/* * net/dccp/output.c * * An implementation of the DCCP protocol * Arnaldo Carvalho de Melo * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include "ackvec.h" #include "ccid.h" #include "dccp.h" static inline void dccp_event_ack_sent(struct sock *sk) { inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); } static inline void dccp_skb_entail(struct sock *sk, struct sk_buff *skb) { skb_set_owner_w(skb, sk); WARN_ON(sk->sk_send_head); sk->sk_send_head = skb; } /* * All SKB's seen here are completely headerless. It is our * job to build the DCCP header, and pass the packet down to * IP so it can do the same plus pass the packet off to the * device. */ static int dccp_transmit_skb(struct sock *sk, struct sk_buff *skb) { if (likely(skb != NULL)) { const struct inet_sock *inet = inet_sk(sk); const struct inet_connection_sock *icsk = inet_csk(sk); struct dccp_sock *dp = dccp_sk(sk); struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb); struct dccp_hdr *dh; /* XXX For now we're using only 48 bits sequence numbers */ const int dccp_header_size = sizeof(*dh) + sizeof(struct dccp_hdr_ext) + dccp_packet_hdr_len(dcb->dccpd_type); int err, set_ack = 1; u64 ackno = dp->dccps_gsr; dccp_inc_seqno(&dp->dccps_gss); switch (dcb->dccpd_type) { case DCCP_PKT_DATA: set_ack = 0; /* fall through */ case DCCP_PKT_DATAACK: break; case DCCP_PKT_REQUEST: set_ack = 0; /* fall through */ case DCCP_PKT_SYNC: case DCCP_PKT_SYNCACK: ackno = dcb->dccpd_seq; /* fall through */ default: /* * Only data packets should come through with skb->sk * set. */ WARN_ON(skb->sk); skb_set_owner_w(skb, sk); break; } dcb->dccpd_seq = dp->dccps_gss; dccp_insert_options(sk, skb); skb->h.raw = skb_push(skb, dccp_header_size); dh = dccp_hdr(skb); /* Build DCCP header and checksum it. */ memset(dh, 0, dccp_header_size); dh->dccph_type = dcb->dccpd_type; dh->dccph_sport = inet->sport; dh->dccph_dport = inet->dport; dh->dccph_doff = (dccp_header_size + dcb->dccpd_opt_len) / 4; dh->dccph_ccval = dcb->dccpd_ccval; /* XXX For now we're using only 48 bits sequence numbers */ dh->dccph_x = 1; dp->dccps_awh = dp->dccps_gss; dccp_hdr_set_seq(dh, dp->dccps_gss); if (set_ack) dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), ackno); switch (dcb->dccpd_type) { case DCCP_PKT_REQUEST: dccp_hdr_request(skb)->dccph_req_service = dp->dccps_service; break; case DCCP_PKT_RESET: dccp_hdr_reset(skb)->dccph_reset_code = dcb->dccpd_reset_code; break; } icsk->icsk_af_ops->send_check(sk, skb->len, skb); if (set_ack) dccp_event_ack_sent(sk); DCCP_INC_STATS(DCCP_MIB_OUTSEGS); memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); err = icsk->icsk_af_ops->queue_xmit(skb, 0); if (err <= 0) return err; /* NET_XMIT_CN is special. It does not guarantee, * that this packet is lost. It tells that device * is about to start to drop packets or already * drops some packets of the same priority and * invokes us to send less aggressively. */ return err == NET_XMIT_CN ? 0 : err; } return -ENOBUFS; } unsigned int dccp_sync_mss(struct sock *sk, u32 pmtu) { struct inet_connection_sock *icsk = inet_csk(sk); struct dccp_sock *dp = dccp_sk(sk); int mss_now = (pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct dccp_hdr) - sizeof(struct dccp_hdr_ext)); /* Now subtract optional transport overhead */ mss_now -= icsk->icsk_ext_hdr_len; /* * FIXME: this should come from the CCID infrastructure, where, say, * TFRC will say it wants TIMESTAMPS, ELAPSED time, etc, for now lets * put a rough estimate for NDP + TIMESTAMP + TIMESTAMP_ECHO + ELAPSED * TIME + TFRC_OPT_LOSS_EVENT_RATE + TFRC_OPT_RECEIVE_RATE + padding to * make it a multiple of 4 */ mss_now -= ((5 + 6 + 10 + 6 + 6 + 6 + 3) / 4) * 4; /* And store cached results */ icsk->icsk_pmtu_cookie = pmtu; dp->dccps_mss_cache = mss_now; return mss_now; } EXPORT_SYMBOL_GPL(dccp_sync_mss); void dccp_write_space(struct sock *sk) { read_lock(&sk->sk_callback_lock); if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) wake_up_interruptible(sk->sk_sleep); /* Should agree with poll, otherwise some programs break */ if (sock_writeable(sk)) sk_wake_async(sk, 2, POLL_OUT); read_unlock(&sk->sk_callback_lock); } /** * dccp_wait_for_ccid - Wait for ccid to tell us we can send a packet * @sk: socket to wait for * @timeo: for how long */ static int dccp_wait_for_ccid(struct sock *sk, struct sk_buff *skb, long *timeo) { struct dccp_sock *dp = dccp_sk(sk); DEFINE_WAIT(wait); long delay; int rc; while (1) { prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) goto do_error; if (!*timeo) goto do_nonblock; if (signal_pending(current)) goto do_interrupted; rc = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb, skb->len); if (rc <= 0) break; delay = msecs_to_jiffies(rc); if (delay > *timeo || delay < 0) goto do_nonblock; sk->sk_write_pending++; release_sock(sk); *timeo -= schedule_timeout(delay); lock_sock(sk); sk->sk_write_pending--; } out: finish_wait(sk->sk_sleep, &wait); return rc; do_error: rc = -EPIPE; goto out; do_nonblock: rc = -EAGAIN; goto out; do_interrupted: rc = sock_intr_errno(*timeo); goto out; } int dccp_write_xmit(struct sock *sk, struct sk_buff *skb, long *timeo) { const struct dccp_sock *dp = dccp_sk(sk); int err = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb, skb->len); if (err > 0) err = dccp_wait_for_ccid(sk, skb, timeo); if (err == 0) { struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb); const int len = skb->len; if (sk->sk_state == DCCP_PARTOPEN) { /* See 8.1.5. Handshake Completion */ inet_csk_schedule_ack(sk); inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, inet_csk(sk)->icsk_rto, DCCP_RTO_MAX); dcb->dccpd_type = DCCP_PKT_DATAACK; } else if (dccp_ack_pending(sk)) dcb->dccpd_type = DCCP_PKT_DATAACK; else dcb->dccpd_type = DCCP_PKT_DATA; err = dccp_transmit_skb(sk, skb); ccid_hc_tx_packet_sent(dp->dccps_hc_tx_ccid, sk, 0, len); } else kfree_skb(skb); return err; } int dccp_retransmit_skb(struct sock *sk, struct sk_buff *skb) { if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk) != 0) return -EHOSTUNREACH; /* Routing failure or similar. */ return dccp_transmit_skb(sk, (skb_cloned(skb) ? pskb_copy(skb, GFP_ATOMIC): skb_clone(skb, GFP_ATOMIC))); } struct sk_buff *dccp_make_response(struct sock *sk, struct dst_entry *dst, struct request_sock *req) { struct dccp_hdr *dh; struct dccp_request_sock *dreq; const int dccp_header_size = sizeof(struct dccp_hdr) + sizeof(struct dccp_hdr_ext) + sizeof(struct dccp_hdr_response); struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size, 1, GFP_ATOMIC); if (skb == NULL) return NULL; /* Reserve space for headers. */ skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size); skb->dst = dst_clone(dst); skb->csum = 0; dreq = dccp_rsk(req); DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESPONSE; DCCP_SKB_CB(skb)->dccpd_seq = dreq->dreq_iss; dccp_insert_options(sk, skb); skb->h.raw = skb_push(skb, dccp_header_size); dh = dccp_hdr(skb); memset(dh, 0, dccp_header_size); dh->dccph_sport = inet_sk(sk)->sport; dh->dccph_dport = inet_rsk(req)->rmt_port; dh->dccph_doff = (dccp_header_size + DCCP_SKB_CB(skb)->dccpd_opt_len) / 4; dh->dccph_type = DCCP_PKT_RESPONSE; dh->dccph_x = 1; dccp_hdr_set_seq(dh, dreq->dreq_iss); dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dreq->dreq_isr); dccp_hdr_response(skb)->dccph_resp_service = dreq->dreq_service; dh->dccph_checksum = dccp_v4_checksum(skb, inet_rsk(req)->loc_addr, inet_rsk(req)->rmt_addr); DCCP_INC_STATS(DCCP_MIB_OUTSEGS); return skb; } EXPORT_SYMBOL_GPL(dccp_make_response); static struct sk_buff *dccp_make_reset(struct sock *sk, struct dst_entry *dst, const enum dccp_reset_codes code) { struct dccp_hdr *dh; struct dccp_sock *dp = dccp_sk(sk); const int dccp_header_size = sizeof(struct dccp_hdr) + sizeof(struct dccp_hdr_ext) + sizeof(struct dccp_hdr_reset); struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size, 1, GFP_ATOMIC); if (skb == NULL) return NULL; /* Reserve space for headers. */ skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size); skb->dst = dst_clone(dst); skb->csum = 0; dccp_inc_seqno(&dp->dccps_gss); DCCP_SKB_CB(skb)->dccpd_reset_code = code; DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESET; DCCP_SKB_CB(skb)->dccpd_seq = dp->dccps_gss; dccp_insert_options(sk, skb); skb->h.raw = skb_push(skb, dccp_header_size); dh = dccp_hdr(skb); memset(dh, 0, dccp_header_size); dh->dccph_sport = inet_sk(sk)->sport; dh->dccph_dport = inet_sk(sk)->dport; dh->dccph_doff = (dccp_header_size + DCCP_SKB_CB(skb)->dccpd_opt_len) / 4; dh->dccph_type = DCCP_PKT_RESET; dh->dccph_x = 1; dccp_hdr_set_seq(dh, dp->dccps_gss); dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dp->dccps_gsr); dccp_hdr_reset(skb)->dccph_reset_code = code; inet_csk(sk)->icsk_af_ops->send_check(sk, skb->len, skb); DCCP_INC_STATS(DCCP_MIB_OUTSEGS); return skb; } int dccp_send_reset(struct sock *sk, enum dccp_reset_codes code) { /* * FIXME: what if rebuild_header fails? * Should we be doing a rebuild_header here? */ int err = inet_sk_rebuild_header(sk); if (err == 0) { struct sk_buff *skb = dccp_make_reset(sk, sk->sk_dst_cache, code); if (skb != NULL) { memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); err = inet_csk(sk)->icsk_af_ops->queue_xmit(skb, 0); if (err == NET_XMIT_CN) err = 0; } } return err; } /* * Do all connect socket setups that can be done AF independent. */ static inline void dccp_connect_init(struct sock *sk) { struct dccp_sock *dp = dccp_sk(sk); struct dst_entry *dst = __sk_dst_get(sk); struct inet_connection_sock *icsk = inet_csk(sk); sk->sk_err = 0; sock_reset_flag(sk, SOCK_DONE); dccp_sync_mss(sk, dst_mtu(dst)); dccp_update_gss(sk, dp->dccps_iss); /* * SWL and AWL are initially adjusted so that they are not less than * the initial Sequence Numbers received and sent, respectively: * SWL := max(GSR + 1 - floor(W/4), ISR), * AWL := max(GSS - W' + 1, ISS). * These adjustments MUST be applied only at the beginning of the * connection. */ dccp_set_seqno(&dp->dccps_awl, max48(dp->dccps_awl, dp->dccps_iss)); icsk->icsk_retransmits = 0; } int dccp_connect(struct sock *sk) { struct sk_buff *skb; struct inet_connection_sock *icsk = inet_csk(sk); dccp_connect_init(sk); skb = alloc_skb(MAX_DCCP_HEADER + 15, sk->sk_allocation); if (unlikely(skb == NULL)) return -ENOBUFS; /* Reserve space for headers. */ skb_reserve(skb, MAX_DCCP_HEADER); DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_REQUEST; skb->csum = 0; dccp_skb_entail(sk, skb); dccp_transmit_skb(sk, skb_clone(skb, GFP_KERNEL)); DCCP_INC_STATS(DCCP_MIB_ACTIVEOPENS); /* Timer for repeating the REQUEST until an answer. */ inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, icsk->icsk_rto, DCCP_RTO_MAX); return 0; } EXPORT_SYMBOL_GPL(dccp_connect); void dccp_send_ack(struct sock *sk) { /* If we have been reset, we may not send again. */ if (sk->sk_state != DCCP_CLOSED) { struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC); if (skb == NULL) { inet_csk_schedule_ack(sk); inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, TCP_DELACK_MAX, DCCP_RTO_MAX); return; } /* Reserve space for headers */ skb_reserve(skb, MAX_DCCP_HEADER); skb->csum = 0; DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_ACK; dccp_transmit_skb(sk, skb); } } EXPORT_SYMBOL_GPL(dccp_send_ack); void dccp_send_delayed_ack(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); /* * FIXME: tune this timer. elapsed time fixes the skew, so no problem * with using 2s, and active senders also piggyback the ACK into a * DATAACK packet, so this is really for quiescent senders. */ unsigned long timeout = jiffies + 2 * HZ; /* Use new timeout only if there wasn't a older one earlier. */ if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { /* If delack timer was blocked or is about to expire, * send ACK now. * * FIXME: check the "about to expire" part */ if (icsk->icsk_ack.blocked) { dccp_send_ack(sk); return; } if (!time_before(timeout, icsk->icsk_ack.timeout)) timeout = icsk->icsk_ack.timeout; } icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; icsk->icsk_ack.timeout = timeout; sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); } void dccp_send_sync(struct sock *sk, const u64 seq, const enum dccp_pkt_type pkt_type) { /* * We are not putting this on the write queue, so * dccp_transmit_skb() will set the ownership to this * sock. */ struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC); if (skb == NULL) /* FIXME: how to make sure the sync is sent? */ return; /* Reserve space for headers and prepare control bits. */ skb_reserve(skb, MAX_DCCP_HEADER); skb->csum = 0; DCCP_SKB_CB(skb)->dccpd_type = pkt_type; DCCP_SKB_CB(skb)->dccpd_seq = seq; dccp_transmit_skb(sk, skb); } /* * Send a DCCP_PKT_CLOSE/CLOSEREQ. The caller locks the socket for us. This * cannot be allowed to fail queueing a DCCP_PKT_CLOSE/CLOSEREQ frame under * any circumstances. */ void dccp_send_close(struct sock *sk, const int active) { struct dccp_sock *dp = dccp_sk(sk); struct sk_buff *skb; const gfp_t prio = active ? GFP_KERNEL : GFP_ATOMIC; skb = alloc_skb(sk->sk_prot->max_header, prio); if (skb == NULL) return; /* Reserve space for headers and prepare control bits. */ skb_reserve(skb, sk->sk_prot->max_header); skb->csum = 0; DCCP_SKB_CB(skb)->dccpd_type = dp->dccps_role == DCCP_ROLE_CLIENT ? DCCP_PKT_CLOSE : DCCP_PKT_CLOSEREQ; if (active) { dccp_skb_entail(sk, skb); dccp_transmit_skb(sk, skb_clone(skb, prio)); } else dccp_transmit_skb(sk, skb); }