDR_BOOT_MAGIC_SIZE]; uint32_t kernel_size; /* size in bytes */ uint32_t ramdisk_size; /* size in bytes */ // Operating system version and security patch level. // For version "A.B.C" and patch level "Y-M-D": // (7 bits for each of A, B, C; 7 bits for (Y-2000), 4 bits for M) // os_version = A[31:25] B[24:18] C[17:11] (Y-2000)[10:4] M[3:0] uint32_t os_version; #if __cplusplus void SetOsVersion(unsigned major, unsigned minor, unsigned patch) { os_version &= ((1 << 11) - 1); os_version |= (((major & 0x7f) << 25) | ((minor & 0x7f) << 18) | ((patch & 0x7f) << 11)); } void SetOsPatchLevel(unsigned year, unsigned month) { os_version &= ~((1 << 11) - 1); os_version |= (((year - 2000) & 0x7f) << 4) | ((month & 0xf) << 0); } #endif uint32_t header_size; uint32_t reserved[4]; // Version of the boot image header. uint32_t header_version; uint8_t cmdline[ANDR_BOOT_ARGS_SIZE + ANDR_BOOT_EXTRA_ARGS_SIZE]; uint32_t signature_size; /* size in bytes */ } __attribute__((packed)); struct vendor_boot_img_hdr_v4 { // Must be ANDR_VENDOR_BOOT_MAGIC. uint8_t magic[ANDR_VENDOR_BOOT_MAGIC_SIZE]; // Version of the vendor boot image header. uint32_t header_version; uint32_t page_size; /* flash page size we assume */ uint32_t kernel_addr; /* physical load addr */ uint32_t ramdisk_addr; /* physical load addr */ uint32_t vendor_ramdisk_size; /* size in bytes */ uint8_t cmdline[ANDR_VENDOR_BOOT_ARGS_SIZE]; uint32_t tags_addr; /* physical addr for kernel tags (if required) */ uint8_t name[ANDR_VENDOR_BOOT_NAME_SIZE]; /* asciiz product name */ uint32_t header_size; uint32_t dtb_size; /* size in bytes for DTB image */ uint64_t dtb_addr; /* physical load address for DTB image */ uint32_t vendor_ramdisk_table_size; /* size in bytes for the vendor ramdisk table */ uint32_t vendor_ramdisk_table_entry_num; /* number of entries in the vendor ramdisk table */ uint32_t vendor_ramdisk_table_entry_size; /* size in bytes for a vendor ramdisk table entry */ uint32_t bootconfig_size; /* size in bytes for the bootconfig section */ } __attribute__((packed)); struct vendor_ramdisk_table_entry_v4 { uint32_t ramdisk_size; /* size in bytes for the ramdisk image */ uint32_t ramdisk_offset; /* offset to the ramdisk image in vendor ramdisk section */ uint32_t ramdisk_type; /* type of the ramdisk */ uint8_t ramdisk_name[VENDOR_RAMDISK_NAME_SIZE]; /* asciiz ramdisk name */ // Hardware identifiers describing the board, soc or platform which this // ramdisk is intended to be loaded on. uint32_t board_id[VENDOR_RAMDISK_TABLE_ENTRY_BOARD_ID_SIZE]; } __attribute__((packed)); struct header_image { uint32_t code0; /* Executable code */ uint32_t code1; /* Executable code */ uint64_t text_offset; /* Image load offset, LE */ uint64_t image_size; /* Effective Image size, LE */ uint64_t res1; /* reserved */ uint64_t res2; /* reserved */ uint64_t res3; /* reserved */ uint64_t res4; /* reserved */ uint32_t magic; /* Magic number */ uint32_t res5; }; #endif