// SPDX-License-Identifier: GPL-2.0+ /* * Texas Instruments' K3 DDRSS driver * * Copyright (C) 2020-2021 Texas Instruments Incorporated - http://www.ti.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "lpddr4_obj_if.h" #include "lpddr4_if.h" #include "lpddr4_structs_if.h" #include "lpddr4_ctl_regs.h" #define SRAM_MAX 512 #define CTRLMMR_DDR4_FSP_CLKCHNG_REQ_OFFS 0x80 #define CTRLMMR_DDR4_FSP_CLKCHNG_ACK_OFFS 0xc0 #define DDRSS_V2A_CTL_REG 0x0020 #define DDRSS_ECC_CTRL_REG 0x0120 #define DDRSS_ECC_CTRL_REG_ECC_EN BIT(0) #define DDRSS_ECC_CTRL_REG_RMW_EN BIT(1) #define DDRSS_ECC_CTRL_REG_ECC_CK BIT(2) #define DDRSS_ECC_CTRL_REG_WR_ALLOC BIT(4) #define DDRSS_ECC_R0_STR_ADDR_REG 0x0130 #define DDRSS_ECC_R0_END_ADDR_REG 0x0134 #define DDRSS_ECC_R1_STR_ADDR_REG 0x0138 #define DDRSS_ECC_R1_END_ADDR_REG 0x013c #define DDRSS_ECC_R2_STR_ADDR_REG 0x0140 #define DDRSS_ECC_R2_END_ADDR_REG 0x0144 #define DDRSS_ECC_1B_ERR_CNT_REG 0x0150 #define DDRSS_V2A_INT_SET_REG 0x00a8 #define DDRSS_V2A_INT_SET_REG_ECC1BERR_EN BIT(3) #define DDRSS_V2A_INT_SET_REG_ECC2BERR_EN BIT(4) #define DDRSS_V2A_INT_SET_REG_ECCM1BERR_EN BIT(5) #define SINGLE_DDR_SUBSYSTEM 0x1 #define MULTI_DDR_SUBSYSTEM 0x2 #define MULTI_DDR_CFG0 0x00114100 #define MULTI_DDR_CFG1 0x00114104 #define DDR_CFG_LOAD 0x00114110 enum intrlv_gran { GRAN_128B, GRAN_512B, GRAN_2KB, GRAN_4KB, GRAN_16KB, GRAN_32KB, GRAN_512KB, GRAN_1GB, GRAN_1_5GB, GRAN_2GB, GRAN_3GB, GRAN_4GB, GRAN_6GB, GRAN_8GB, GRAN_16GB }; enum intrlv_size { SIZE_0, SIZE_128MB, SIZE_256MB, SIZE_512MB, SIZE_1GB, SIZE_2GB, SIZE_3GB, SIZE_4GB, SIZE_6GB, SIZE_8GB, SIZE_12GB, SIZE_16GB, SIZE_32GB }; struct k3_ddrss_data { u32 flags; }; enum ecc_enable { DISABLE_ALL = 0, ENABLE_0, ENABLE_1, ENABLE_ALL }; enum emif_config { INTERLEAVE_ALL = 0, SEPR0, SEPR1 }; enum emif_active { EMIF_0 = 1, EMIF_1, EMIF_ALL }; struct k3_msmc { enum intrlv_gran gran; enum intrlv_size size; enum ecc_enable enable; enum emif_config config; enum emif_active active; }; #define K3_DDRSS_MAX_ECC_REGIONS 3 struct k3_ddrss_ecc_region { u64 start; u64 range; }; struct k3_ddrss_desc { struct udevice *dev; void __iomem *ddrss_ss_cfg; void __iomem *ddrss_ctrl_mmr; void __iomem *ddrss_ctl_cfg; struct power_domain ddrcfg_pwrdmn; struct power_domain ddrdata_pwrdmn; struct clk ddr_clk; struct clk osc_clk; u32 ddr_freq0; u32 ddr_freq1; u32 ddr_freq2; u32 ddr_fhs_cnt; u32 dram_class; struct udevice *vtt_supply; u32 instance; lpddr4_obj *driverdt; lpddr4_config config; lpddr4_privatedata pd; struct k3_ddrss_ecc_region ecc_regions[K3_DDRSS_MAX_ECC_REGIONS]; u64 ecc_reserved_space; bool ti_ecc_enabled; unsigned long long ddr_bank_base[CONFIG_NR_DRAM_BANKS]; unsigned long long ddr_bank_size[CONFIG_NR_DRAM_BANKS]; unsigned long long ddr_ram_size; }; struct reginitdata { u32 ctl_regs[LPDDR4_INTR_CTL_REG_COUNT]; u16 ctl_regs_offs[LPDDR4_INTR_CTL_REG_COUNT]; u32 pi_regs[LPDDR4_INTR_PHY_INDEP_REG_COUNT]; u16 pi_regs_offs[LPDDR4_INTR_PHY_INDEP_REG_COUNT]; u32 phy_regs[LPDDR4_INTR_PHY_REG_COUNT]; u16 phy_regs_offs[LPDDR4_INTR_PHY_REG_COUNT]; }; #define TH_MACRO_EXP(fld, str) (fld##str) #define TH_FLD_MASK(fld) TH_MACRO_EXP(fld, _MASK) #define TH_FLD_SHIFT(fld) TH_MACRO_EXP(fld, _SHIFT) #define TH_FLD_WIDTH(fld) TH_MACRO_EXP(fld, _WIDTH) #define TH_FLD_WOCLR(fld) TH_MACRO_EXP(fld, _WOCLR) #define TH_FLD_WOSET(fld) TH_MACRO_EXP(fld, _WOSET) #define str(s) #s #define xstr(s) str(s) #define CTL_SHIFT 11 #define PHY_SHIFT 11 #define PI_SHIFT 10 #define DENALI_CTL_0_DRAM_CLASS_DDR4 0xA #define DENALI_CTL_0_DRAM_CLASS_LPDDR4 0xB #define TH_OFFSET_FROM_REG(REG, SHIFT, offset) do {\ char *i, *pstr = xstr(REG); offset = 0;\ for (i = &pstr[SHIFT]; *i != '\0'; ++i) {\ offset = offset * 10 + (*i - '0'); } \ } while (0) static u32 k3_lpddr4_read_ddr_type(const lpddr4_privatedata *pd) { u32 status = 0U; u32 offset = 0U; u32 regval = 0U; u32 dram_class = 0U; struct k3_ddrss_desc *ddrss = (struct k3_ddrss_desc *)pd->ddr_instance; TH_OFFSET_FROM_REG(LPDDR4__DRAM_CLASS__REG, CTL_SHIFT, offset); status = ddrss->driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, ®val); if (status > 0U) { printf("%s: Failed to read DRAM_CLASS\n", __func__); hang(); } dram_class = ((regval & TH_FLD_MASK(LPDDR4__DRAM_CLASS__FLD)) >> TH_FLD_SHIFT(LPDDR4__DRAM_CLASS__FLD)); return dram_class; } static void k3_lpddr4_freq_update(struct k3_ddrss_desc *ddrss) { unsigned int req_type, counter; for (counter = 0; counter < ddrss->ddr_fhs_cnt; counter++) { if (wait_for_bit_le32(ddrss->ddrss_ctrl_mmr + CTRLMMR_DDR4_FSP_CLKCHNG_REQ_OFFS + ddrss->instance * 0x10, 0x80, true, 10000, false)) { printf("Timeout during frequency handshake\n"); hang(); } req_type = readl(ddrss->ddrss_ctrl_mmr + CTRLMMR_DDR4_FSP_CLKCHNG_REQ_OFFS + ddrss->instance * 0x10) & 0x03; debug("%s: received freq change req: req type = %d, req no. = %d, instance = %d\n", __func__, req_type, counter, ddrss->instance); if (req_type == 1) clk_set_rate(&ddrss->ddr_clk, ddrss->ddr_freq1); else if (req_type == 2) clk_set_rate(&ddrss->ddr_clk, ddrss->ddr_freq2); else if (req_type == 0) clk_set_rate(&ddrss->ddr_clk, ddrss->ddr_freq0); else printf("%s: Invalid freq request type\n", __func__); writel(0x1, ddrss->ddrss_ctrl_mmr + CTRLMMR_DDR4_FSP_CLKCHNG_ACK_OFFS + ddrss->instance * 0x10); if (wait_for_bit_le32(ddrss->ddrss_ctrl_mmr + CTRLMMR_DDR4_FSP_CLKCHNG_REQ_OFFS + ddrss->instance * 0x10, 0x80, false, 10, false)) { printf("Timeout during frequency handshake\n"); hang(); } writel(0x0, ddrss->ddrss_ctrl_mmr + CTRLMMR_DDR4_FSP_CLKCHNG_ACK_OFFS + ddrss->instance * 0x10); } } static void k3_lpddr4_ack_freq_upd_req(const lpddr4_privatedata *pd) { struct k3_ddrss_desc *ddrss = (struct k3_ddrss_desc *)pd->ddr_instance; debug("--->>> LPDDR4 Initialization is in progress ... <<<---\n"); switch (ddrss->dram_class) { case DENALI_CTL_0_DRAM_CLASS_DDR4: break; case DENALI_CTL_0_DRAM_CLASS_LPDDR4: k3_lpddr4_freq_update(ddrss); break; default: printf("Unrecognized dram_class cannot update frequency!\n"); } } static int k3_ddrss_init_freq(struct k3_ddrss_desc *ddrss) { int ret; lpddr4_privatedata *pd = &ddrss->pd; ddrss->dram_class = k3_lpddr4_read_ddr_type(pd); switch (ddrss->dram_class) { case DENALI_CTL_0_DRAM_CLASS_DDR4: /* Set to ddr_freq1 from DT for DDR4 */ ret = clk_set_rate(&ddrss->ddr_clk, ddrss->ddr_freq1); break; case DENALI_CTL_0_DRAM_CLASS_LPDDR4: ret = clk_set_rate(&ddrss->ddr_clk, ddrss->ddr_freq0); break; default: ret = -EINVAL; printf("Unrecognized dram_class cannot init frequency!\n"); } if (ret < 0) dev_err(ddrss->dev, "ddr clk init failed: %d\n", ret); else ret = 0; return ret; } static void k3_lpddr4_info_handler(const lpddr4_privatedata *pd, lpddr4_infotype infotype) { if (infotype == LPDDR4_DRV_SOC_PLL_UPDATE) k3_lpddr4_ack_freq_upd_req(pd); } static int k3_ddrss_power_on(struct k3_ddrss_desc *ddrss) { int ret; debug("%s(ddrss=%p)\n", __func__, ddrss); ret = power_domain_on(&ddrss->ddrcfg_pwrdmn); if (ret) { dev_err(ddrss->dev, "power_domain_on() failed: %d\n", ret); return ret; } ret = power_domain_on(&ddrss->ddrdata_pwrdmn); if (ret) { dev_err(ddrss->dev, "power_domain_on() failed: %d\n", ret); return ret; } ret = device_get_supply_regulator(ddrss->dev, "vtt-supply", &ddrss->vtt_supply); if (ret) { dev_dbg(ddrss->dev, "vtt-supply not found.\n"); } else { ret = regulator_set_value(ddrss->vtt_supply, 3300000); if (ret) return ret; dev_dbg(ddrss->dev, "VTT regulator enabled, volt = %d\n", regulator_get_value(ddrss->vtt_supply)); } return 0; } static int k3_ddrss_ofdata_to_priv(struct udevice *dev) { struct k3_ddrss_desc *ddrss = dev_get_priv(dev); struct k3_ddrss_data *ddrss_data = (struct k3_ddrss_data *)dev_get_driver_data(dev); phys_addr_t reg; int ret; debug("%s(dev=%p)\n", __func__, dev); reg = dev_read_addr_name(dev, "cfg"); if (reg == FDT_ADDR_T_NONE) { dev_err(dev, "No reg property for DDRSS wrapper logic\n"); return -EINVAL; } ddrss->ddrss_ctl_cfg = (void *)reg; reg = dev_read_addr_name(dev, "ctrl_mmr_lp4"); if (reg == FDT_ADDR_T_NONE) { dev_err(dev, "No reg property for CTRL MMR\n"); return -EINVAL; } ddrss->ddrss_ctrl_mmr = (void *)reg; reg = dev_read_addr_name(dev, "ss_cfg"); if (reg == FDT_ADDR_T_NONE) { dev_dbg(dev, "No reg property for SS Config region, but this is optional so continuing.\n"); ddrss->ddrss_ss_cfg = NULL; } else { ddrss->ddrss_ss_cfg = (void *)reg; } ret = power_domain_get_by_index(dev, &ddrss->ddrcfg_pwrdmn, 0); if (ret) { dev_err(dev, "power_domain_get() failed: %d\n", ret); return ret; } ret = power_domain_get_by_index(dev, &ddrss->ddrdata_pwrdmn, 1); if (ret) { dev_err(dev, "power_domain_get() failed: %d\n", ret); return ret; } ret = clk_get_by_index(dev, 0, &ddrss->ddr_clk); if (ret) dev_err(dev, "clk get failed%d\n", ret); ret = clk_get_by_index(dev, 1, &ddrss->osc_clk); if (ret) dev_err(dev, "clk get failed for osc clk %d\n", ret); /* Reading instance number for multi ddr subystems */ if (ddrss_data->flags & MULTI_DDR_SUBSYSTEM) { ret = dev_read_u32(dev, "instance", &ddrss->instance); if (ret) { dev_err(dev, "missing instance property"); return -EINVAL; } } else { ddrss->instance = 0; } ret = dev_read_u32(dev, "ti,ddr-freq0", &ddrss->ddr_freq0); if (ret) { ddrss->ddr_freq0 = clk_get_rate(&ddrss->osc_clk); dev_dbg(dev, "ddr freq0 not populated, using bypass frequency.\n"); } ret = dev_read_u32(dev, "ti,ddr-freq1", &ddrss->ddr_freq1); if (ret) dev_err(dev, "ddr freq1 not populated %d\n", ret); ret = dev_read_u32(dev, "ti,ddr-freq2", &ddrss->ddr_freq2); if (ret) dev_err(dev, "ddr freq2 not populated %d\n", ret); ret = dev_read_u32(dev, "ti,ddr-fhs-cnt", &ddrss->ddr_fhs_cnt); if (ret) dev_err(dev, "ddr fhs cnt not populated %d\n", ret); ddrss->ti_ecc_enabled = dev_read_bool(dev, "ti,ecc-enable"); return ret; } void k3_lpddr4_probe(struct k3_ddrss_desc *ddrss) { u32 status = 0U; u16 configsize = 0U; lpddr4_config *config = &ddrss->config; status = ddrss->driverdt->probe(config, &configsize); if ((status != 0) || (configsize != sizeof(lpddr4_privatedata)) || (configsize > SRAM_MAX)) { printf("%s: FAIL\n", __func__); hang(); } else { debug("%s: PASS\n", __func__); } } void k3_lpddr4_init(struct k3_ddrss_desc *ddrss) { u32 status = 0U; lpddr4_config *config = &ddrss->config; lpddr4_obj *driverdt = ddrss->driverdt; lpddr4_privatedata *pd = &ddrss->pd; if ((sizeof(*pd) != sizeof(lpddr4_privatedata)) || (sizeof(*pd) > SRAM_MAX)) { printf("%s: FAIL\n", __func__); hang(); } config->ctlbase = (struct lpddr4_ctlregs_s *)ddrss->ddrss_ctl_cfg; config->infohandler = (lpddr4_infocallback) k3_lpddr4_info_handler; status = driverdt->init(pd, config); /* linking ddr instance to lpddr4 */ pd->ddr_instance = (void *)ddrss; if ((status > 0U) || (pd->ctlbase != (struct lpddr4_ctlregs_s *)config->ctlbase) || (pd->ctlinterrupthandler != config->ctlinterrupthandler) || (pd->phyindepinterrupthandler != config->phyindepinterrupthandler)) { printf("%s: FAIL\n", __func__); hang(); } else { debug("%s: PASS\n", __func__); } } void populate_data_array_from_dt(struct k3_ddrss_desc *ddrss, struct reginitdata *reginit_data) { int ret, i; ret = dev_read_u32_array(ddrss->dev, "ti,ctl-data", (u32 *)reginit_data->ctl_regs, LPDDR4_INTR_CTL_REG_COUNT); if (ret) printf("Error reading ctrl data %d\n", ret); for (i = 0; i < LPDDR4_INTR_CTL_REG_COUNT; i++) reginit_data->ctl_regs_offs[i] = i; ret = dev_read_u32_array(ddrss->dev, "ti,pi-data", (u32 *)reginit_data->pi_regs, LPDDR4_INTR_PHY_INDEP_REG_COUNT); if (ret) printf("Error reading PI data\n"); for (i = 0; i < LPDDR4_INTR_PHY_INDEP_REG_COUNT; i++) reginit_data->pi_regs_offs[i] = i; ret = dev_read_u32_array(ddrss->dev, "ti,phy-data", (u32 *)reginit_data->phy_regs, LPDDR4_INTR_PHY_REG_COUNT); if (ret) printf("Error reading PHY data %d\n", ret); for (i = 0; i < LPDDR4_INTR_PHY_REG_COUNT; i++) reginit_data->phy_regs_offs[i] = i; } void k3_lpddr4_hardware_reg_init(struct k3_ddrss_desc *ddrss) { u32 status = 0U; struct reginitdata reginitdata; lpddr4_obj *driverdt = ddrss->driverdt; lpddr4_privatedata *pd = &ddrss->pd; populate_data_array_from_dt(ddrss, ®initdata); status = driverdt->writectlconfig(pd, reginitdata.ctl_regs, reginitdata.ctl_regs_offs, LPDDR4_INTR_CTL_REG_COUNT); if (!status) status = driverdt->writephyindepconfig(pd, reginitdata.pi_regs, reginitdata.pi_regs_offs, LPDDR4_INTR_PHY_INDEP_REG_COUNT); if (!status) status = driverdt->writephyconfig(pd, reginitdata.phy_regs, reginitdata.phy_regs_offs, LPDDR4_INTR_PHY_REG_COUNT); if (status) { printf("%s: FAIL\n", __func__); hang(); } } void k3_lpddr4_start(struct k3_ddrss_desc *ddrss) { u32 status = 0U; u32 regval = 0U; u32 offset = 0U; lpddr4_obj *driverdt = ddrss->driverdt; lpddr4_privatedata *pd = &ddrss->pd; TH_OFFSET_FROM_REG(LPDDR4__START__REG, CTL_SHIFT, offset); status = driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, ®val); if ((status > 0U) || ((regval & TH_FLD_MASK(LPDDR4__START__FLD)) != 0U)) { printf("%s: Pre start FAIL\n", __func__); hang(); } status = driverdt->start(pd); if (status > 0U) { printf("%s: FAIL\n", __func__); hang(); } status = driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, ®val); if ((status > 0U) || ((regval & TH_FLD_MASK(LPDDR4__START__FLD)) != 1U)) { printf("%s: Post start FAIL\n", __func__); hang(); } else { debug("%s: Post start PASS\n", __func__); } } static void k3_ddrss_set_ecc_range_r0(u32 base, u64 start_address, u64 size) { writel((start_address) >> 16, base + DDRSS_ECC_R0_STR_ADDR_REG); writel((start_address + size - 1) >> 16, base + DDRSS_ECC_R0_END_ADDR_REG); } #define BIST_MODE_MEM_INIT 4 #define BIST_MEM_INIT_TIMEOUT 10000 /* 1msec loops per block = 10s */ static void k3_lpddr4_bist_init_mem_region(struct k3_ddrss_desc *ddrss, u64 addr, u64 size, u32 pattern) { lpddr4_obj *driverdt = ddrss->driverdt; lpddr4_privatedata *pd = &ddrss->pd; u32 status, offset, regval; bool int_status; int i = 0; /* Set BIST_START_ADDR_0 [31:0] */ regval = (u32)(addr & TH_FLD_MASK(LPDDR4__BIST_START_ADDRESS_0__FLD)); TH_OFFSET_FROM_REG(LPDDR4__BIST_START_ADDRESS_0__REG, CTL_SHIFT, offset); driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval); /* Set BIST_START_ADDR_1 [32 or 34:32] */ regval = (u32)(addr >> TH_FLD_WIDTH(LPDDR4__BIST_START_ADDRESS_0__FLD)); regval &= TH_FLD_MASK(LPDDR4__BIST_START_ADDRESS_1__FLD); TH_OFFSET_FROM_REG(LPDDR4__BIST_START_ADDRESS_1__REG, CTL_SHIFT, offset); driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval); /* Set ADDR_SPACE = log2(size) */ regval = (u32)(ilog2(size) << TH_FLD_SHIFT(LPDDR4__ADDR_SPACE__FLD)); TH_OFFSET_FROM_REG(LPDDR4__ADDR_SPACE__REG, CTL_SHIFT, offset); driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval); /* Enable the BIST data check. On 32bit lpddr4 (e.g J7) this shares a * register with ADDR_SPACE and BIST_GO. */ TH_OFFSET_FROM_REG(LPDDR4__BIST_DATA_CHECK__REG, CTL_SHIFT, offset); driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, ®val); regval |= TH_FLD_MASK(LPDDR4__BIST_DATA_CHECK__FLD); driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval); /* Clear the address check bit */ TH_OFFSET_FROM_REG(LPDDR4__BIST_ADDR_CHECK__REG, CTL_SHIFT, offset); driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, ®val); regval &= ~TH_FLD_MASK(LPDDR4__BIST_ADDR_CHECK__FLD); driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval); /* Set BIST_TEST_MODE[2:0] to memory initialize (4) */ regval = BIST_MODE_MEM_INIT; TH_OFFSET_FROM_REG(LPDDR4__BIST_TEST_MODE__REG, CTL_SHIFT, offset); driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval); /* Set BIST_DATA_PATTERN[31:0] */ TH_OFFSET_FROM_REG(LPDDR4__BIST_DATA_PATTERN_0__REG, CTL_SHIFT, offset); driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, pattern); /* Set BIST_DATA_PATTERN[63:32] */ TH_OFFSET_FROM_REG(LPDDR4__BIST_DATA_PATTERN_1__REG, CTL_SHIFT, offset); driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, pattern); udelay(1000); /* Enable the programmed BIST operation - BIST_GO = 1 */ TH_OFFSET_FROM_REG(LPDDR4__BIST_GO__REG, CTL_SHIFT, offset); driverdt->readreg(pd, LPDDR4_CTL_REGS, offset, ®val); regval |= TH_FLD_MASK(LPDDR4__BIST_GO__FLD); driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, regval); /* Wait for the BIST_DONE interrupt */ while (i < BIST_MEM_INIT_TIMEOUT) { status = driverdt->checkctlinterrupt(pd, LPDDR4_INTR_BIST_DONE, &int_status); if (!status & int_status) { /* Clear LPDDR4_INTR_BIST_DONE */ driverdt->ackctlinterrupt(pd, LPDDR4_INTR_BIST_DONE); break; } udelay(1000); i++; } /* Before continuing we have to stop BIST - BIST_GO = 0 */ TH_OFFSET_FROM_REG(LPDDR4__BIST_GO__REG, CTL_SHIFT, offset); driverdt->writereg(pd, LPDDR4_CTL_REGS, offset, 0); /* Timeout hit while priming the memory. We can't continue, * since the memory is not fully initialized and we most * likely get an uncorrectable error exception while booting. */ if (i == BIST_MEM_INIT_TIMEOUT) { printf("ERROR: Timeout while priming the memory.\n"); hang(); } } static void k3_ddrss_lpddr4_preload_full_mem(struct k3_ddrss_desc *ddrss, u64 total_size, u32 pattern) { u32 done, max_size2; /* Get the max size (log2) supported in this config (16/32 lpddr4) * from the start_addess width - 16bit: 8G, 32bit: 32G */ max_size2 = TH_FLD_WIDTH(LPDDR4__BIST_START_ADDRESS_0__FLD) + TH_FLD_WIDTH(LPDDR4__BIST_START_ADDRESS_1__FLD) + 1; /* ECC is enabled in dt but we can't preload the memory if * the memory configuration is recognized and supported. */ if (!total_size || total_size > (1ull << max_size2) || total_size & (total_size - 1)) { printf("ECC: the memory configuration is not supported\n"); hang(); } printf("ECC is enabled, priming DDR which will take several seconds.\n"); done = get_timer(0); k3_lpddr4_bist_init_mem_region(ddrss, 0, total_size, pattern); printf("ECC: priming DDR completed in %lu msec\n", get_timer(done)); } static void k3_ddrss_ddr_bank_base_size_calc(struct k3_ddrss_desc *ddrss) { int bank, na, ns, len, parent; const fdt32_t *ptr, *end; for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) { ddrss->ddr_bank_base[bank] = 0; ddrss->ddr_bank_size[bank] = 0; } ofnode mem = ofnode_null(); do { mem = ofnode_by_prop_value(mem, "device_type", "memory", 7); } while (!ofnode_is_enabled(mem)); const void *fdt = ofnode_to_fdt(mem); int node = ofnode_to_offset(mem); const char *property = "reg"; parent = fdt_parent_offset(fdt, node); na = fdt_address_cells(fdt, parent); ns = fdt_size_cells(fdt, parent); ptr = fdt_getprop(fdt, node, property, &len); end = ptr + len / sizeof(*ptr); for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) { if (ptr + na + ns <= end) { if (CONFIG_IS_ENABLED(OF_TRANSLATE)) ddrss->ddr_bank_base[bank] = fdt_translate_address(fdt, node, ptr); else ddrss->ddr_bank_base[bank] = fdtdec_get_number(ptr, na); ddrss->ddr_bank_size[bank] = fdtdec_get_number(&ptr[na], ns); } ptr += na + ns; } for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) ddrss->ddr_ram_size += ddrss->ddr_bank_size[bank]; } static void k3_ddrss_lpddr4_ecc_calc_reserved_mem(struct k3_ddrss_desc *ddrss) { fdtdec_setup_mem_size_base_lowest(); ddrss->ecc_reserved_space = ddrss->ddr_ram_size; do_div(ddrss->ecc_reserved_space, 9); /* Round to clean number */ ddrss->ecc_reserved_space = 1ull << (fls(ddrss->ecc_reserved_space)); } static void k3_ddrss_lpddr4_ecc_init(struct k3_ddrss_desc *ddrss) { u64 ecc_region_start = ddrss->ecc_regions[0].start; u64 ecc_range = ddrss->ecc_regions[0].range; u32 base = (u32)ddrss->ddrss_ss_cfg; u32 val; /* Only Program region 0 which covers full ddr space */ k3_ddrss_set_ecc_range_r0(base, ecc_region_start - ddrss->ddr_bank_base[0], ecc_range); /* Enable ECC, RMW, WR_ALLOC */ writel(DDRSS_ECC_CTRL_REG_ECC_EN | DDRSS_ECC_CTRL_REG_RMW_EN | DDRSS_ECC_CTRL_REG_WR_ALLOC, base + DDRSS_ECC_CTRL_REG); /* Preload the full memory with 0's using the BIST engine of * the LPDDR4 controller. */ k3_ddrss_lpddr4_preload_full_mem(ddrss, ddrss->ddr_ram_size, 0); /* Clear Error Count Register */ writel(0x1, base + DDRSS_ECC_1B_ERR_CNT_REG); writel(DDRSS_V2A_INT_SET_REG_ECC1BERR_EN | DDRSS_V2A_INT_SET_REG_ECC2BERR_EN | DDRSS_V2A_INT_SET_REG_ECCM1BERR_EN, base + DDRSS_V2A_INT_SET_REG); /* Enable ECC Check */ val = readl(base + DDRSS_ECC_CTRL_REG); val |= DDRSS_ECC_CTRL_REG_ECC_CK; writel(val, base + DDRSS_ECC_CTRL_REG); } static int k3_ddrss_probe(struct udevice *dev) { int ret; struct k3_ddrss_desc *ddrss = dev_get_priv(dev); debug("%s(dev=%p)\n", __func__, dev); ret = k3_ddrss_ofdata_to_priv(dev); if (ret) return ret; ddrss->dev = dev; ret = k3_ddrss_power_on(ddrss); if (ret) return ret; k3_ddrss_ddr_bank_base_size_calc(ddrss); if (IS_ENABLED(CONFIG_SOC_K3_AM625) || IS_ENABLED(CONFIG_SOC_K3_AM642)) { /* AM62x SIP supports only up to 512 MB SDRAM */ /* AM64x supports only up to 2 GB SDRAM */ writel((((ilog2(ddrss->ddr_ram_size) - 16) << 5) | 0xF), ddrss->ddrss_ss_cfg + DDRSS_V2A_CTL_REG); writel(0x0, ddrss->ddrss_ss_cfg + DDRSS_ECC_CTRL_REG); } ddrss->driverdt = lpddr4_getinstance(); k3_lpddr4_probe(ddrss); k3_lpddr4_init(ddrss); k3_lpddr4_hardware_reg_init(ddrss); ret = k3_ddrss_init_freq(ddrss); if (ret) return ret; k3_lpddr4_start(ddrss); if (ddrss->ti_ecc_enabled) { if (!ddrss->ddrss_ss_cfg) { printf("%s: ss_cfg is required if ecc is enabled but not provided.", __func__); return -EINVAL; } k3_ddrss_lpddr4_ecc_calc_reserved_mem(ddrss); /* Always configure one region that covers full DDR space */ ddrss->ecc_regions[0].start = ddrss->ddr_bank_base[0]; ddrss->ecc_regions[0].range = ddrss->ddr_ram_size - ddrss->ecc_reserved_space; k3_ddrss_lpddr4_ecc_init(ddrss); } return ret; } int k3_ddrss_ddr_fdt_fixup(struct udevice *dev, void *blob, struct bd_info *bd) { int bank; struct k3_ddrss_desc *ddrss = dev_get_priv(dev); for (bank = CONFIG_NR_DRAM_BANKS - 1; bank >= 0; bank--) { if (ddrss->ecc_reserved_space > ddrss->ddr_bank_size[bank]) { ddrss->ecc_reserved_space -= ddrss->ddr_bank_size[bank]; ddrss->ddr_bank_size[bank] = 0; } else { ddrss->ddr_bank_size[bank] -= ddrss->ecc_reserved_space; break; } } return fdt_fixup_memory_banks(blob, ddrss->ddr_bank_base, ddrss->ddr_bank_size, CONFIG_NR_DRAM_BANKS); } static int k3_ddrss_get_info(struct udevice *dev, struct ram_info *info) { return 0; } static const struct ram_ops k3_ddrss_ops = { .get_info = k3_ddrss_get_info, }; static const struct k3_ddrss_data k3_data = { .flags = SINGLE_DDR_SUBSYSTEM, }; static const struct k3_ddrss_data j721s2_data = { .flags = MULTI_DDR_SUBSYSTEM, }; static const struct udevice_id k3_ddrss_ids[] = { {.compatible = "ti,am62a-ddrss", .data = (ulong)&k3_data, }, {.compatible = "ti,am64-ddrss", .data = (ulong)&k3_data, }, {.compatible = "ti,j721e-ddrss", .data = (ulong)&k3_data, }, {.compatible = "ti,j721s2-ddrss", .data = (ulong)&j721s2_data, }, {} }; U_BOOT_DRIVER(k3_ddrss) = { .name = "k3_ddrss", .id = UCLASS_RAM, .of_match = k3_ddrss_ids, .ops = &k3_ddrss_ops, .probe = k3_ddrss_probe, .priv_auto = sizeof(struct k3_ddrss_desc), }; static int k3_msmc_set_config(struct k3_msmc *msmc) { u32 ddr_cfg0 = 0; u32 ddr_cfg1 = 0; ddr_cfg0 |= msmc->gran << 24; ddr_cfg0 |= msmc->size << 16; /* heartbeat_per, bit[4:0] setting to 3 is advisable */ ddr_cfg0 |= 3; /* Program MULTI_DDR_CFG0 */ writel(ddr_cfg0, MULTI_DDR_CFG0); ddr_cfg1 |= msmc->enable << 16; ddr_cfg1 |= msmc->config << 8; ddr_cfg1 |= msmc->active; /* Program MULTI_DDR_CFG1 */ writel(ddr_cfg1, MULTI_DDR_CFG1); /* Program DDR_CFG_LOAD */ writel(0x60000000, DDR_CFG_LOAD); return 0; } static int k3_msmc_probe(struct udevice *dev) { struct k3_msmc *msmc = dev_get_priv(dev); int ret = 0; /* Read the granular size from DT */ ret = dev_read_u32(dev, "intrlv-gran", &msmc->gran); if (ret) { dev_err(dev, "missing intrlv-gran property"); return -EINVAL; } /* Read the interleave region from DT */ ret = dev_read_u32(dev, "intrlv-size", &msmc->size); if (ret) { dev_err(dev, "missing intrlv-size property"); return -EINVAL; } /* Read ECC enable config */ ret = dev_read_u32(dev, "ecc-enable", &msmc->enable); if (ret) { dev_err(dev, "missing ecc-enable property"); return -EINVAL; } /* Read EMIF configuration */ ret = dev_read_u32(dev, "emif-config", &msmc->config); if (ret) { dev_err(dev, "missing emif-config property"); return -EINVAL; } /* Read EMIF active */ ret = dev_read_u32(dev, "emif-active", &msmc->active); if (ret) { dev_err(dev, "missing emif-active property"); return -EINVAL; } ret = k3_msmc_set_config(msmc); if (ret) { dev_err(dev, "error setting msmc config"); return -EINVAL; } return 0; } static const struct udevice_id k3_msmc_ids[] = { { .compatible = "ti,j721s2-msmc"}, {} }; U_BOOT_DRIVER(k3_msmc) = { .name = "k3_msmc", .of_match = k3_msmc_ids, .id = UCLASS_MISC, .probe = k3_msmc_probe, .priv_auto = sizeof(struct k3_msmc), .flags = DM_FLAG_DEFAULT_PD_CTRL_OFF, };