summaryrefslogtreecommitdiff
path: root/include/remoteproc.h
diff options
context:
space:
mode:
authorKeerthy <j-keerthy@ti.com>2022-01-27 13:16:55 +0100
committerTom Rini <trini@konsulko.com>2022-02-08 11:00:03 -0500
commita03df8984439b54b663739b8335c977c3c88db00 (patch)
treeeee41e12898b41cab7c45ecfbe77e88f7ba41d0c /include/remoteproc.h
parent8a92603a3489f789f8e3a36a1e073bc1c237d73e (diff)
remoteproc: uclass: Add remoteproc resource handling helpers
Add remoteproc resource handling helpers. These functions are primarily to parse the resource table and to handle different types of resources. Carveout, devmem, trace & vring resources are handled. Signed-off-by: Keerthy <j-keerthy@ti.com> [Amjad: fix redefinition of "struct resource_table" and compile warnings ] Signed-off-by: Amjad Ouled-Ameur <aouledameur@baylibre.com>
Diffstat (limited to 'include/remoteproc.h')
-rw-r--r--include/remoteproc.h384
1 files changed, 383 insertions, 1 deletions
diff --git a/include/remoteproc.h b/include/remoteproc.h
index a8e654674e..f48054de6b 100644
--- a/include/remoteproc.h
+++ b/include/remoteproc.h
@@ -1,4 +1,4 @@
-/* SPDX-License-Identifier: GPL-2.0+ */
+/* SPDX-License-Identifier: GPL-2.0 */
/*
* (C) Copyright 2015
* Texas Instruments Incorporated - http://www.ti.com/
@@ -16,6 +16,375 @@
#include <dm/platdata.h> /* For platform data support - non dt world */
/**
+ * struct fw_rsc_hdr - firmware resource entry header
+ * @type: resource type
+ * @data: resource data
+ *
+ * Every resource entry begins with a 'struct fw_rsc_hdr' header providing
+ * its @type. The content of the entry itself will immediately follow
+ * this header, and it should be parsed according to the resource type.
+ */
+struct fw_rsc_hdr {
+ u32 type;
+ u8 data[0];
+};
+
+/**
+ * enum fw_resource_type - types of resource entries
+ *
+ * @RSC_CARVEOUT: request for allocation of a physically contiguous
+ * memory region.
+ * @RSC_DEVMEM: request to iommu_map a memory-based peripheral.
+ * @RSC_TRACE: announces the availability of a trace buffer into which
+ * the remote processor will be writing logs.
+ * @RSC_VDEV: declare support for a virtio device, and serve as its
+ * virtio header.
+ * @RSC_PRELOAD_VENDOR: a vendor resource type that needs to be handled by
+ * remoteproc implementations before loading
+ * @RSC_POSTLOAD_VENDOR: a vendor resource type that needs to be handled by
+ * remoteproc implementations after loading
+ * @RSC_LAST: just keep this one at the end
+ *
+ * For more details regarding a specific resource type, please see its
+ * dedicated structure below.
+ *
+ * Please note that these values are used as indices to the rproc_handle_rsc
+ * lookup table, so please keep them sane. Moreover, @RSC_LAST is used to
+ * check the validity of an index before the lookup table is accessed, so
+ * please update it as needed.
+ */
+enum fw_resource_type {
+ RSC_CARVEOUT = 0,
+ RSC_DEVMEM = 1,
+ RSC_TRACE = 2,
+ RSC_VDEV = 3,
+ RSC_PRELOAD_VENDOR = 4,
+ RSC_POSTLOAD_VENDOR = 5,
+ RSC_LAST = 6,
+};
+
+#define FW_RSC_ADDR_ANY (-1)
+
+/**
+ * struct fw_rsc_carveout - physically contiguous memory request
+ * @da: device address
+ * @pa: physical address
+ * @len: length (in bytes)
+ * @flags: iommu protection flags
+ * @reserved: reserved (must be zero)
+ * @name: human-readable name of the requested memory region
+ *
+ * This resource entry requests the host to allocate a physically contiguous
+ * memory region.
+ *
+ * These request entries should precede other firmware resource entries,
+ * as other entries might request placing other data objects inside
+ * these memory regions (e.g. data/code segments, trace resource entries, ...).
+ *
+ * Allocating memory this way helps utilizing the reserved physical memory
+ * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
+ * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
+ * pressure is important; it may have a substantial impact on performance.
+ *
+ * If the firmware is compiled with static addresses, then @da should specify
+ * the expected device address of this memory region. If @da is set to
+ * FW_RSC_ADDR_ANY, then the host will dynamically allocate it, and then
+ * overwrite @da with the dynamically allocated address.
+ *
+ * We will always use @da to negotiate the device addresses, even if it
+ * isn't using an iommu. In that case, though, it will obviously contain
+ * physical addresses.
+ *
+ * Some remote processors needs to know the allocated physical address
+ * even if they do use an iommu. This is needed, e.g., if they control
+ * hardware accelerators which access the physical memory directly (this
+ * is the case with OMAP4 for instance). In that case, the host will
+ * overwrite @pa with the dynamically allocated physical address.
+ * Generally we don't want to expose physical addresses if we don't have to
+ * (remote processors are generally _not_ trusted), so we might want to
+ * change this to happen _only_ when explicitly required by the hardware.
+ *
+ * @flags is used to provide IOMMU protection flags, and @name should
+ * (optionally) contain a human readable name of this carveout region
+ * (mainly for debugging purposes).
+ */
+struct fw_rsc_carveout {
+ u32 da;
+ u32 pa;
+ u32 len;
+ u32 flags;
+ u32 reserved;
+ u8 name[32];
+};
+
+/**
+ * struct fw_rsc_devmem - iommu mapping request
+ * @da: device address
+ * @pa: physical address
+ * @len: length (in bytes)
+ * @flags: iommu protection flags
+ * @reserved: reserved (must be zero)
+ * @name: human-readable name of the requested region to be mapped
+ *
+ * This resource entry requests the host to iommu map a physically contiguous
+ * memory region. This is needed in case the remote processor requires
+ * access to certain memory-based peripherals; _never_ use it to access
+ * regular memory.
+ *
+ * This is obviously only needed if the remote processor is accessing memory
+ * via an iommu.
+ *
+ * @da should specify the required device address, @pa should specify
+ * the physical address we want to map, @len should specify the size of
+ * the mapping and @flags is the IOMMU protection flags. As always, @name may
+ * (optionally) contain a human readable name of this mapping (mainly for
+ * debugging purposes).
+ *
+ * Note: at this point we just "trust" those devmem entries to contain valid
+ * physical addresses, but this isn't safe and will be changed: eventually we
+ * want remoteproc implementations to provide us ranges of physical addresses
+ * the firmware is allowed to request, and not allow firmwares to request
+ * access to physical addresses that are outside those ranges.
+ */
+struct fw_rsc_devmem {
+ u32 da;
+ u32 pa;
+ u32 len;
+ u32 flags;
+ u32 reserved;
+ u8 name[32];
+};
+
+/**
+ * struct fw_rsc_trace - trace buffer declaration
+ * @da: device address
+ * @len: length (in bytes)
+ * @reserved: reserved (must be zero)
+ * @name: human-readable name of the trace buffer
+ *
+ * This resource entry provides the host information about a trace buffer
+ * into which the remote processor will write log messages.
+ *
+ * @da specifies the device address of the buffer, @len specifies
+ * its size, and @name may contain a human readable name of the trace buffer.
+ *
+ * After booting the remote processor, the trace buffers are exposed to the
+ * user via debugfs entries (called trace0, trace1, etc..).
+ */
+struct fw_rsc_trace {
+ u32 da;
+ u32 len;
+ u32 reserved;
+ u8 name[32];
+};
+
+/**
+ * struct fw_rsc_vdev_vring - vring descriptor entry
+ * @da: device address
+ * @align: the alignment between the consumer and producer parts of the vring
+ * @num: num of buffers supported by this vring (must be power of two)
+ * @notifyid is a unique rproc-wide notify index for this vring. This notify
+ * index is used when kicking a remote processor, to let it know that this
+ * vring is triggered.
+ * @pa: physical address
+ *
+ * This descriptor is not a resource entry by itself; it is part of the
+ * vdev resource type (see below).
+ *
+ * Note that @da should either contain the device address where
+ * the remote processor is expecting the vring, or indicate that
+ * dynamically allocation of the vring's device address is supported.
+ */
+struct fw_rsc_vdev_vring {
+ u32 da;
+ u32 align;
+ u32 num;
+ u32 notifyid;
+ u32 pa;
+};
+
+/**
+ * struct fw_rsc_vdev - virtio device header
+ * @id: virtio device id (as in virtio_ids.h)
+ * @notifyid is a unique rproc-wide notify index for this vdev. This notify
+ * index is used when kicking a remote processor, to let it know that the
+ * status/features of this vdev have changes.
+ * @dfeatures specifies the virtio device features supported by the firmware
+ * @gfeatures is a place holder used by the host to write back the
+ * negotiated features that are supported by both sides.
+ * @config_len is the size of the virtio config space of this vdev. The config
+ * space lies in the resource table immediate after this vdev header.
+ * @status is a place holder where the host will indicate its virtio progress.
+ * @num_of_vrings indicates how many vrings are described in this vdev header
+ * @reserved: reserved (must be zero)
+ * @vring is an array of @num_of_vrings entries of 'struct fw_rsc_vdev_vring'.
+ *
+ * This resource is a virtio device header: it provides information about
+ * the vdev, and is then used by the host and its peer remote processors
+ * to negotiate and share certain virtio properties.
+ *
+ * By providing this resource entry, the firmware essentially asks remoteproc
+ * to statically allocate a vdev upon registration of the rproc (dynamic vdev
+ * allocation is not yet supported).
+ *
+ * Note: unlike virtualization systems, the term 'host' here means
+ * the Linux side which is running remoteproc to control the remote
+ * processors. We use the name 'gfeatures' to comply with virtio's terms,
+ * though there isn't really any virtualized guest OS here: it's the host
+ * which is responsible for negotiating the final features.
+ * Yeah, it's a bit confusing.
+ *
+ * Note: immediately following this structure is the virtio config space for
+ * this vdev (which is specific to the vdev; for more info, read the virtio
+ * spec). the size of the config space is specified by @config_len.
+ */
+struct fw_rsc_vdev {
+ u32 id;
+ u32 notifyid;
+ u32 dfeatures;
+ u32 gfeatures;
+ u32 config_len;
+ u8 status;
+ u8 num_of_vrings;
+ u8 reserved[2];
+ struct fw_rsc_vdev_vring vring[0];
+};
+
+/**
+ * struct rproc_mem_entry - memory entry descriptor
+ * @va: virtual address
+ * @dma: dma address
+ * @len: length, in bytes
+ * @da: device address
+ * @priv: associated data
+ * @name: associated memory region name (optional)
+ * @node: list node
+ */
+struct rproc_mem_entry {
+ void *va;
+ dma_addr_t dma;
+ int len;
+ u32 da;
+ void *priv;
+ char name[32];
+ struct list_head node;
+};
+
+struct rproc;
+
+typedef u32(*init_func_proto) (u32 core_id, struct rproc *cfg);
+
+struct l3_map {
+ u32 priv_addr;
+ u32 l3_addr;
+ u32 len;
+};
+
+struct rproc_intmem_to_l3_mapping {
+ u32 num_entries;
+ struct l3_map mappings[16];
+};
+
+/**
+ * enum rproc_crash_type - remote processor crash types
+ * @RPROC_MMUFAULT: iommu fault
+ * @RPROC_WATCHDOG: watchdog bite
+ * @RPROC_FATAL_ERROR fatal error
+ *
+ * Each element of the enum is used as an array index. So that, the value of
+ * the elements should be always something sane.
+ *
+ * Feel free to add more types when needed.
+ */
+enum rproc_crash_type {
+ RPROC_MMUFAULT,
+ RPROC_WATCHDOG,
+ RPROC_FATAL_ERROR,
+};
+
+/* we currently support only two vrings per rvdev */
+#define RVDEV_NUM_VRINGS 2
+
+#define RPMSG_NUM_BUFS (512)
+#define RPMSG_BUF_SIZE (512)
+#define RPMSG_TOTAL_BUF_SPACE (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE)
+
+/**
+ * struct rproc_vring - remoteproc vring state
+ * @va: virtual address
+ * @dma: dma address
+ * @len: length, in bytes
+ * @da: device address
+ * @align: vring alignment
+ * @notifyid: rproc-specific unique vring index
+ * @rvdev: remote vdev
+ * @vq: the virtqueue of this vring
+ */
+struct rproc_vring {
+ void *va;
+ dma_addr_t dma;
+ int len;
+ u32 da;
+ u32 align;
+ int notifyid;
+ struct rproc_vdev *rvdev;
+ struct virtqueue *vq;
+};
+
+/** struct rproc - structure with all processor specific information for
+ * loading remotecore from boot loader.
+ *
+ * @num_iommus: Number of IOMMUs for this remote core. Zero indicates that the
+ * processor does not have an IOMMU.
+ *
+ * @cma_base: Base address of the carveout for this remotecore.
+ *
+ * @cma_size: Length of the carveout in bytes.
+ *
+ * @page_table_addr: array with the physical address of the page table. We are
+ * using the same page table for both IOMMU's. There is currently no strong
+ * usecase for maintaining different page tables for different MMU's servicing
+ * the same CPU.
+ *
+ * @mmu_base_addr: base address of the MMU
+ *
+ * @entry_point: address that is the entry point for the remote core. This
+ * address is in the memory view of the remotecore.
+ *
+ * @load_addr: Address to which the bootloader loads the firmware from
+ * persistent storage before invoking the ELF loader. Keeping this address
+ * configurable allows future optimizations such as loading the firmware from
+ * storage for remotecore2 via EDMA while the CPU is processing the ELF image
+ * of remotecore1. This address is in the memory view of the A15.
+ *
+ * @firmware_name: Name of the file that is expected to contain the ELF image.
+ *
+ * @has_rsc_table: Flag populated after parsing the ELF binary on target.
+ */
+
+struct rproc {
+ u32 num_iommus;
+ unsigned long cma_base;
+ u32 cma_size;
+ unsigned long page_table_addr;
+ unsigned long mmu_base_addr[2];
+ unsigned long load_addr;
+ unsigned long entry_point;
+ char *core_name;
+ char *firmware_name;
+ char *ptn;
+ init_func_proto start_clocks;
+ init_func_proto config_mmu;
+ init_func_proto config_peripherals;
+ init_func_proto start_core;
+ u32 has_rsc_table;
+ struct rproc_intmem_to_l3_mapping *intmem_to_l3_mapping;
+ u32 trace_pa;
+ u32 trace_len;
+};
+
+extern struct rproc *rproc_cfg_arr[2];
+/**
* enum rproc_mem_type - What type of memory model does the rproc use
* @RPROC_INTERNAL_MEMORY_MAPPED: Remote processor uses own memory and is memory
* mapped to the host processor over an address range.
@@ -126,6 +495,12 @@ struct dm_rproc_ops {
* @return virtual address.
*/
void * (*device_to_virt)(struct udevice *dev, ulong da, ulong size);
+ int (*add_res)(struct udevice *dev,
+ struct rproc_mem_entry *mapping);
+ void * (*alloc_mem)(struct udevice *dev, unsigned long len,
+ unsigned long align);
+ unsigned int (*config_pagetable)(struct udevice *dev, unsigned int virt,
+ unsigned int phys, unsigned int len);
};
/* Accessor */
@@ -322,6 +697,13 @@ int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
*/
int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
+
+unsigned long rproc_parse_resource_table(struct udevice *dev,
+ struct rproc *cfg);
+
+struct resource_table *rproc_find_resource_table(struct udevice *dev,
+ unsigned int addr,
+ int *tablesz);
#else
static inline int rproc_init(void) { return -ENOSYS; }
static inline int rproc_dev_init(int id) { return -ENOSYS; }