summaryrefslogtreecommitdiff
path: root/include/asm-mips/bitops.h
diff options
context:
space:
mode:
authorPeter Tyser <ptyser@xes-inc.com>2010-04-12 22:28:08 -0500
committerWolfgang Denk <wd@denx.de>2010-04-13 09:13:12 +0200
commit819833af39a91fa1c1e8252862bbda6f5a602f7b (patch)
treed5c9d1628643347ab2b5a8085acfa6f96709fda3 /include/asm-mips/bitops.h
parent61f2b38a17f5b21c59f2afe6cf1cbb5f28638cf9 (diff)
Move architecture-specific includes to arch/$ARCH/include/asm
This helps to clean up the include/ directory so that it only contains non-architecture-specific headers and also matches Linux's directory layout which many U-Boot developers are already familiar with. Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
Diffstat (limited to 'include/asm-mips/bitops.h')
-rw-r--r--include/asm-mips/bitops.h902
1 files changed, 0 insertions, 902 deletions
diff --git a/include/asm-mips/bitops.h b/include/asm-mips/bitops.h
deleted file mode 100644
index 1c8f4c0500..0000000000
--- a/include/asm-mips/bitops.h
+++ /dev/null
@@ -1,902 +0,0 @@
-/*
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org)
- * Copyright (c) 2000 Silicon Graphics, Inc.
- */
-#ifndef _ASM_BITOPS_H
-#define _ASM_BITOPS_H
-
-#include <linux/types.h>
-#include <asm/byteorder.h> /* sigh ... */
-
-#ifdef __KERNEL__
-
-#include <asm/sgidefs.h>
-#include <asm/system.h>
-#include <linux/config.h>
-
-/*
- * clear_bit() doesn't provide any barrier for the compiler.
- */
-#define smp_mb__before_clear_bit() barrier()
-#define smp_mb__after_clear_bit() barrier()
-
-/*
- * Only disable interrupt for kernel mode stuff to keep usermode stuff
- * that dares to use kernel include files alive.
- */
-#define __bi_flags unsigned long flags
-#define __bi_cli() __cli()
-#define __bi_save_flags(x) __save_flags(x)
-#define __bi_save_and_cli(x) __save_and_cli(x)
-#define __bi_restore_flags(x) __restore_flags(x)
-#else
-#define __bi_flags
-#define __bi_cli()
-#define __bi_save_flags(x)
-#define __bi_save_and_cli(x)
-#define __bi_restore_flags(x)
-#endif /* __KERNEL__ */
-
-#ifdef CONFIG_CPU_HAS_LLSC
-
-#include <asm/mipsregs.h>
-
-/*
- * These functions for MIPS ISA > 1 are interrupt and SMP proof and
- * interrupt friendly
- */
-
-/*
- * set_bit - Atomically set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * This function is atomic and may not be reordered. See __set_bit()
- * if you do not require the atomic guarantees.
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
-static __inline__ void
-set_bit(int nr, volatile void *addr)
-{
- unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
- unsigned long temp;
-
- __asm__ __volatile__(
- "1:\tll\t%0, %1\t\t# set_bit\n\t"
- "or\t%0, %2\n\t"
- "sc\t%0, %1\n\t"
- "beqz\t%0, 1b"
- : "=&r" (temp), "=m" (*m)
- : "ir" (1UL << (nr & 0x1f)), "m" (*m));
-}
-
-/*
- * __set_bit - Set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike set_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
-static __inline__ void __set_bit(int nr, volatile void * addr)
-{
- unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
-
- *m |= 1UL << (nr & 31);
-}
-#define PLATFORM__SET_BIT
-
-/*
- * clear_bit - Clears a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * clear_bit() is atomic and may not be reordered. However, it does
- * not contain a memory barrier, so if it is used for locking purposes,
- * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
- * in order to ensure changes are visible on other processors.
- */
-static __inline__ void
-clear_bit(int nr, volatile void *addr)
-{
- unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
- unsigned long temp;
-
- __asm__ __volatile__(
- "1:\tll\t%0, %1\t\t# clear_bit\n\t"
- "and\t%0, %2\n\t"
- "sc\t%0, %1\n\t"
- "beqz\t%0, 1b\n\t"
- : "=&r" (temp), "=m" (*m)
- : "ir" (~(1UL << (nr & 0x1f))), "m" (*m));
-}
-
-/*
- * change_bit - Toggle a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * change_bit() is atomic and may not be reordered.
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
-static __inline__ void
-change_bit(int nr, volatile void *addr)
-{
- unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
- unsigned long temp;
-
- __asm__ __volatile__(
- "1:\tll\t%0, %1\t\t# change_bit\n\t"
- "xor\t%0, %2\n\t"
- "sc\t%0, %1\n\t"
- "beqz\t%0, 1b"
- : "=&r" (temp), "=m" (*m)
- : "ir" (1UL << (nr & 0x1f)), "m" (*m));
-}
-
-/*
- * __change_bit - Toggle a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike change_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
-static __inline__ void __change_bit(int nr, volatile void * addr)
-{
- unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
-
- *m ^= 1UL << (nr & 31);
-}
-
-/*
- * test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
-static __inline__ int
-test_and_set_bit(int nr, volatile void *addr)
-{
- unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
- unsigned long temp, res;
-
- __asm__ __volatile__(
- ".set\tnoreorder\t\t# test_and_set_bit\n"
- "1:\tll\t%0, %1\n\t"
- "or\t%2, %0, %3\n\t"
- "sc\t%2, %1\n\t"
- "beqz\t%2, 1b\n\t"
- " and\t%2, %0, %3\n\t"
- ".set\treorder"
- : "=&r" (temp), "=m" (*m), "=&r" (res)
- : "r" (1UL << (nr & 0x1f)), "m" (*m)
- : "memory");
-
- return res != 0;
-}
-
-/*
- * __test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
-static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
-{
- int mask, retval;
- volatile int *a = addr;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- retval = (mask & *a) != 0;
- *a |= mask;
-
- return retval;
-}
-
-/*
- * test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
-static __inline__ int
-test_and_clear_bit(int nr, volatile void *addr)
-{
- unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
- unsigned long temp, res;
-
- __asm__ __volatile__(
- ".set\tnoreorder\t\t# test_and_clear_bit\n"
- "1:\tll\t%0, %1\n\t"
- "or\t%2, %0, %3\n\t"
- "xor\t%2, %3\n\t"
- "sc\t%2, %1\n\t"
- "beqz\t%2, 1b\n\t"
- " and\t%2, %0, %3\n\t"
- ".set\treorder"
- : "=&r" (temp), "=m" (*m), "=&r" (res)
- : "r" (1UL << (nr & 0x1f)), "m" (*m)
- : "memory");
-
- return res != 0;
-}
-
-/*
- * __test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
-static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
-{
- int mask, retval;
- volatile int *a = addr;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- retval = (mask & *a) != 0;
- *a &= ~mask;
-
- return retval;
-}
-
-/*
- * test_and_change_bit - Change a bit and return its new value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
-static __inline__ int
-test_and_change_bit(int nr, volatile void *addr)
-{
- unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
- unsigned long temp, res;
-
- __asm__ __volatile__(
- ".set\tnoreorder\t\t# test_and_change_bit\n"
- "1:\tll\t%0, %1\n\t"
- "xor\t%2, %0, %3\n\t"
- "sc\t%2, %1\n\t"
- "beqz\t%2, 1b\n\t"
- " and\t%2, %0, %3\n\t"
- ".set\treorder"
- : "=&r" (temp), "=m" (*m), "=&r" (res)
- : "r" (1UL << (nr & 0x1f)), "m" (*m)
- : "memory");
-
- return res != 0;
-}
-
-/*
- * __test_and_change_bit - Change a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
-static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
-{
- int mask, retval;
- volatile int *a = addr;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- retval = (mask & *a) != 0;
- *a ^= mask;
-
- return retval;
-}
-
-#else /* MIPS I */
-
-/*
- * set_bit - Atomically set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * This function is atomic and may not be reordered. See __set_bit()
- * if you do not require the atomic guarantees.
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
-static __inline__ void set_bit(int nr, volatile void * addr)
-{
- int mask;
- volatile int *a = addr;
- __bi_flags;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- __bi_save_and_cli(flags);
- *a |= mask;
- __bi_restore_flags(flags);
-}
-
-/*
- * __set_bit - Set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike set_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
-static __inline__ void __set_bit(int nr, volatile void * addr)
-{
- int mask;
- volatile int *a = addr;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- *a |= mask;
-}
-
-/*
- * clear_bit - Clears a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * clear_bit() is atomic and may not be reordered. However, it does
- * not contain a memory barrier, so if it is used for locking purposes,
- * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
- * in order to ensure changes are visible on other processors.
- */
-static __inline__ void clear_bit(int nr, volatile void * addr)
-{
- int mask;
- volatile int *a = addr;
- __bi_flags;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- __bi_save_and_cli(flags);
- *a &= ~mask;
- __bi_restore_flags(flags);
-}
-
-/*
- * change_bit - Toggle a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * change_bit() is atomic and may not be reordered.
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
-static __inline__ void change_bit(int nr, volatile void * addr)
-{
- int mask;
- volatile int *a = addr;
- __bi_flags;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- __bi_save_and_cli(flags);
- *a ^= mask;
- __bi_restore_flags(flags);
-}
-
-/*
- * __change_bit - Toggle a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike change_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
-static __inline__ void __change_bit(int nr, volatile void * addr)
-{
- unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
-
- *m ^= 1UL << (nr & 31);
-}
-
-/*
- * test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
-static __inline__ int test_and_set_bit(int nr, volatile void * addr)
-{
- int mask, retval;
- volatile int *a = addr;
- __bi_flags;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- __bi_save_and_cli(flags);
- retval = (mask & *a) != 0;
- *a |= mask;
- __bi_restore_flags(flags);
-
- return retval;
-}
-
-/*
- * __test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
-static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
-{
- int mask, retval;
- volatile int *a = addr;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- retval = (mask & *a) != 0;
- *a |= mask;
-
- return retval;
-}
-
-/*
- * test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
-static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
-{
- int mask, retval;
- volatile int *a = addr;
- __bi_flags;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- __bi_save_and_cli(flags);
- retval = (mask & *a) != 0;
- *a &= ~mask;
- __bi_restore_flags(flags);
-
- return retval;
-}
-
-/*
- * __test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
-static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
-{
- int mask, retval;
- volatile int *a = addr;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- retval = (mask & *a) != 0;
- *a &= ~mask;
-
- return retval;
-}
-
-/*
- * test_and_change_bit - Change a bit and return its new value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
-static __inline__ int test_and_change_bit(int nr, volatile void * addr)
-{
- int mask, retval;
- volatile int *a = addr;
- __bi_flags;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- __bi_save_and_cli(flags);
- retval = (mask & *a) != 0;
- *a ^= mask;
- __bi_restore_flags(flags);
-
- return retval;
-}
-
-/*
- * __test_and_change_bit - Change a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
-static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
-{
- int mask, retval;
- volatile int *a = addr;
-
- a += nr >> 5;
- mask = 1 << (nr & 0x1f);
- retval = (mask & *a) != 0;
- *a ^= mask;
-
- return retval;
-}
-
-#undef __bi_flags
-#undef __bi_cli
-#undef __bi_save_flags
-#undef __bi_restore_flags
-
-#endif /* MIPS I */
-
-/*
- * test_bit - Determine whether a bit is set
- * @nr: bit number to test
- * @addr: Address to start counting from
- */
-static __inline__ int test_bit(int nr, volatile void *addr)
-{
- return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
-}
-
-#ifndef __MIPSEB__
-
-/* Little endian versions. */
-
-/*
- * find_first_zero_bit - find the first zero bit in a memory region
- * @addr: The address to start the search at
- * @size: The maximum size to search
- *
- * Returns the bit-number of the first zero bit, not the number of the byte
- * containing a bit.
- */
-static __inline__ int find_first_zero_bit (void *addr, unsigned size)
-{
- unsigned long dummy;
- int res;
-
- if (!size)
- return 0;
-
- __asm__ (".set\tnoreorder\n\t"
- ".set\tnoat\n"
- "1:\tsubu\t$1,%6,%0\n\t"
- "blez\t$1,2f\n\t"
- "lw\t$1,(%5)\n\t"
- "addiu\t%5,4\n\t"
-#if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \
- (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \
- (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64)
- "beql\t%1,$1,1b\n\t"
- "addiu\t%0,32\n\t"
-#else
- "addiu\t%0,32\n\t"
- "beq\t%1,$1,1b\n\t"
- "nop\n\t"
- "subu\t%0,32\n\t"
-#endif
-#ifdef __MIPSEB__
-#error "Fix this for big endian"
-#endif /* __MIPSEB__ */
- "li\t%1,1\n"
- "1:\tand\t%2,$1,%1\n\t"
- "beqz\t%2,2f\n\t"
- "sll\t%1,%1,1\n\t"
- "bnez\t%1,1b\n\t"
- "add\t%0,%0,1\n\t"
- ".set\tat\n\t"
- ".set\treorder\n"
- "2:"
- : "=r" (res), "=r" (dummy), "=r" (addr)
- : "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff),
- "2" (addr), "r" (size)
- : "$1");
-
- return res;
-}
-
-/*
- * find_next_zero_bit - find the first zero bit in a memory region
- * @addr: The address to base the search on
- * @offset: The bitnumber to start searching at
- * @size: The maximum size to search
- */
-static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
-{
- unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
- int set = 0, bit = offset & 31, res;
- unsigned long dummy;
-
- if (bit) {
- /*
- * Look for zero in first byte
- */
-#ifdef __MIPSEB__
-#error "Fix this for big endian byte order"
-#endif
- __asm__(".set\tnoreorder\n\t"
- ".set\tnoat\n"
- "1:\tand\t$1,%4,%1\n\t"
- "beqz\t$1,1f\n\t"
- "sll\t%1,%1,1\n\t"
- "bnez\t%1,1b\n\t"
- "addiu\t%0,1\n\t"
- ".set\tat\n\t"
- ".set\treorder\n"
- "1:"
- : "=r" (set), "=r" (dummy)
- : "0" (0), "1" (1 << bit), "r" (*p)
- : "$1");
- if (set < (32 - bit))
- return set + offset;
- set = 32 - bit;
- p++;
- }
- /*
- * No zero yet, search remaining full bytes for a zero
- */
- res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));
- return offset + set + res;
-}
-
-#endif /* !(__MIPSEB__) */
-
-/*
- * ffz - find first zero in word.
- * @word: The word to search
- *
- * Undefined if no zero exists, so code should check against ~0UL first.
- */
-static __inline__ unsigned long ffz(unsigned long word)
-{
- unsigned int __res;
- unsigned int mask = 1;
-
- __asm__ (
- ".set\tnoreorder\n\t"
- ".set\tnoat\n\t"
- "move\t%0,$0\n"
- "1:\tand\t$1,%2,%1\n\t"
- "beqz\t$1,2f\n\t"
- "sll\t%1,1\n\t"
- "bnez\t%1,1b\n\t"
- "addiu\t%0,1\n\t"
- ".set\tat\n\t"
- ".set\treorder\n"
- "2:\n\t"
- : "=&r" (__res), "=r" (mask)
- : "r" (word), "1" (mask)
- : "$1");
-
- return __res;
-}
-
-#ifdef __KERNEL__
-
-/*
- * hweightN - returns the hamming weight of a N-bit word
- * @x: the word to weigh
- *
- * The Hamming Weight of a number is the total number of bits set in it.
- */
-
-#define hweight32(x) generic_hweight32(x)
-#define hweight16(x) generic_hweight16(x)
-#define hweight8(x) generic_hweight8(x)
-
-#endif /* __KERNEL__ */
-
-#ifdef __MIPSEB__
-/*
- * find_next_zero_bit - find the first zero bit in a memory region
- * @addr: The address to base the search on
- * @offset: The bitnumber to start searching at
- * @size: The maximum size to search
- */
-static __inline__ int find_next_zero_bit(void *addr, int size, int offset)
-{
- unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
- unsigned long result = offset & ~31UL;
- unsigned long tmp;
-
- if (offset >= size)
- return size;
- size -= result;
- offset &= 31UL;
- if (offset) {
- tmp = *(p++);
- tmp |= ~0UL >> (32-offset);
- if (size < 32)
- goto found_first;
- if (~tmp)
- goto found_middle;
- size -= 32;
- result += 32;
- }
- while (size & ~31UL) {
- if (~(tmp = *(p++)))
- goto found_middle;
- result += 32;
- size -= 32;
- }
- if (!size)
- return result;
- tmp = *p;
-
-found_first:
- tmp |= ~0UL << size;
-found_middle:
- return result + ffz(tmp);
-}
-
-/* Linus sez that gcc can optimize the following correctly, we'll see if this
- * holds on the Sparc as it does for the ALPHA.
- */
-
-#if 0 /* Fool kernel-doc since it doesn't do macros yet */
-/*
- * find_first_zero_bit - find the first zero bit in a memory region
- * @addr: The address to start the search at
- * @size: The maximum size to search
- *
- * Returns the bit-number of the first zero bit, not the number of the byte
- * containing a bit.
- */
-static int find_first_zero_bit (void *addr, unsigned size);
-#endif
-
-#define find_first_zero_bit(addr, size) \
- find_next_zero_bit((addr), (size), 0)
-
-#endif /* (__MIPSEB__) */
-
-/* Now for the ext2 filesystem bit operations and helper routines. */
-
-#ifdef __MIPSEB__
-static __inline__ int ext2_set_bit(int nr, void * addr)
-{
- int mask, retval, flags;
- unsigned char *ADDR = (unsigned char *) addr;
-
- ADDR += nr >> 3;
- mask = 1 << (nr & 0x07);
- save_and_cli(flags);
- retval = (mask & *ADDR) != 0;
- *ADDR |= mask;
- restore_flags(flags);
- return retval;
-}
-
-static __inline__ int ext2_clear_bit(int nr, void * addr)
-{
- int mask, retval, flags;
- unsigned char *ADDR = (unsigned char *) addr;
-
- ADDR += nr >> 3;
- mask = 1 << (nr & 0x07);
- save_and_cli(flags);
- retval = (mask & *ADDR) != 0;
- *ADDR &= ~mask;
- restore_flags(flags);
- return retval;
-}
-
-static __inline__ int ext2_test_bit(int nr, const void * addr)
-{
- int mask;
- const unsigned char *ADDR = (const unsigned char *) addr;
-
- ADDR += nr >> 3;
- mask = 1 << (nr & 0x07);
- return ((mask & *ADDR) != 0);
-}
-
-#define ext2_find_first_zero_bit(addr, size) \
- ext2_find_next_zero_bit((addr), (size), 0)
-
-static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
-{
- unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
- unsigned long result = offset & ~31UL;
- unsigned long tmp;
-
- if (offset >= size)
- return size;
- size -= result;
- offset &= 31UL;
- if(offset) {
- /* We hold the little endian value in tmp, but then the
- * shift is illegal. So we could keep a big endian value
- * in tmp, like this:
- *
- * tmp = __swab32(*(p++));
- * tmp |= ~0UL >> (32-offset);
- *
- * but this would decrease preformance, so we change the
- * shift:
- */
- tmp = *(p++);
- tmp |= __swab32(~0UL >> (32-offset));
- if(size < 32)
- goto found_first;
- if(~tmp)
- goto found_middle;
- size -= 32;
- result += 32;
- }
- while(size & ~31UL) {
- if(~(tmp = *(p++)))
- goto found_middle;
- result += 32;
- size -= 32;
- }
- if(!size)
- return result;
- tmp = *p;
-
-found_first:
- /* tmp is little endian, so we would have to swab the shift,
- * see above. But then we have to swab tmp below for ffz, so
- * we might as well do this here.
- */
- return result + ffz(__swab32(tmp) | (~0UL << size));
-found_middle:
- return result + ffz(__swab32(tmp));
-}
-#else /* !(__MIPSEB__) */
-
-/* Native ext2 byte ordering, just collapse using defines. */
-#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
-#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
-#define ext2_test_bit(nr, addr) test_bit((nr), (addr))
-#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
-#define ext2_find_next_zero_bit(addr, size, offset) \
- find_next_zero_bit((addr), (size), (offset))
-
-#endif /* !(__MIPSEB__) */
-
-/*
- * Bitmap functions for the minix filesystem.
- * FIXME: These assume that Minix uses the native byte/bitorder.
- * This limits the Minix filesystem's value for data exchange very much.
- */
-#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
-#define minix_set_bit(nr,addr) set_bit(nr,addr)
-#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
-#define minix_test_bit(nr,addr) test_bit(nr,addr)
-#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
-
-#endif /* _ASM_BITOPS_H */