/* * (C) Copyright 2012 * Henrik Nordstrom * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #define AXP152_I2C_ADDR 0x32 static int pmic_bus_init(void) { return 0; } static int pmic_bus_read(u8 reg, u8 *data) { return i2c_read(AXP152_I2C_ADDR, reg, 1, data, 1); } static int pmic_bus_write(u8 reg, u8 data) { return i2c_write(AXP152_I2C_ADDR, reg, 1, &data, 1); } static u8 axp152_mvolt_to_target(int mvolt, int min, int max, int div) { if (mvolt < min) mvolt = min; else if (mvolt > max) mvolt = max; return (mvolt - min) / div; } int axp_set_dcdc1(enum axp152_dcdc1_voltages volt) { if (volt < AXP152_DCDC1_1V7 || volt > AXP152_DCDC1_3V5) return -EINVAL; return pmic_bus_write(AXP152_DCDC1_VOLTAGE, volt); } int axp_set_dcdc2(unsigned int mvolt) { int rc; u8 current, target; target = axp152_mvolt_to_target(mvolt, 700, 2275, 25); /* Do we really need to be this gentle? It has built-in voltage slope */ while ((rc = pmic_bus_read(AXP152_DCDC2_VOLTAGE, ¤t)) == 0 && current != target) { if (current < target) current++; else current--; rc = pmic_bus_write(AXP152_DCDC2_VOLTAGE, current); if (rc) break; } return rc; } int axp_set_dcdc3(unsigned int mvolt) { u8 target = axp152_mvolt_to_target(mvolt, 700, 3500, 50); return pmic_bus_write(AXP152_DCDC3_VOLTAGE, target); } int axp_set_dcdc4(unsigned int mvolt) { u8 target = axp152_mvolt_to_target(mvolt, 700, 3500, 25); return pmic_bus_write(AXP152_DCDC4_VOLTAGE, target); } int axp_set_ldo0(enum axp152_ldo0_volts volt, enum axp152_ldo0_curr_limit curr_limit) { u8 target = curr_limit | (volt << 4) | (1 << 7); return pmic_bus_write(AXP152_LDO0_VOLTAGE, target); } int axp_disable_ldo0(void) { int ret; u8 target; ret = pmic_bus_read(AXP152_LDO0_VOLTAGE, &target); if (ret) return ret; target &= ~(1 << 7); return pmic_bus_write(AXP152_LDO0_VOLTAGE, target); } int axp_set_ldo1(unsigned int mvolt) { u8 target = axp152_mvolt_to_target(mvolt, 700, 3500, 100); return pmic_bus_write(AXP152_LDO1_VOLTAGE, target); } int axp_set_ldo2(unsigned int mvolt) { u8 target = axp152_mvolt_to_target(mvolt, 700, 3500, 100); return pmic_bus_write(AXP152_LDO2_VOLTAGE, target); } int axp_set_aldo1(enum axp152_aldo_voltages volt) { u8 val; int ret; ret = pmic_bus_read(AXP152_ALDO1_ALDO2_VOLTAGE, &val); if (ret) return ret; val |= (volt << 4); return pmic_bus_write(AXP152_ALDO1_ALDO2_VOLTAGE, val); } int axp_set_aldo2(enum axp152_aldo_voltages volt) { u8 val; int ret; ret = pmic_bus_read(AXP152_ALDO1_ALDO2_VOLTAGE, &val); if (ret) return ret; val |= volt; return pmic_bus_write(AXP152_ALDO1_ALDO2_VOLTAGE, val); } int axp_set_power_output(int val) { return pmic_bus_write(AXP152_POWER_CONTROL, val); } int axp_init(void) { u8 ver; int rc; int ret; u8 reg; rc = pmic_bus_init(); if (rc) return rc; rc = pmic_bus_read(AXP152_CHIP_VERSION, &ver); if (rc) return rc; if (ver != 0x05) return -EINVAL; /* Set the power off sequence to `reverse of power on sequence` */ ret = pmic_bus_read(AXP152_SHUTDOWN, ®); if (ret) return ret; reg |= AXP152_POWEROFF_SEQ; ret = pmic_bus_write(AXP152_SHUTDOWN, reg); if (ret) return ret; /* Enable the power recovery */ ret = pmic_bus_read(AXP152_POWER_RECOVERY, ®); if (ret) return ret; reg |= AXP152_POWER_RECOVERY_EN; ret = pmic_bus_write(AXP152_POWER_RECOVERY, reg); return ret; } int do_poweroff(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { pmic_bus_write(AXP152_SHUTDOWN, AXP152_POWEROFF); /* infinite loop during shutdown */ while (1) {} /* not reached */ return 0; }