diff options
author | Michael van der Westhuizen <michael@smart-africa.com> | 2014-07-02 10:17:26 +0200 |
---|---|---|
committer | Tom Rini <trini@ti.com> | 2014-08-09 11:17:01 -0400 |
commit | e0f2f15534146729fdf2ce58b740121fd67eea1c (patch) | |
tree | 87cd55f630088b177050457ed0f3a3059997da17 /doc | |
parent | 53022c3113a6670d21f55262f511ae6a07bb3dc4 (diff) |
Implement generalised RSA public exponents for verified boot
Remove the verified boot limitation that only allows a single
RSA public exponent of 65537 (F4). This change allows use with
existing PKI infrastructure and has been tested with HSM-based
PKI.
Change the configuration OF tree format to store the RSA public
exponent as a 64 bit integer and implement backward compatibility
for verified boot configuration trees without this extra field.
Parameterise vboot_test.sh to test different public exponents.
Mathematics and other hard work by Andrew Bott.
Tested with the following public exponents: 3, 5, 17, 257, 39981,
50457, 65537 and 4294967297.
Signed-off-by: Andrew Bott <Andrew.Bott@ipaccess.com>
Signed-off-by: Andrew Wishart <Andrew.Wishart@ipaccess.com>
Signed-off-by: Neil Piercy <Neil.Piercy@ipaccess.com>
Signed-off-by: Michael van der Westhuizen <michael@smart-africa.com>
Cc: Simon Glass <sjg@chromium.org>
Diffstat (limited to 'doc')
-rw-r--r-- | doc/uImage.FIT/signature.txt | 4 |
1 files changed, 3 insertions, 1 deletions
diff --git a/doc/uImage.FIT/signature.txt b/doc/uImage.FIT/signature.txt index a6ab543de43..b2f89fcc65d 100644 --- a/doc/uImage.FIT/signature.txt +++ b/doc/uImage.FIT/signature.txt @@ -66,7 +66,8 @@ Creating an RSA key and certificate ----------------------------------- To create a new public key, size 2048 bits: -$ openssl genrsa -F4 -out keys/dev.key 2048 +$ openssl genpkey -algorithm RSA -out keys/dev.key \ + -pkeyopt rsa_keygen_bits:2048 -pkeyopt rsa_keygen_pubexp:65537 To create a certificate for this: @@ -159,6 +160,7 @@ For RSA the following are mandatory: - rsa,num-bits: Number of key bits (e.g. 2048) - rsa,modulus: Modulus (N) as a big-endian multi-word integer +- rsa,exponent: Public exponent (E) as a 64 bit unsigned integer - rsa,r-squared: (2^num-bits)^2 as a big-endian multi-word integer - rsa,n0-inverse: -1 / modulus[0] mod 2^32 |