summaryrefslogtreecommitdiff
path: root/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_lattice_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_lattice_q15.c')
-rw-r--r--platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_lattice_q15.c536
1 files changed, 536 insertions, 0 deletions
diff --git a/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_lattice_q15.c b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_lattice_q15.c
new file mode 100644
index 0000000..7de00b2
--- /dev/null
+++ b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_lattice_q15.c
@@ -0,0 +1,536 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
+*
+* $Date: 12. March 2014
+* $Revision: V1.4.4
+*
+* Project: CMSIS DSP Library
+* Title: arm_fir_lattice_q15.c
+*
+* Description: Q15 FIR lattice filter processing function.
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Lattice
+ * @{
+ */
+
+
+/**
+ * @brief Processing function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+void arm_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize)
+{
+ q15_t *pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *px; /* temporary state pointer */
+ q15_t *pk; /* temporary coefficient pointer */
+
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q31_t fcurnt1, fnext1, gcurnt1 = 0, gnext1; /* temporary variables for first sample in loop unrolling */
+ q31_t fcurnt2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */
+ q31_t fcurnt3, fnext3, gnext3; /* temporary variables for third sample in loop unrolling */
+ q31_t fcurnt4, fnext4, gnext4; /* temporary variables for fourth sample in loop unrolling */
+ uint32_t numStages = S->numStages; /* Number of stages in the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+
+ pState = &S->pState[0];
+
+ blkCnt = blockSize >> 2u;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while(blkCnt > 0u)
+ {
+
+ /* Read two samples from input buffer */
+ /* f0(n) = x(n) */
+ fcurnt1 = *pSrc++;
+ fcurnt2 = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Read g0(n-1) from state */
+ gcurnt1 = *px;
+
+ /* Process first sample for first tap */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext1 = (q31_t) ((fcurnt1 * (*pk)) >> 15u) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+ /* Process second sample for first tap */
+ /* for sample 2 processing */
+ fnext2 = (q31_t) ((fcurnt1 * (*pk)) >> 15u) + fcurnt2;
+ fnext2 = __SSAT(fnext2, 16);
+
+ gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + fcurnt1;
+ gnext2 = __SSAT(gnext2, 16);
+
+
+ /* Read next two samples from input buffer */
+ /* f0(n+2) = x(n+2) */
+ fcurnt3 = *pSrc++;
+ fcurnt4 = *pSrc++;
+
+ /* Copy only last input samples into the state buffer
+ which is used for next four samples processing */
+ *px++ = (q15_t) fcurnt4;
+
+ /* Process third sample for first tap */
+ fnext3 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + fcurnt3;
+ fnext3 = __SSAT(fnext3, 16);
+ gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + fcurnt2;
+ gnext3 = __SSAT(gnext3, 16);
+
+ /* Process fourth sample for first tap */
+ fnext4 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + fcurnt4;
+ fnext4 = __SSAT(fnext4, 16);
+ gnext4 = (q31_t) ((fcurnt4 * (*pk++)) >> 15u) + fcurnt3;
+ gnext4 = __SSAT(gnext4, 16);
+
+ /* Update of f values for next coefficient set processing */
+ fcurnt1 = fnext1;
+ fcurnt2 = fnext2;
+ fcurnt3 = fnext3;
+ fcurnt4 = fnext4;
+
+
+ /* Loop unrolling. Process 4 taps at a time . */
+ stageCnt = (numStages - 1u) >> 2;
+
+
+ /* Loop over the number of taps. Unroll by a factor of 4.
+ ** Repeat until we've computed numStages-3 coefficients. */
+
+ /* Process 2nd, 3rd, 4th and 5th taps ... here */
+ while(stageCnt > 0u)
+ {
+ /* Read g1(n-1), g3(n-1) .... from state */
+ gcurnt1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = (q15_t) gnext4;
+
+ /* Process first sample for 2nd, 6th .. tap */
+ /* Sample processing for K2, K6.... */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+
+
+ /* Process second sample for 2nd, 6th .. tap */
+ /* for sample 2 processing */
+ fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fcurnt2;
+ fnext2 = __SSAT(fnext2, 16);
+ /* Process third sample for 2nd, 6th .. tap */
+ fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fcurnt3;
+ fnext3 = __SSAT(fnext3, 16);
+ /* Process fourth sample for 2nd, 6th .. tap */
+ /* fnext4 = fcurnt4 + (*pk) * gnext3; */
+ fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fcurnt4;
+ fnext4 = __SSAT(fnext4, 16);
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ /* Calculation of state values for next stage */
+ gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15u) + gnext3;
+ gnext4 = __SSAT(gnext4, 16);
+ gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + gnext2;
+ gnext3 = __SSAT(gnext3, 16);
+
+ gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + gnext1;
+ gnext2 = __SSAT(gnext2, 16);
+
+ gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15u) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+
+ /* Read g2(n-1), g4(n-1) .... from state */
+ gcurnt1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = (q15_t) gnext4;
+
+ /* Sample processing for K3, K7.... */
+ /* Process first sample for 3rd, 7th .. tap */
+ /* f3(n) = f2(n) + K3 * g2(n-1) */
+ fcurnt1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fnext1;
+ fcurnt1 = __SSAT(fcurnt1, 16);
+
+ /* Process second sample for 3rd, 7th .. tap */
+ fcurnt2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fnext2;
+ fcurnt2 = __SSAT(fcurnt2, 16);
+
+ /* Process third sample for 3rd, 7th .. tap */
+ fcurnt3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fnext3;
+ fcurnt3 = __SSAT(fcurnt3, 16);
+
+ /* Process fourth sample for 3rd, 7th .. tap */
+ fcurnt4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fnext4;
+ fcurnt4 = __SSAT(fcurnt4, 16);
+
+ /* Calculation of state values for next stage */
+ /* g3(n) = f2(n) * K3 + g2(n-1) */
+ gnext4 = (q31_t) ((fnext4 * (*pk)) >> 15u) + gnext3;
+ gnext4 = __SSAT(gnext4, 16);
+
+ gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15u) + gnext2;
+ gnext3 = __SSAT(gnext3, 16);
+
+ gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15u) + gnext1;
+ gnext2 = __SSAT(gnext2, 16);
+
+ gnext1 = (q31_t) ((fnext1 * (*pk++)) >> 15u) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+ /* Read g1(n-1), g3(n-1) .... from state */
+ gcurnt1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = (q15_t) gnext4;
+
+ /* Sample processing for K4, K8.... */
+ /* Process first sample for 4th, 8th .. tap */
+ /* f4(n) = f3(n) + K4 * g3(n-1) */
+ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+
+ /* Process second sample for 4th, 8th .. tap */
+ /* for sample 2 processing */
+ fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fcurnt2;
+ fnext2 = __SSAT(fnext2, 16);
+
+ /* Process third sample for 4th, 8th .. tap */
+ fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fcurnt3;
+ fnext3 = __SSAT(fnext3, 16);
+
+ /* Process fourth sample for 4th, 8th .. tap */
+ fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fcurnt4;
+ fnext4 = __SSAT(fnext4, 16);
+
+ /* g4(n) = f3(n) * K4 + g3(n-1) */
+ /* Calculation of state values for next stage */
+ gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15u) + gnext3;
+ gnext4 = __SSAT(gnext4, 16);
+
+ gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + gnext2;
+ gnext3 = __SSAT(gnext3, 16);
+
+ gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + gnext1;
+ gnext2 = __SSAT(gnext2, 16);
+ gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15u) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+
+ /* Read g2(n-1), g4(n-1) .... from state */
+ gcurnt1 = *px;
+
+ /* save g4(n) in state buffer */
+ *px++ = (q15_t) gnext4;
+
+ /* Sample processing for K5, K9.... */
+ /* Process first sample for 5th, 9th .. tap */
+ /* f5(n) = f4(n) + K5 * g4(n-1) */
+ fcurnt1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fnext1;
+ fcurnt1 = __SSAT(fcurnt1, 16);
+
+ /* Process second sample for 5th, 9th .. tap */
+ fcurnt2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fnext2;
+ fcurnt2 = __SSAT(fcurnt2, 16);
+
+ /* Process third sample for 5th, 9th .. tap */
+ fcurnt3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fnext3;
+ fcurnt3 = __SSAT(fcurnt3, 16);
+
+ /* Process fourth sample for 5th, 9th .. tap */
+ fcurnt4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fnext4;
+ fcurnt4 = __SSAT(fcurnt4, 16);
+
+ /* Calculation of state values for next stage */
+ /* g5(n) = f4(n) * K5 + g4(n-1) */
+ gnext4 = (q31_t) ((fnext4 * (*pk)) >> 15u) + gnext3;
+ gnext4 = __SSAT(gnext4, 16);
+ gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15u) + gnext2;
+ gnext3 = __SSAT(gnext3, 16);
+ gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15u) + gnext1;
+ gnext2 = __SSAT(gnext2, 16);
+ gnext1 = (q31_t) ((fnext1 * (*pk++)) >> 15u) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+ stageCnt--;
+ }
+
+ /* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */
+ stageCnt = (numStages - 1u) % 0x4u;
+
+ while(stageCnt > 0u)
+ {
+ gcurnt1 = *px;
+
+ /* save g value in state buffer */
+ *px++ = (q15_t) gnext4;
+
+ /* Process four samples for last three taps here */
+ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+ fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fcurnt2;
+ fnext2 = __SSAT(fnext2, 16);
+
+ fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fcurnt3;
+ fnext3 = __SSAT(fnext3, 16);
+
+ fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fcurnt4;
+ fnext4 = __SSAT(fnext4, 16);
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15u) + gnext3;
+ gnext4 = __SSAT(gnext4, 16);
+ gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + gnext2;
+ gnext3 = __SSAT(gnext3, 16);
+ gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + gnext1;
+ gnext2 = __SSAT(gnext2, 16);
+ gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15u) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+ /* Update of f values for next coefficient set processing */
+ fcurnt1 = fnext1;
+ fcurnt2 = fnext2;
+ fcurnt3 = fnext3;
+ fcurnt4 = fnext4;
+
+ stageCnt--;
+
+ }
+
+ /* The results in the 4 accumulators, store in the destination buffer. */
+ /* y(n) = fN(n) */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pDst)++ = __PKHBT(fcurnt1, fcurnt2, 16);
+ *__SIMD32(pDst)++ = __PKHBT(fcurnt3, fcurnt4, 16);
+
+#else
+
+ *__SIMD32(pDst)++ = __PKHBT(fcurnt2, fcurnt1, 16);
+ *__SIMD32(pDst)++ = __PKHBT(fcurnt4, fcurnt3, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x4u;
+
+ while(blkCnt > 0u)
+ {
+ /* f0(n) = x(n) */
+ fcurnt1 = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g2(n) from state buffer */
+ gcurnt1 = *px;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext1 = (((q31_t) gcurnt1 * (*pk)) >> 15u) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext1 = (((q31_t) fcurnt1 * (*pk++)) >> 15u) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+ /* save g1(n) in state buffer */
+ *px++ = (q15_t) fcurnt1;
+
+ /* f1(n) is saved in fcurnt1
+ for next stage processing */
+ fcurnt1 = fnext1;
+
+ stageCnt = (numStages - 1u);
+
+ /* stage loop */
+ while(stageCnt > 0u)
+ {
+ /* read g2(n) from state buffer */
+ gcurnt1 = *px;
+
+ /* save g1(n) in state buffer */
+ *px++ = (q15_t) gnext1;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext1 = (((q31_t) gcurnt1 * (*pk)) >> 15u) + fcurnt1;
+ fnext1 = __SSAT(fnext1, 16);
+
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext1 = (((q31_t) fcurnt1 * (*pk++)) >> 15u) + gcurnt1;
+ gnext1 = __SSAT(gnext1, 16);
+
+
+ /* f1(n) is saved in fcurnt1
+ for next stage processing */
+ fcurnt1 = fnext1;
+
+ stageCnt--;
+
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = __SSAT(fcurnt1, 16);
+
+
+ blkCnt--;
+
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ q31_t fcurnt, fnext, gcurnt, gnext; /* temporary variables */
+ uint32_t numStages = S->numStages; /* Length of the filter */
+ uint32_t blkCnt, stageCnt; /* temporary variables for counts */
+
+ pState = &S->pState[0];
+
+ blkCnt = blockSize;
+
+ while(blkCnt > 0u)
+ {
+ /* f0(n) = x(n) */
+ fcurnt = *pSrc++;
+
+ /* Initialize coeff pointer */
+ pk = (pCoeffs);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* read g0(n-1) from state buffer */
+ gcurnt = *px;
+
+ /* for sample 1 processing */
+ /* f1(n) = f0(n) + K1 * g0(n-1) */
+ fnext = ((gcurnt * (*pk)) >> 15u) + fcurnt;
+ fnext = __SSAT(fnext, 16);
+
+
+ /* g1(n) = f0(n) * K1 + g0(n-1) */
+ gnext = ((fcurnt * (*pk++)) >> 15u) + gcurnt;
+ gnext = __SSAT(gnext, 16);
+
+ /* save f0(n) in state buffer */
+ *px++ = (q15_t) fcurnt;
+
+ /* f1(n) is saved in fcurnt
+ for next stage processing */
+ fcurnt = fnext;
+
+ stageCnt = (numStages - 1u);
+
+ /* stage loop */
+ while(stageCnt > 0u)
+ {
+ /* read g1(n-1) from state buffer */
+ gcurnt = *px;
+
+ /* save g0(n-1) in state buffer */
+ *px++ = (q15_t) gnext;
+
+ /* Sample processing for K2, K3.... */
+ /* f2(n) = f1(n) + K2 * g1(n-1) */
+ fnext = ((gcurnt * (*pk)) >> 15u) + fcurnt;
+ fnext = __SSAT(fnext, 16);
+
+ /* g2(n) = f1(n) * K2 + g1(n-1) */
+ gnext = ((fcurnt * (*pk++)) >> 15u) + gcurnt;
+ gnext = __SSAT(gnext, 16);
+
+
+ /* f1(n) is saved in fcurnt
+ for next stage processing */
+ fcurnt = fnext;
+
+ stageCnt--;
+
+ }
+
+ /* y(n) = fN(n) */
+ *pDst++ = __SSAT(fcurnt, 16);
+
+
+ blkCnt--;
+
+ }
+
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+
+}
+
+/**
+ * @} end of FIR_Lattice group
+ */