summaryrefslogtreecommitdiff
path: root/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_iir_lattice_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_iir_lattice_q15.c')
-rw-r--r--platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_iir_lattice_q15.c464
1 files changed, 464 insertions, 0 deletions
diff --git a/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_iir_lattice_q15.c b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_iir_lattice_q15.c
new file mode 100644
index 0000000..4b32b47
--- /dev/null
+++ b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_iir_lattice_q15.c
@@ -0,0 +1,464 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
+*
+* $Date: 12. March 2014
+* $Revision: V1.4.4
+*
+* Project: CMSIS DSP Library
+* Title: arm_iir_lattice_q15.c
+*
+* Description: Q15 IIR lattice filter processing function.
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup IIR_Lattice
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ */
+
+void arm_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q31_t fcurr, fnext, gcurr = 0, gnext; /* Temporary variables for lattice stages */
+ q15_t gnext1, gnext2; /* Temporary variables for lattice stages */
+ uint32_t stgCnt; /* Temporary variables for counts */
+ q63_t acc; /* Accumlator */
+ uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
+ q15_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
+ uint32_t numStages = S->numStages; /* number of stages */
+ q15_t *pState; /* State pointer */
+ q15_t *pStateCurnt; /* State current pointer */
+ q15_t out; /* Temporary variable for output */
+ q31_t v; /* Temporary variable for ladder coefficient */
+#ifdef UNALIGNED_SUPPORT_DISABLE
+ q15_t v1, v2;
+#endif
+
+
+ blkCnt = blockSize;
+
+ pState = &S->pState[0];
+
+ /* Sample processing */
+ while(blkCnt > 0u)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+ /* Set accumulator to zero */
+ acc = 0;
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+
+ /* Process sample for first tap */
+ gcurr = *px1++;
+ /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
+ fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
+ fnext = __SSAT(fnext, 16);
+ /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
+ gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
+ gnext = __SSAT(gnext, 16);
+ /* write gN(n) into state for next sample processing */
+ *px2++ = (q15_t) gnext;
+ /* y(n) += gN(n) * vN */
+ acc += (q31_t) ((gnext * (*pv++)));
+
+
+ /* Update f values for next coefficient processing */
+ fcurr = fnext;
+
+ /* Loop unrolling. Process 4 taps at a time. */
+ tapCnt = (numStages - 1u) >> 2;
+
+ while(tapCnt > 0u)
+ {
+
+ /* Process sample for 2nd, 6th ...taps */
+ /* Read gN-2(n-1) from state buffer */
+ gcurr = *px1++;
+ /* Process sample for 2nd, 6th .. taps */
+ /* fN-2(n) = fN-1(n) - kN-1 * gN-2(n-1) */
+ fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
+ fnext = __SSAT(fnext, 16);
+ /* gN-1(n) = kN-1 * fN-2(n) + gN-2(n-1) */
+ gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
+ gnext1 = (q15_t) __SSAT(gnext, 16);
+ /* write gN-1(n) into state */
+ *px2++ = (q15_t) gnext1;
+
+
+ /* Process sample for 3nd, 7th ...taps */
+ /* Read gN-3(n-1) from state */
+ gcurr = *px1++;
+ /* Process sample for 3rd, 7th .. taps */
+ /* fN-3(n) = fN-2(n) - kN-2 * gN-3(n-1) */
+ fcurr = fnext - (((q31_t) gcurr * (*pk)) >> 15);
+ fcurr = __SSAT(fcurr, 16);
+ /* gN-2(n) = kN-2 * fN-3(n) + gN-3(n-1) */
+ gnext = (((q31_t) fcurr * (*pk++)) >> 15) + gcurr;
+ gnext2 = (q15_t) __SSAT(gnext, 16);
+ /* write gN-2(n) into state */
+ *px2++ = (q15_t) gnext2;
+
+ /* Read vN-1 and vN-2 at a time */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ v = *__SIMD32(pv)++;
+
+#else
+
+ v1 = *pv++;
+ v2 = *pv++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ v = __PKHBT(v1, v2, 16);
+
+#else
+
+ v = __PKHBT(v2, v1, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+
+ /* Pack gN-1(n) and gN-2(n) */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ gnext = __PKHBT(gnext1, gnext2, 16);
+
+#else
+
+ gnext = __PKHBT(gnext2, gnext1, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* y(n) += gN-1(n) * vN-1 */
+ /* process for gN-5(n) * vN-5, gN-9(n) * vN-9 ... */
+ /* y(n) += gN-2(n) * vN-2 */
+ /* process for gN-6(n) * vN-6, gN-10(n) * vN-10 ... */
+ acc = __SMLALD(gnext, v, acc);
+
+
+ /* Process sample for 4th, 8th ...taps */
+ /* Read gN-4(n-1) from state */
+ gcurr = *px1++;
+ /* Process sample for 4th, 8th .. taps */
+ /* fN-4(n) = fN-3(n) - kN-3 * gN-4(n-1) */
+ fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
+ fnext = __SSAT(fnext, 16);
+ /* gN-3(n) = kN-3 * fN-1(n) + gN-1(n-1) */
+ gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
+ gnext1 = (q15_t) __SSAT(gnext, 16);
+ /* write gN-3(n) for the next sample process */
+ *px2++ = (q15_t) gnext1;
+
+
+ /* Process sample for 5th, 9th ...taps */
+ /* Read gN-5(n-1) from state */
+ gcurr = *px1++;
+ /* Process sample for 5th, 9th .. taps */
+ /* fN-5(n) = fN-4(n) - kN-4 * gN-5(n-1) */
+ fcurr = fnext - (((q31_t) gcurr * (*pk)) >> 15);
+ fcurr = __SSAT(fcurr, 16);
+ /* gN-4(n) = kN-4 * fN-5(n) + gN-5(n-1) */
+ gnext = (((q31_t) fcurr * (*pk++)) >> 15) + gcurr;
+ gnext2 = (q15_t) __SSAT(gnext, 16);
+ /* write gN-4(n) for the next sample process */
+ *px2++ = (q15_t) gnext2;
+
+ /* Read vN-3 and vN-4 at a time */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ v = *__SIMD32(pv)++;
+
+#else
+
+ v1 = *pv++;
+ v2 = *pv++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ v = __PKHBT(v1, v2, 16);
+
+#else
+
+ v = __PKHBT(v2, v1, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+
+ /* Pack gN-3(n) and gN-4(n) */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ gnext = __PKHBT(gnext1, gnext2, 16);
+
+#else
+
+ gnext = __PKHBT(gnext2, gnext1, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* y(n) += gN-4(n) * vN-4 */
+ /* process for gN-8(n) * vN-8, gN-12(n) * vN-12 ... */
+ /* y(n) += gN-3(n) * vN-3 */
+ /* process for gN-7(n) * vN-7, gN-11(n) * vN-11 ... */
+ acc = __SMLALD(gnext, v, acc);
+
+ tapCnt--;
+
+ }
+
+ fnext = fcurr;
+
+ /* If the filter length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = (numStages - 1u) % 0x4u;
+
+ while(tapCnt > 0u)
+ {
+ gcurr = *px1++;
+ /* Process sample for last taps */
+ fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
+ fnext = __SSAT(fnext, 16);
+ gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
+ gnext = __SSAT(gnext, 16);
+ /* Output samples for last taps */
+ acc += (q31_t) (((q31_t) gnext * (*pv++)));
+ *px2++ = (q15_t) gnext;
+ fcurr = fnext;
+
+ tapCnt--;
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += (q31_t) (((q31_t) fnext * (*pv++)));
+
+ out = (q15_t) __SSAT(acc >> 15, 16);
+ *px2++ = (q15_t) fnext;
+
+ /* write out into pDst */
+ *pDst++ = out;
+
+ /* Advance the state pointer by 4 to process the next group of 4 samples */
+ pState = pState + 1u;
+ blkCnt--;
+
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ stgCnt = (numStages >> 2u);
+
+ /* copy data */
+ while(stgCnt > 0u)
+ {
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
+
+#else
+
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /* Decrement the loop counter */
+ stgCnt--;
+
+ }
+
+ /* Calculation of count for remaining q15_t data */
+ stgCnt = (numStages) % 0x4u;
+
+ /* copy data */
+ while(stgCnt > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ stgCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q31_t fcurr, fnext = 0, gcurr = 0, gnext; /* Temporary variables for lattice stages */
+ uint32_t stgCnt; /* Temporary variables for counts */
+ q63_t acc; /* Accumlator */
+ uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
+ q15_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
+ uint32_t numStages = S->numStages; /* number of stages */
+ q15_t *pState; /* State pointer */
+ q15_t *pStateCurnt; /* State current pointer */
+ q15_t out; /* Temporary variable for output */
+
+
+ blkCnt = blockSize;
+
+ pState = &S->pState[0];
+
+ /* Sample processing */
+ while(blkCnt > 0u)
+ {
+ /* Read Sample from input buffer */
+ /* fN(n) = x(n) */
+ fcurr = *pSrc++;
+
+ /* Initialize state read pointer */
+ px1 = pState;
+ /* Initialize state write pointer */
+ px2 = pState;
+ /* Set accumulator to zero */
+ acc = 0;
+ /* Initialize Ladder coeff pointer */
+ pv = &S->pvCoeffs[0];
+ /* Initialize Reflection coeff pointer */
+ pk = &S->pkCoeffs[0];
+
+ tapCnt = numStages;
+
+ while(tapCnt > 0u)
+ {
+ gcurr = *px1++;
+ /* Process sample */
+ /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
+ fnext = fcurr - ((gcurr * (*pk)) >> 15);
+ fnext = __SSAT(fnext, 16);
+ /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
+ gnext = ((fnext * (*pk++)) >> 15) + gcurr;
+ gnext = __SSAT(gnext, 16);
+ /* Output samples */
+ /* y(n) += gN(n) * vN */
+ acc += (q31_t) ((gnext * (*pv++)));
+ /* write gN(n) into state for next sample processing */
+ *px2++ = (q15_t) gnext;
+ /* Update f values for next coefficient processing */
+ fcurr = fnext;
+
+ tapCnt--;
+ }
+
+ /* y(n) += g0(n) * v0 */
+ acc += (q31_t) ((fnext * (*pv++)));
+
+ out = (q15_t) __SSAT(acc >> 15, 16);
+ *px2++ = (q15_t) fnext;
+
+ /* write out into pDst */
+ *pDst++ = out;
+
+ /* Advance the state pointer by 1 to process the next group of samples */
+ pState = pState + 1u;
+ blkCnt--;
+
+ }
+
+ /* Processing is complete. Now copy last S->numStages samples to start of the buffer
+ for the preperation of next frame process */
+ /* Points to the start of the state buffer */
+ pStateCurnt = &S->pState[0];
+ pState = &S->pState[blockSize];
+
+ stgCnt = numStages;
+
+ /* copy data */
+ while(stgCnt > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ stgCnt--;
+ }
+
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+
+}
+
+
+
+
+/**
+ * @} end of IIR_Lattice group
+ */