// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * Copyright (C) 2018, STMicroelectronics - All Rights Reserved */ #define LOG_CATEGORY LOGC_ARCH #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* RCC register */ #define RCC_TZCR (STM32_RCC_BASE + 0x00) #define RCC_DBGCFGR (STM32_RCC_BASE + 0x080C) #define RCC_BDCR (STM32_RCC_BASE + 0x0140) #define RCC_MP_APB5ENSETR (STM32_RCC_BASE + 0x0208) #define RCC_MP_AHB5ENSETR (STM32_RCC_BASE + 0x0210) #define RCC_BDCR_VSWRST BIT(31) #define RCC_BDCR_RTCSRC GENMASK(17, 16) #define RCC_DBGCFGR_DBGCKEN BIT(8) /* Security register */ #define ETZPC_TZMA1_SIZE (STM32_ETZPC_BASE + 0x04) #define ETZPC_DECPROT0 (STM32_ETZPC_BASE + 0x10) #define TZC_GATE_KEEPER (STM32_TZC_BASE + 0x008) #define TZC_REGION_ATTRIBUTE0 (STM32_TZC_BASE + 0x110) #define TZC_REGION_ID_ACCESS0 (STM32_TZC_BASE + 0x114) #define TAMP_CR1 (STM32_TAMP_BASE + 0x00) #define PWR_CR1 (STM32_PWR_BASE + 0x00) #define PWR_MCUCR (STM32_PWR_BASE + 0x14) #define PWR_CR1_DBP BIT(8) #define PWR_MCUCR_SBF BIT(6) /* DBGMCU register */ #define DBGMCU_IDC (STM32_DBGMCU_BASE + 0x00) #define DBGMCU_APB4FZ1 (STM32_DBGMCU_BASE + 0x2C) #define DBGMCU_APB4FZ1_IWDG2 BIT(2) #define DBGMCU_IDC_DEV_ID_MASK GENMASK(11, 0) #define DBGMCU_IDC_DEV_ID_SHIFT 0 #define DBGMCU_IDC_REV_ID_MASK GENMASK(31, 16) #define DBGMCU_IDC_REV_ID_SHIFT 16 /* GPIOZ registers */ #define GPIOZ_SECCFGR 0x54004030 /* boot interface from Bootrom * - boot instance = bit 31:16 * - boot device = bit 15:0 */ #define BOOTROM_PARAM_ADDR 0x2FFC0078 #define BOOTROM_MODE_MASK GENMASK(15, 0) #define BOOTROM_MODE_SHIFT 0 #define BOOTROM_INSTANCE_MASK GENMASK(31, 16) #define BOOTROM_INSTANCE_SHIFT 16 /* Device Part Number (RPN) = OTP_DATA1 lower 8 bits */ #define RPN_SHIFT 0 #define RPN_MASK GENMASK(7, 0) /* Package = bit 27:29 of OTP16 * - 100: LBGA448 (FFI) => AA = LFBGA 18x18mm 448 balls p. 0.8mm * - 011: LBGA354 (LCI) => AB = LFBGA 16x16mm 359 balls p. 0.8mm * - 010: TFBGA361 (FFC) => AC = TFBGA 12x12mm 361 balls p. 0.5mm * - 001: TFBGA257 (LCC) => AD = TFBGA 10x10mm 257 balls p. 0.5mm * - others: Reserved */ #define PKG_SHIFT 27 #define PKG_MASK GENMASK(2, 0) /* * early TLB into the .data section so that it not get cleared * with 16kB allignment (see TTBR0_BASE_ADDR_MASK) */ u8 early_tlb[PGTABLE_SIZE] __section(".data") __aligned(0x4000); struct lmb lmb; static void security_init(void) { /* Disable the backup domain write protection */ /* the protection is enable at each reset by hardware */ /* And must be disable by software */ setbits_le32(PWR_CR1, PWR_CR1_DBP); while (!(readl(PWR_CR1) & PWR_CR1_DBP)) ; /* If RTC clock isn't enable so this is a cold boot then we need * to reset the backup domain */ if (!(readl(RCC_BDCR) & RCC_BDCR_RTCSRC)) { setbits_le32(RCC_BDCR, RCC_BDCR_VSWRST); while (!(readl(RCC_BDCR) & RCC_BDCR_VSWRST)) ; clrbits_le32(RCC_BDCR, RCC_BDCR_VSWRST); } /* allow non secure access in Write/Read for all peripheral */ writel(GENMASK(25, 0), ETZPC_DECPROT0); /* Open SYSRAM for no secure access */ writel(0x0, ETZPC_TZMA1_SIZE); /* enable TZC1 TZC2 clock */ writel(BIT(11) | BIT(12), RCC_MP_APB5ENSETR); /* Region 0 set to no access by default */ /* bit 0 / 16 => nsaid0 read/write Enable * bit 1 / 17 => nsaid1 read/write Enable * ... * bit 15 / 31 => nsaid15 read/write Enable */ writel(0xFFFFFFFF, TZC_REGION_ID_ACCESS0); /* bit 30 / 31 => Secure Global Enable : write/read */ /* bit 0 / 1 => Region Enable for filter 0/1 */ writel(BIT(0) | BIT(1) | BIT(30) | BIT(31), TZC_REGION_ATTRIBUTE0); /* Enable Filter 0 and 1 */ setbits_le32(TZC_GATE_KEEPER, BIT(0) | BIT(1)); /* RCC trust zone deactivated */ writel(0x0, RCC_TZCR); /* TAMP: deactivate the internal tamper * Bit 23 ITAMP8E: monotonic counter overflow * Bit 20 ITAMP5E: RTC calendar overflow * Bit 19 ITAMP4E: HSE monitoring * Bit 18 ITAMP3E: LSE monitoring * Bit 16 ITAMP1E: RTC power domain supply monitoring */ writel(0x0, TAMP_CR1); /* GPIOZ: deactivate the security */ writel(BIT(0), RCC_MP_AHB5ENSETR); writel(0x0, GPIOZ_SECCFGR); } /* * Debug init */ static void dbgmcu_init(void) { /* * Freeze IWDG2 if Cortex-A7 is in debug mode * done in TF-A for TRUSTED boot and * DBGMCU access is controlled by BSEC_DENABLE.DBGSWENABLE */ if (bsec_dbgswenable()) { setbits_le32(RCC_DBGCFGR, RCC_DBGCFGR_DBGCKEN); setbits_le32(DBGMCU_APB4FZ1, DBGMCU_APB4FZ1_IWDG2); } } void spl_board_init(void) { struct udevice *dev; int ret; dbgmcu_init(); /* force probe of BSEC driver to shadow the upper OTP */ ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (ret) log_warning("BSEC probe failed: %d\n", ret); } /* get bootmode from ROM code boot context: saved in TAMP register */ static void update_bootmode(void) { u32 boot_mode; u32 bootrom_itf = readl(BOOTROM_PARAM_ADDR); u32 bootrom_device, bootrom_instance; /* enable TAMP clock = RTCAPBEN */ writel(BIT(8), RCC_MP_APB5ENSETR); /* read bootrom context */ bootrom_device = (bootrom_itf & BOOTROM_MODE_MASK) >> BOOTROM_MODE_SHIFT; bootrom_instance = (bootrom_itf & BOOTROM_INSTANCE_MASK) >> BOOTROM_INSTANCE_SHIFT; boot_mode = ((bootrom_device << BOOT_TYPE_SHIFT) & BOOT_TYPE_MASK) | ((bootrom_instance << BOOT_INSTANCE_SHIFT) & BOOT_INSTANCE_MASK); /* save the boot mode in TAMP backup register */ clrsetbits_le32(TAMP_BOOT_CONTEXT, TAMP_BOOT_MODE_MASK, boot_mode << TAMP_BOOT_MODE_SHIFT); } u32 get_bootmode(void) { /* read bootmode from TAMP backup register */ return (readl(TAMP_BOOT_CONTEXT) & TAMP_BOOT_MODE_MASK) >> TAMP_BOOT_MODE_SHIFT; } /* * weak function overidde: set the DDR/SYSRAM executable before to enable the * MMU and configure DACR, for early early_enable_caches (SPL or pre-reloc) */ void dram_bank_mmu_setup(int bank) { struct bd_info *bd = gd->bd; int i; phys_addr_t start; phys_size_t size; bool use_lmb = false; enum dcache_option option; if (IS_ENABLED(CONFIG_SPL_BUILD)) { start = ALIGN_DOWN(STM32_SYSRAM_BASE, MMU_SECTION_SIZE); size = ALIGN(STM32_SYSRAM_SIZE, MMU_SECTION_SIZE); } else if (gd->flags & GD_FLG_RELOC) { /* bd->bi_dram is available only after relocation */ start = bd->bi_dram[bank].start; size = bd->bi_dram[bank].size; use_lmb = true; } else { /* mark cacheable and executable the beggining of the DDR */ start = STM32_DDR_BASE; size = CONFIG_DDR_CACHEABLE_SIZE; } for (i = start >> MMU_SECTION_SHIFT; i < (start >> MMU_SECTION_SHIFT) + (size >> MMU_SECTION_SHIFT); i++) { option = DCACHE_DEFAULT_OPTION; if (use_lmb && lmb_is_reserved_flags(&lmb, i << MMU_SECTION_SHIFT, LMB_NOMAP)) option = 0; /* INVALID ENTRY in TLB */ set_section_dcache(i, option); } } /* * initialize the MMU and activate cache in SPL or in U-Boot pre-reloc stage * MMU/TLB is updated in enable_caches() for U-Boot after relocation * or is deactivated in U-Boot entry function start.S::cpu_init_cp15 */ static void early_enable_caches(void) { /* I-cache is already enabled in start.S: cpu_init_cp15 */ if (CONFIG_IS_ENABLED(SYS_DCACHE_OFF)) return; if (!(CONFIG_IS_ENABLED(SYS_ICACHE_OFF) && CONFIG_IS_ENABLED(SYS_DCACHE_OFF))) { gd->arch.tlb_size = PGTABLE_SIZE; gd->arch.tlb_addr = (unsigned long)&early_tlb; } /* enable MMU (default configuration) */ dcache_enable(); } /* * Early system init */ int arch_cpu_init(void) { u32 boot_mode; early_enable_caches(); /* early armv7 timer init: needed for polling */ timer_init(); if (IS_ENABLED(CONFIG_SPL_BUILD)) { security_init(); update_bootmode(); } /* reset copro state in SPL, when used, or in U-Boot */ if (!IS_ENABLED(CONFIG_SPL) || IS_ENABLED(CONFIG_SPL_BUILD)) { /* Reset Coprocessor state unless it wakes up from Standby power mode */ if (!(readl(PWR_MCUCR) & PWR_MCUCR_SBF)) { writel(TAMP_COPRO_STATE_OFF, TAMP_COPRO_STATE); writel(0, TAMP_COPRO_RSC_TBL_ADDRESS); } } boot_mode = get_bootmode(); if (IS_ENABLED(CONFIG_CMD_STM32PROG_SERIAL) && (boot_mode & TAMP_BOOT_DEVICE_MASK) == BOOT_SERIAL_UART) gd->flags |= GD_FLG_SILENT | GD_FLG_DISABLE_CONSOLE; else if (IS_ENABLED(CONFIG_DEBUG_UART) && IS_ENABLED(CONFIG_SPL_BUILD)) debug_uart_init(); return 0; } void enable_caches(void) { /* parse device tree when data cache is still activated */ lmb_init_and_reserve(&lmb, gd->bd, (void *)gd->fdt_blob); /* I-cache is already enabled in start.S: icache_enable() not needed */ /* deactivate the data cache, early enabled in arch_cpu_init() */ dcache_disable(); /* * update MMU after relocation and enable the data cache * warning: the TLB location udpated in board_f.c::reserve_mmu */ dcache_enable(); } static u32 read_idc(void) { /* DBGMCU access is controlled by BSEC_DENABLE.DBGSWENABLE */ if (bsec_dbgswenable()) { setbits_le32(RCC_DBGCFGR, RCC_DBGCFGR_DBGCKEN); return readl(DBGMCU_IDC); } if (CONFIG_IS_ENABLED(STM32MP15x)) return CPU_DEV_STM32MP15; /* STM32MP15x and unknown revision */ else return 0x0; } u32 get_cpu_dev(void) { return (read_idc() & DBGMCU_IDC_DEV_ID_MASK) >> DBGMCU_IDC_DEV_ID_SHIFT; } u32 get_cpu_rev(void) { return (read_idc() & DBGMCU_IDC_REV_ID_MASK) >> DBGMCU_IDC_REV_ID_SHIFT; } static u32 get_otp(int index, int shift, int mask) { int ret; struct udevice *dev; u32 otp = 0; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (!ret) ret = misc_read(dev, STM32_BSEC_SHADOW(index), &otp, sizeof(otp)); return (otp >> shift) & mask; } /* Get Device Part Number (RPN) from OTP */ static u32 get_cpu_rpn(void) { return get_otp(BSEC_OTP_RPN, RPN_SHIFT, RPN_MASK); } u32 get_cpu_type(void) { return (get_cpu_dev() << 16) | get_cpu_rpn(); } /* Get Package options from OTP */ u32 get_cpu_package(void) { return get_otp(BSEC_OTP_PKG, PKG_SHIFT, PKG_MASK); } static const char * const soc_type[] = { "????", "151C", "151A", "151F", "151D", "153C", "153A", "153F", "153D", "157C", "157A", "157F", "157D" }; static const char * const soc_pkg[] = { "??", "AD", "AC", "AB", "AA" }; static const char * const soc_rev[] = { "?", "A", "B", "Z" }; static void get_cpu_string_offsets(unsigned int *type, unsigned int *pkg, unsigned int *rev) { u32 cpu_type = get_cpu_type(); u32 ct = cpu_type & ~(BIT(7) | BIT(0)); u32 cm = ((cpu_type & BIT(7)) >> 6) | (cpu_type & BIT(0)); u32 cp = get_cpu_package(); /* Bits 0 and 7 are the ACDF, 00:C 01:A 10:F 11:D */ switch (ct) { case CPU_STM32MP151Cxx: *type = cm + 1; break; case CPU_STM32MP153Cxx: *type = cm + 5; break; case CPU_STM32MP157Cxx: *type = cm + 9; break; default: *type = 0; break; } /* Package */ switch (cp) { case PKG_AA_LBGA448: case PKG_AB_LBGA354: case PKG_AC_TFBGA361: case PKG_AD_TFBGA257: *pkg = cp; break; default: *pkg = 0; break; } /* Revision */ switch (get_cpu_rev()) { case CPU_REVA: *rev = 1; break; case CPU_REVB: *rev = 2; break; case CPU_REVZ: *rev = 3; break; default: *rev = 0; break; } } void get_soc_name(char name[SOC_NAME_SIZE]) { unsigned int type, pkg, rev; get_cpu_string_offsets(&type, &pkg, &rev); snprintf(name, SOC_NAME_SIZE, "STM32MP%s%s Rev.%s", soc_type[type], soc_pkg[pkg], soc_rev[rev]); } /* used when CONFIG_DISPLAY_CPUINFO is activated */ int print_cpuinfo(void) { char name[SOC_NAME_SIZE]; get_soc_name(name); printf("CPU: %s\n", name); return 0; } static void setup_boot_mode(void) { const u32 serial_addr[] = { STM32_USART1_BASE, STM32_USART2_BASE, STM32_USART3_BASE, STM32_UART4_BASE, STM32_UART5_BASE, STM32_USART6_BASE, STM32_UART7_BASE, STM32_UART8_BASE }; const u32 sdmmc_addr[] = { STM32_SDMMC1_BASE, STM32_SDMMC2_BASE, STM32_SDMMC3_BASE }; char cmd[60]; u32 boot_ctx = readl(TAMP_BOOT_CONTEXT); u32 boot_mode = (boot_ctx & TAMP_BOOT_MODE_MASK) >> TAMP_BOOT_MODE_SHIFT; unsigned int instance = (boot_mode & TAMP_BOOT_INSTANCE_MASK) - 1; u32 forced_mode = (boot_ctx & TAMP_BOOT_FORCED_MASK); struct udevice *dev; log_debug("%s: boot_ctx=0x%x => boot_mode=%x, instance=%d forced=%x\n", __func__, boot_ctx, boot_mode, instance, forced_mode); switch (boot_mode & TAMP_BOOT_DEVICE_MASK) { case BOOT_SERIAL_UART: if (instance > ARRAY_SIZE(serial_addr)) break; /* serial : search associated node in devicetree */ sprintf(cmd, "serial@%x", serial_addr[instance]); if (uclass_get_device_by_name(UCLASS_SERIAL, cmd, &dev)) { /* restore console on error */ if (IS_ENABLED(CONFIG_CMD_STM32PROG_SERIAL)) gd->flags &= ~(GD_FLG_SILENT | GD_FLG_DISABLE_CONSOLE); log_err("uart%d = %s not found in device tree!\n", instance + 1, cmd); break; } sprintf(cmd, "%d", dev_seq(dev)); env_set("boot_device", "serial"); env_set("boot_instance", cmd); /* restore console on uart when not used */ if (IS_ENABLED(CONFIG_CMD_STM32PROG_SERIAL) && gd->cur_serial_dev != dev) { gd->flags &= ~(GD_FLG_SILENT | GD_FLG_DISABLE_CONSOLE); log_info("serial boot with console enabled!\n"); } break; case BOOT_SERIAL_USB: env_set("boot_device", "usb"); env_set("boot_instance", "0"); break; case BOOT_FLASH_SD: case BOOT_FLASH_EMMC: if (instance > ARRAY_SIZE(sdmmc_addr)) break; /* search associated sdmmc node in devicetree */ sprintf(cmd, "mmc@%x", sdmmc_addr[instance]); if (uclass_get_device_by_name(UCLASS_MMC, cmd, &dev)) { printf("mmc%d = %s not found in device tree!\n", instance, cmd); break; } sprintf(cmd, "%d", dev_seq(dev)); env_set("boot_device", "mmc"); env_set("boot_instance", cmd); break; case BOOT_FLASH_NAND: env_set("boot_device", "nand"); env_set("boot_instance", "0"); break; case BOOT_FLASH_SPINAND: env_set("boot_device", "spi-nand"); env_set("boot_instance", "0"); break; case BOOT_FLASH_NOR: env_set("boot_device", "nor"); env_set("boot_instance", "0"); break; default: env_set("boot_device", "invalid"); env_set("boot_instance", ""); log_err("unexpected boot mode = %x\n", boot_mode); break; } switch (forced_mode) { case BOOT_FASTBOOT: log_info("Enter fastboot!\n"); env_set("preboot", "env set preboot; fastboot 0"); break; case BOOT_STM32PROG: env_set("boot_device", "usb"); env_set("boot_instance", "0"); break; case BOOT_UMS_MMC0: case BOOT_UMS_MMC1: case BOOT_UMS_MMC2: log_info("Enter UMS!\n"); instance = forced_mode - BOOT_UMS_MMC0; sprintf(cmd, "env set preboot; ums 0 mmc %d", instance); env_set("preboot", cmd); break; case BOOT_RECOVERY: env_set("preboot", "env set preboot; run altbootcmd"); break; case BOOT_NORMAL: break; default: log_debug("unexpected forced boot mode = %x\n", forced_mode); break; } /* clear TAMP for next reboot */ clrsetbits_le32(TAMP_BOOT_CONTEXT, TAMP_BOOT_FORCED_MASK, BOOT_NORMAL); } /* * If there is no MAC address in the environment, then it will be initialized * (silently) from the value in the OTP. */ __weak int setup_mac_address(void) { int ret; int i; u32 otp[2]; uchar enetaddr[6]; struct udevice *dev; if (!IS_ENABLED(CONFIG_NET)) return 0; /* MAC already in environment */ if (eth_env_get_enetaddr("ethaddr", enetaddr)) return 0; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (ret) return ret; ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_MAC), otp, sizeof(otp)); if (ret < 0) return ret; for (i = 0; i < 6; i++) enetaddr[i] = ((uint8_t *)&otp)[i]; if (!is_valid_ethaddr(enetaddr)) { log_err("invalid MAC address in OTP %pM\n", enetaddr); return -EINVAL; } log_debug("OTP MAC address = %pM\n", enetaddr); ret = eth_env_set_enetaddr("ethaddr", enetaddr); if (ret) log_err("Failed to set mac address %pM from OTP: %d\n", enetaddr, ret); return 0; } static int setup_serial_number(void) { char serial_string[25]; u32 otp[3] = {0, 0, 0 }; struct udevice *dev; int ret; if (env_get("serial#")) return 0; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stm32mp_bsec), &dev); if (ret) return ret; ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_SERIAL), otp, sizeof(otp)); if (ret < 0) return ret; sprintf(serial_string, "%08X%08X%08X", otp[0], otp[1], otp[2]); env_set("serial#", serial_string); return 0; } static void setup_soc_type_pkg_rev(void) { unsigned int type, pkg, rev; get_cpu_string_offsets(&type, &pkg, &rev); env_set("soc_type", soc_type[type]); env_set("soc_pkg", soc_pkg[pkg]); env_set("soc_rev", soc_rev[rev]); } int arch_misc_init(void) { setup_boot_mode(); setup_mac_address(); setup_serial_number(); setup_soc_type_pkg_rev(); return 0; }