summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/omap_gpmc.c
blob: 8c0f3a4233d85b64c2d7d5ef2434a92633509fed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
// SPDX-License-Identifier: GPL-2.0+
/*
 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
 * Rohit Choraria <rohitkc@ti.com>
 */

#include <common.h>
#include <log.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <linux/mtd/omap_gpmc.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/bch.h>
#include <linux/compiler.h>
#include <nand.h>
#include <soc.h>
#include <dm/uclass.h>

#include "omap_elm.h"

#define BADBLOCK_MARKER_LENGTH	2
#define SECTOR_BYTES		512
#define ECCSIZE0_SHIFT		12
#define ECCSIZE1_SHIFT		22
#define ECC1RESULTSIZE		0x1
#define ECCCLEAR		(0x1 << 8)
#define ECCRESULTREG1		(0x1 << 0)
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD		4

#ifdef CONFIG_BCH
static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
				0x97, 0x79, 0xe5, 0x24, 0xb5};
#endif
static uint8_t cs_next;

#if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
	{ CONFIG_NAND_OMAP_GPMC_WSCFG };
#else
/* wscfg is preset to zero since its a static variable */
static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
#endif

/*
 * Driver configurations
 */
struct omap_nand_info {
	struct bch_control *control;
	enum omap_ecc ecc_scheme;
	uint8_t cs;
	uint8_t ws;		/* wait status pin (0,1) */
	void __iomem *fifo;
	bool force_32bit;
};

/* We are wasting a bit of memory but al least we are safe */
static struct omap_nand_info omap_nand_info[GPMC_CS_NUM];

/*
 * omap_nand_hwcontrol - Set the address pointers corretly for the
 *			following address/data/command operation
 */
static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
				uint32_t ctrl)
{
	register struct nand_chip *this = mtd_to_nand(mtd);
	struct omap_nand_info *info = nand_get_controller_data(this);
	int cs = info->cs;

	/*
	 * Point the IO_ADDR to DATA and ADDRESS registers instead
	 * of chip address
	 */
	switch (ctrl) {
	case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
		break;
	case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
		break;
	case NAND_CTRL_CHANGE | NAND_NCE:
		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
		break;
	}

	if (cmd != NAND_CMD_NONE)
		writeb(cmd, this->IO_ADDR_W);
}

/* Check wait pin as dev ready indicator */
static int omap_dev_ready(struct mtd_info *mtd)
{
	register struct nand_chip *this = mtd_to_nand(mtd);
	struct omap_nand_info *info = nand_get_controller_data(this);
	return gpmc_cfg->status & (1 << (8 + info->ws));
}

/*
 * gen_true_ecc - This function will generate true ECC value, which
 * can be used when correcting data read from NAND flash memory core
 *
 * @ecc_buf:	buffer to store ecc code
 *
 * @return:	re-formatted ECC value
 */
static uint32_t gen_true_ecc(uint8_t *ecc_buf)
{
	return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
		((ecc_buf[2] & 0x0F) << 8);
}

/*
 * omap_correct_data - Compares the ecc read from nand spare area with ECC
 * registers values and corrects one bit error if it has occurred
 * Further details can be had from OMAP TRM and the following selected links:
 * http://en.wikipedia.org/wiki/Hamming_code
 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
 *
 * @mtd:		 MTD device structure
 * @dat:		 page data
 * @read_ecc:		 ecc read from nand flash
 * @calc_ecc:		 ecc read from ECC registers
 *
 * @return 0 if data is OK or corrected, else returns -1
 */
static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
	uint32_t orig_ecc, new_ecc, res, hm;
	uint16_t parity_bits, byte;
	uint8_t bit;

	/* Regenerate the orginal ECC */
	orig_ecc = gen_true_ecc(read_ecc);
	new_ecc = gen_true_ecc(calc_ecc);
	/* Get the XOR of real ecc */
	res = orig_ecc ^ new_ecc;
	if (res) {
		/* Get the hamming width */
		hm = hweight32(res);
		/* Single bit errors can be corrected! */
		if (hm == 12) {
			/* Correctable data! */
			parity_bits = res >> 16;
			bit = (parity_bits & 0x7);
			byte = (parity_bits >> 3) & 0x1FF;
			/* Flip the bit to correct */
			dat[byte] ^= (0x1 << bit);
		} else if (hm == 1) {
			printf("Error: Ecc is wrong\n");
			/* ECC itself is corrupted */
			return 2;
		} else {
			/*
			 * hm distance != parity pairs OR one, could mean 2 bit
			 * error OR potentially be on a blank page..
			 * orig_ecc: contains spare area data from nand flash.
			 * new_ecc: generated ecc while reading data area.
			 * Note: if the ecc = 0, all data bits from which it was
			 * generated are 0xFF.
			 * The 3 byte(24 bits) ecc is generated per 512byte
			 * chunk of a page. If orig_ecc(from spare area)
			 * is 0xFF && new_ecc(computed now from data area)=0x0,
			 * this means that data area is 0xFF and spare area is
			 * 0xFF. A sure sign of a erased page!
			 */
			if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
				return 0;
			printf("Error: Bad compare! failed\n");
			/* detected 2 bit error */
			return -EBADMSG;
		}
	}
	return 0;
}

/*
 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
 * @mtd:	MTD device structure
 * @mode:	Read/Write mode
 */
__maybe_unused
static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct omap_nand_info *info = nand_get_controller_data(nand);
	unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
	u32 val;

	/* Clear ecc and enable bits */
	writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);

	/* program ecc and result sizes */
	val = ((((nand->ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
			ECC1RESULTSIZE);
	writel(val, &gpmc_cfg->ecc_size_config);

	switch (mode) {
	case NAND_ECC_READ:
	case NAND_ECC_WRITE:
		writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
		break;
	case NAND_ECC_READSYN:
		writel(ECCCLEAR, &gpmc_cfg->ecc_control);
		break;
	default:
		printf("%s: error: unrecognized Mode[%d]!\n", __func__, mode);
		break;
	}

	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
	val = (dev_width << 7) | (info->cs << 1) | (0x1);
	writel(val, &gpmc_cfg->ecc_config);
}

/*
 *  omap_calculate_ecc - Read ECC result
 *  @mtd:	MTD structure
 *  @dat:	unused
 *  @ecc_code:	ecc_code buffer
 *  Using noninverted ECC can be considered ugly since writing a blank
 *  page ie. padding will clear the ECC bytes. This is no problem as
 *  long nobody is trying to write data on the seemingly unused page.
 *  Reading an erased page will produce an ECC mismatch between
 *  generated and read ECC bytes that has to be dealt with separately.
 *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
 *  is used, the result of read will be 0x0 while the ECC offsets of the
 *  spare area will be 0xFF which will result in an ECC mismatch.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
				uint8_t *ecc_code)
{
	u32 val;

	val = readl(&gpmc_cfg->ecc1_result);
	ecc_code[0] = val & 0xFF;
	ecc_code[1] = (val >> 16) & 0xFF;
	ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);

	return 0;
}

/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */

/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
#define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */

/**
 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 *
 * When using BCH with SW correction (i.e. no ELM), sector size is set
 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
 * for both reading and writing with:
 * eccsize0 = 0  (no additional protected byte in spare area)
 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
 */
static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd,
						 int mode)
{
	unsigned int bch_type;
	unsigned int dev_width, nsectors;
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct omap_nand_info *info = nand_get_controller_data(chip);
	u32 val, wr_mode;
	unsigned int ecc_size1, ecc_size0;

	/* GPMC configurations for calculating ECC */
	switch (info->ecc_scheme) {
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		bch_type = 1;
		nsectors = 1;
		wr_mode   = BCH_WRAPMODE_6;
		ecc_size0 = BCH_ECC_SIZE0;
		ecc_size1 = BCH_ECC_SIZE1;
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		bch_type = 1;
		nsectors = chip->ecc.steps;
		if (mode == NAND_ECC_READ) {
			wr_mode   = BCH_WRAPMODE_1;
			ecc_size0 = BCH8R_ECC_SIZE0;
			ecc_size1 = BCH8R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH16_CODE_HW:
		bch_type = 0x2;
		nsectors = chip->ecc.steps;
		if (mode == NAND_ECC_READ) {
			wr_mode   = 0x01;
			ecc_size0 = 52; /* ECC bits in nibbles per sector */
			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
		} else {
			wr_mode   = 0x01;
			ecc_size0 = 0;  /* extra bits in nibbles per sector */
			ecc_size1 = 52; /* OOB bits in nibbles per sector */
		}
		break;
	default:
		return;
	}

	writel(ECCRESULTREG1, &gpmc_cfg->ecc_control);

	/* Configure ecc size for BCH */
	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
	writel(val, &gpmc_cfg->ecc_size_config);

	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

	/* BCH configuration */
	val = ((1			<< 16) | /* enable BCH */
	       (bch_type		<< 12) | /* BCH4/BCH8/BCH16 */
	       (wr_mode			<<  8) | /* wrap mode */
	       (dev_width		<<  7) | /* bus width */
	       (((nsectors - 1) & 0x7)	<<  4) | /* number of sectors */
	       (info->cs		<<  1) | /* ECC CS */
	       (0x1));				 /* enable ECC */

	writel(val, &gpmc_cfg->ecc_config);

	/* Clear ecc and enable bits */
	writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
}

#if defined(CONFIG_BCH) || defined(CONFIG_NAND_OMAP_ELM)
/**
 * _omap_calculate_ecc_bch - Generate BCH ECC bytes for one sector
 * @mtd:        MTD device structure
 * @dat:        The pointer to data on which ecc is computed
 * @ecc_code:   The ecc_code buffer
 * @sector:     The sector number (for a multi sector page)
 *
 * Support calculating of BCH4/8/16 ECC vectors for one sector
 * within a page. Sector number is in @sector.
 */
static int _omap_calculate_ecc_bch(struct mtd_info *mtd, const u8 *dat,
				   u8 *ecc_code, int sector)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct omap_nand_info *info = nand_get_controller_data(chip);
	const uint32_t *ptr;
	uint32_t val = 0;
	int8_t i = 0, j;

	switch (info->ecc_scheme) {
#ifdef CONFIG_BCH
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#endif
	case OMAP_ECC_BCH8_CODE_HW:
		ptr = &gpmc_cfg->bch_result_0_3[sector].bch_result_x[3];
		val = readl(ptr);
		ecc_code[i++] = (val >>  0) & 0xFF;
		ptr--;
		for (j = 0; j < 3; j++) {
			val = readl(ptr);
			ecc_code[i++] = (val >> 24) & 0xFF;
			ecc_code[i++] = (val >> 16) & 0xFF;
			ecc_code[i++] = (val >>  8) & 0xFF;
			ecc_code[i++] = (val >>  0) & 0xFF;
			ptr--;
		}

		break;
	case OMAP_ECC_BCH16_CODE_HW:
		val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[2]);
		ecc_code[i++] = (val >>  8) & 0xFF;
		ecc_code[i++] = (val >>  0) & 0xFF;
		val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[1]);
		ecc_code[i++] = (val >> 24) & 0xFF;
		ecc_code[i++] = (val >> 16) & 0xFF;
		ecc_code[i++] = (val >>  8) & 0xFF;
		ecc_code[i++] = (val >>  0) & 0xFF;
		val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[0]);
		ecc_code[i++] = (val >> 24) & 0xFF;
		ecc_code[i++] = (val >> 16) & 0xFF;
		ecc_code[i++] = (val >>  8) & 0xFF;
		ecc_code[i++] = (val >>  0) & 0xFF;
		for (j = 3; j >= 0; j--) {
			val = readl(&gpmc_cfg->bch_result_0_3[sector].bch_result_x[j]
									);
			ecc_code[i++] = (val >> 24) & 0xFF;
			ecc_code[i++] = (val >> 16) & 0xFF;
			ecc_code[i++] = (val >>  8) & 0xFF;
			ecc_code[i++] = (val >>  0) & 0xFF;
		}
		break;
	default:
		return -EINVAL;
	}
	/* ECC scheme specific syndrome customizations */
	switch (info->ecc_scheme) {
#ifdef CONFIG_BCH
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		/* Add constant polynomial to remainder, so that
		 * ECC of blank pages results in 0x0 on reading back
		 */
		for (i = 0; i < chip->ecc.bytes; i++)
			ecc_code[i] ^= bch8_polynomial[i];
		break;
#endif
	case OMAP_ECC_BCH8_CODE_HW:
		/* Set 14th ECC byte as 0x0 for ROM compatibility */
		ecc_code[chip->ecc.bytes - 1] = 0x0;
		break;
	case OMAP_ECC_BCH16_CODE_HW:
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

/**
 * omap_calculate_ecc_bch - ECC generator for 1 sector
 * @mtd:        MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
 * when SW based correction is required as ECC is required for one sector
 * at a time.
 */
static int omap_calculate_ecc_bch(struct mtd_info *mtd,
				  const u_char *dat, u_char *ecc_calc)
{
	return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
}
#endif /* CONFIG_BCH || CONFIG_NAND_OMAP_ELM */

static inline void omap_nand_read_buf(struct mtd_info *mtd, uint8_t *buf,
				      int len, bool force_8bit)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct omap_nand_info *info = nand_get_controller_data(chip);
	u32 alignment = ((uintptr_t)buf | len) & 3;

	if (info->force_32bit) {
		u32 val;
		int left;
		u8 *ptr;

		readsl(info->fifo, buf, len >> 2);
		left = len & 0x3;
		if (left) {
			val = readl(info->fifo);
			ptr = (u8 *)(buf + (len - left));
			while (left--) {
				*ptr++ = val & 0xff;
				val >>= 8;
			}
		}

		return;
	}

	if (force_8bit || alignment & 1)
		readsb(info->fifo, buf, len);
	else if (alignment & 3)
		readsw(info->fifo, buf, len >> 1);
	else
		readsl(info->fifo, buf, len >> 2);
}

#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH

#define PREFETCH_CONFIG1_CS_SHIFT	24
#define PREFETCH_FIFOTHRESHOLD_MAX	0x40
#define PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
#define PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
#define PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
#define ENABLE_PREFETCH			(1 << 7)

/**
 * omap_prefetch_enable - configures and starts prefetch transfer
 * @fifo_th: fifo threshold to be used for read/ write
 * @count: number of bytes to be transferred
 * @is_write: prefetch read(0) or write post(1) mode
 * @cs: chip select to use
 */
static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
{
	uint32_t val;

	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
		return -EINVAL;

	if (readl(&gpmc_cfg->prefetch_control))
		return -EBUSY;

	/* Set the amount of bytes to be prefetched */
	writel(count, &gpmc_cfg->prefetch_config2);

	val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
	writel(val, &gpmc_cfg->prefetch_config1);

	/*  Start the prefetch engine */
	writel(1, &gpmc_cfg->prefetch_control);

	return 0;
}

/**
 * omap_prefetch_reset - disables and stops the prefetch engine
 */
static void omap_prefetch_reset(void)
{
	writel(0, &gpmc_cfg->prefetch_control);
	writel(0, &gpmc_cfg->prefetch_config1);
}

static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
{
	int ret;
	uint32_t cnt;
	struct omap_nand_info *info = nand_get_controller_data(chip);

	ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
	if (ret < 0)
		return ret;

	do {
		int i;

		cnt = readl(&gpmc_cfg->prefetch_status);
		cnt = PREFETCH_STATUS_FIFO_CNT(cnt);

		for (i = 0; i < cnt / 4; i++) {
			*buf++ = readl(info->fifo);
			len -= 4;
		}
	} while (len);

	omap_prefetch_reset();

	return 0;
}

static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len,
				    bool force_8bit)
{
	int ret;
	uintptr_t head, tail;
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (force_8bit) {
		omap_nand_read_buf(mtd, buf, len, true);
		return;
	}

	/*
	 * If the destination buffer is unaligned, start with reading
	 * the overlap byte-wise.
	 */
	head = ((uintptr_t)buf) % 4;
	if (head) {
		omap_nand_read_buf(mtd, buf, head, false);
		buf += head;
		len -= head;
	}

	/*
	 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
	 * If there's a residue, care for it byte-wise afterwards.
	 */
	tail = len % 4;

	ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
	if (ret < 0) {
		/* fallback in case the prefetch engine is busy */
		omap_nand_read_buf(mtd, buf, len, false);
	} else if (tail) {
		buf += len - tail;
		omap_nand_read_buf(mtd, buf, tail, false);
	}
}
#endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */

#ifdef CONFIG_NAND_OMAP_ELM

/**
 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
 * @mtd:	MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
 */
static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
					const u_char *dat, u_char *ecc_calc)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int eccbytes = chip->ecc.bytes;
	unsigned long nsectors;
	int i, ret;

	nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
	for (i = 0; i < nsectors; i++) {
		ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
		if (ret)
			return ret;

		ecc_calc += eccbytes;
	}

	return 0;
}

/*
 * omap_reverse_list - re-orders list elements in reverse order [internal]
 * @list:	pointer to start of list
 * @length:	length of list
*/
static void omap_reverse_list(u8 *list, unsigned int length)
{
	unsigned int i, j;
	unsigned int half_length = length / 2;
	u8 tmp;
	for (i = 0, j = length - 1; i < half_length; i++, j--) {
		tmp = list[i];
		list[i] = list[j];
		list[j] = tmp;
	}
}

/*
 * omap_correct_data_bch - Compares the ecc read from nand spare area
 * with ECC registers values and corrects one bit error if it has occurred
 *
 * @mtd:	MTD device structure
 * @dat:	page data
 * @read_ecc:	ecc read from nand flash (ignored)
 * @calc_ecc:	ecc read from ECC registers
 *
 * @return 0 if data is OK or corrected, else returns -1
 */
static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct omap_nand_info *info = nand_get_controller_data(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	uint32_t error_count = 0, error_max;
	uint32_t error_loc[ELM_MAX_ERROR_COUNT];
	enum bch_level bch_type;
	uint32_t i, ecc_flag = 0;
	uint8_t count;
	uint32_t byte_pos, bit_pos;
	int err = 0;

	/* check calculated ecc */
	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
		if (calc_ecc[i] != 0x00)
			ecc_flag = 1;
	}
	if (!ecc_flag)
		return 0;

	/* check for whether its a erased-page */
	ecc_flag = 0;
	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
		if (read_ecc[i] != 0xff)
			ecc_flag = 1;
	}
	if (!ecc_flag)
		return 0;

	/*
	 * while reading ECC result we read it in big endian.
	 * Hence while loading to ELM we have rotate to get the right endian.
	 */
	switch (info->ecc_scheme) {
	case OMAP_ECC_BCH8_CODE_HW:
		bch_type = BCH_8_BIT;
		omap_reverse_list(calc_ecc, ecc->bytes - 1);
		break;
	case OMAP_ECC_BCH16_CODE_HW:
		bch_type = BCH_16_BIT;
		omap_reverse_list(calc_ecc, ecc->bytes);
		break;
	default:
		return -EINVAL;
	}
	/* use elm module to check for errors */
	elm_config(bch_type);
	err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
	if (err)
		return err;

	/* correct bch error */
	for (count = 0; count < error_count; count++) {
		switch (info->ecc_scheme) {
		case OMAP_ECC_BCH8_CODE_HW:
			/* 14th byte in ECC is reserved to match ROM layout */
			error_max = SECTOR_BYTES + (ecc->bytes - 1);
			break;
		case OMAP_ECC_BCH16_CODE_HW:
			error_max = SECTOR_BYTES + ecc->bytes;
			break;
		default:
			return -EINVAL;
		}
		byte_pos = error_max - (error_loc[count] / 8) - 1;
		bit_pos  = error_loc[count] % 8;
		if (byte_pos < SECTOR_BYTES) {
			dat[byte_pos] ^= 1 << bit_pos;
			debug("nand: bit-flip corrected @data=%d\n", byte_pos);
		} else if (byte_pos < error_max) {
			read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
			debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
								SECTOR_BYTES);
		} else {
			err = -EBADMSG;
			printf("nand: error: invalid bit-flip location\n");
		}
	}
	return (err) ? err : error_count;
}

/**
 * omap_read_page_bch - hardware ecc based page read function
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	buffer to store read data
 * @oob_required: caller expects OOB data read to chip->oob_poi
 * @page:	page number to read
 *
 */
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int ecctotal = chip->ecc.total;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *oob = chip->oob_poi;
	uint32_t oob_pos;

	/* oob area start */
	oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
	oob += chip->ecc.layout->eccpos[0];

	/* Enable ECC engine */
	chip->ecc.hwctl(mtd, NAND_ECC_READ);

	/* read entire page */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);
	chip->read_buf(mtd, buf, mtd->writesize, false);

	/* read all ecc bytes from oob area */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
	chip->read_buf(mtd, oob, ecctotal, false);

	/* Calculate ecc bytes */
	omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);

	for (i = 0; i < chip->ecc.total; i++)
		ecc_code[i] = chip->oob_poi[eccpos[i]];

	/* error detect & correct */
	eccsteps = chip->ecc.steps;
	p = buf;

	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
		if (stat < 0)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;
	}

	return 0;
}
#endif /* CONFIG_NAND_OMAP_ELM */

/*
 * OMAP3 BCH8 support (with BCH library)
 */
#ifdef CONFIG_BCH
/**
 * omap_correct_data_bch_sw - Decode received data and correct errors
 * @mtd: MTD device structure
 * @data: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 */
static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
				 u_char *read_ecc, u_char *calc_ecc)
{
	int i, count;
	/* cannot correct more than 8 errors */
	unsigned int errloc[8];
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct omap_nand_info *info = nand_get_controller_data(chip);

	count = decode_bch(info->control, NULL, SECTOR_BYTES,
				read_ecc, calc_ecc, NULL, errloc);
	if (count > 0) {
		/* correct errors */
		for (i = 0; i < count; i++) {
			/* correct data only, not ecc bytes */
			if (errloc[i] < SECTOR_BYTES << 3)
				data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
			debug("corrected bitflip %u\n", errloc[i]);
#ifdef DEBUG
			puts("read_ecc: ");
			/*
			 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
			 * here!
			 */
			for (i = 0; i < 13; i++)
				printf("%02x ", read_ecc[i]);
			puts("\n");
			puts("calc_ecc: ");
			for (i = 0; i < 13; i++)
				printf("%02x ", calc_ecc[i]);
			puts("\n");
#endif
		}
	} else if (count < 0) {
		puts("ecc unrecoverable error\n");
	}
	return count;
}

/**
 * omap_free_bch - Release BCH ecc resources
 * @mtd: MTD device structure
 */
static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct omap_nand_info *info = nand_get_controller_data(chip);

	if (info->control) {
		free_bch(info->control);
		info->control = NULL;
	}
}
#endif /* CONFIG_BCH */

/**
 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
 * @nand: NAND chip device structure
 * @ecc_scheme: ecc scheme to configure
 * @pagesize: number of main-area bytes per page of NAND device
 * @oobsize: number of OOB/spare bytes per page of NAND device
 */
static int omap_select_ecc_scheme(struct nand_chip *nand,
	enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
	struct omap_nand_info	*info		= nand_get_controller_data(nand);
	struct nand_ecclayout	*ecclayout	= nand->ecc.layout;
	int eccsteps = pagesize / SECTOR_BYTES;
	int i;

	switch (ecc_scheme) {
	case OMAP_ECC_HAM1_CODE_SW:
		debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
		/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
		 * initialized in nand_scan_tail(), so just set ecc.mode */
		info->control		= NULL;
		nand->ecc.mode		= NAND_ECC_SOFT;
		nand->ecc.layout	= NULL;
		nand->ecc.size		= 0;
		break;

	case OMAP_ECC_HAM1_CODE_HW:
		debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
		/* check ecc-scheme requirements before updating ecc info */
		if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
			printf("nand: error: insufficient OOB: require=%d\n", (
				(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
			return -EINVAL;
		}
		info->control		= NULL;
		/* populate ecc specific fields */
		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
		nand->ecc.mode		= NAND_ECC_HW;
		nand->ecc.strength	= 1;
		nand->ecc.size		= SECTOR_BYTES;
		nand->ecc.bytes		= 3;
		nand->ecc.hwctl		= omap_enable_hwecc;
		nand->ecc.correct	= omap_correct_data;
		nand->ecc.calculate	= omap_calculate_ecc;
		/* define ecc-layout */
		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
		for (i = 0; i < ecclayout->eccbytes; i++) {
			if (nand->options & NAND_BUSWIDTH_16)
				ecclayout->eccpos[i] = i + 2;
			else
				ecclayout->eccpos[i] = i + 1;
		}
		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
						BADBLOCK_MARKER_LENGTH;
		break;

	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#ifdef CONFIG_BCH
		debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
		/* check ecc-scheme requirements before updating ecc info */
		if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
			printf("nand: error: insufficient OOB: require=%d\n", (
				(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
			return -EINVAL;
		}
		/* check if BCH S/W library can be used for error detection */
		info->control = init_bch(13, 8, 0x201b);
		if (!info->control) {
			printf("nand: error: could not init_bch()\n");
			return -ENODEV;
		}
		/* populate ecc specific fields */
		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
		nand->ecc.mode		= NAND_ECC_HW;
		nand->ecc.strength	= 8;
		nand->ecc.size		= SECTOR_BYTES;
		nand->ecc.bytes		= 13;
		nand->ecc.hwctl		= omap_enable_hwecc_bch;
		nand->ecc.correct	= omap_correct_data_bch_sw;
		nand->ecc.calculate	= omap_calculate_ecc_bch;
		/* define ecc-layout */
		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
		ecclayout->eccpos[0]	= BADBLOCK_MARKER_LENGTH;
		for (i = 1; i < ecclayout->eccbytes; i++) {
			if (i % nand->ecc.bytes)
				ecclayout->eccpos[i] =
						ecclayout->eccpos[i - 1] + 1;
			else
				ecclayout->eccpos[i] =
						ecclayout->eccpos[i - 1] + 2;
		}
		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
						BADBLOCK_MARKER_LENGTH;
		break;
#else
		printf("nand: error: CONFIG_BCH required for ECC\n");
		return -EINVAL;
#endif

	case OMAP_ECC_BCH8_CODE_HW:
#ifdef CONFIG_NAND_OMAP_ELM
		debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
		/* check ecc-scheme requirements before updating ecc info */
		if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
			printf("nand: error: insufficient OOB: require=%d\n", (
				(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
			return -EINVAL;
		}
		/* intialize ELM for ECC error detection */
		elm_init();
		info->control		= NULL;
		/* populate ecc specific fields */
		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
		nand->ecc.mode		= NAND_ECC_HW;
		nand->ecc.strength	= 8;
		nand->ecc.size		= SECTOR_BYTES;
		nand->ecc.bytes		= 14;
		nand->ecc.hwctl		= omap_enable_hwecc_bch;
		nand->ecc.correct	= omap_correct_data_bch;
		nand->ecc.calculate	= omap_calculate_ecc_bch;
		nand->ecc.read_page	= omap_read_page_bch;
		/* define ecc-layout */
		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
		for (i = 0; i < ecclayout->eccbytes; i++)
			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
						BADBLOCK_MARKER_LENGTH;
		break;
#else
		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
		return -EINVAL;
#endif

	case OMAP_ECC_BCH16_CODE_HW:
#ifdef CONFIG_NAND_OMAP_ELM
		debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
		/* check ecc-scheme requirements before updating ecc info */
		if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
			printf("nand: error: insufficient OOB: require=%d\n", (
				(26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
			return -EINVAL;
		}
		/* intialize ELM for ECC error detection */
		elm_init();
		/* populate ecc specific fields */
		nand->ecc.mode		= NAND_ECC_HW;
		nand->ecc.size		= SECTOR_BYTES;
		nand->ecc.bytes		= 26;
		nand->ecc.strength	= 16;
		nand->ecc.hwctl		= omap_enable_hwecc_bch;
		nand->ecc.correct	= omap_correct_data_bch;
		nand->ecc.calculate	= omap_calculate_ecc_bch;
		nand->ecc.read_page	= omap_read_page_bch;
		/* define ecc-layout */
		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
		for (i = 0; i < ecclayout->eccbytes; i++)
			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
		ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
						BADBLOCK_MARKER_LENGTH;
		break;
#else
		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
		return -EINVAL;
#endif
	default:
		debug("nand: error: ecc scheme not enabled or supported\n");
		return -EINVAL;
	}

	/* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
	if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
		nand->ecc.layout = ecclayout;

	info->ecc_scheme = ecc_scheme;
	return 0;
}

#ifndef CONFIG_SPL_BUILD
/*
 * omap_nand_switch_ecc - switch the ECC operation between different engines
 * (h/w and s/w) and different algorithms (hamming and BCHx)
 *
 * @hardware		- true if one of the HW engines should be used
 * @eccstrength		- the number of bits that could be corrected
 *			  (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
 */
int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
{
	struct nand_chip *nand;
	struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
	int err = 0;

	if (!mtd) {
		printf("nand: error: no NAND devices found\n");
		return -ENODEV;
	}

	nand = mtd_to_nand(mtd);
	nand->options |= NAND_OWN_BUFFERS;
	nand->options &= ~NAND_SUBPAGE_READ;
	/* Setup the ecc configurations again */
	if (hardware) {
		if (eccstrength == 1) {
			err = omap_select_ecc_scheme(nand,
					OMAP_ECC_HAM1_CODE_HW,
					mtd->writesize, mtd->oobsize);
		} else if (eccstrength == 8) {
			err = omap_select_ecc_scheme(nand,
					OMAP_ECC_BCH8_CODE_HW,
					mtd->writesize, mtd->oobsize);
		} else if (eccstrength == 16) {
			err = omap_select_ecc_scheme(nand,
					OMAP_ECC_BCH16_CODE_HW,
					mtd->writesize, mtd->oobsize);
		} else {
			printf("nand: error: unsupported ECC scheme\n");
			return -EINVAL;
		}
	} else {
		if (eccstrength == 1) {
			err = omap_select_ecc_scheme(nand,
					OMAP_ECC_HAM1_CODE_SW,
					mtd->writesize, mtd->oobsize);
		} else if (eccstrength == 8) {
			err = omap_select_ecc_scheme(nand,
					OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
					mtd->writesize, mtd->oobsize);
		} else {
			printf("nand: error: unsupported ECC scheme\n");
			return -EINVAL;
		}
	}

	/* Update NAND handling after ECC mode switch */
	if (!err)
		err = nand_scan_tail(mtd);
	return err;
}
#endif /* CONFIG_SPL_BUILD */

const struct soc_attr force32bit_soc_attr[] = {
	{ .family = "AM64X", .revision = "SR1.0" },
	{/* sentinel */}
};

/*
 * Board-specific NAND initialization. The following members of the
 * argument are board-specific:
 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
 * - cmd_ctrl: hardwarespecific function for accesing control-lines
 * - waitfunc: hardwarespecific function for accesing device ready/busy line
 * - ecc.hwctl: function to enable (reset) hardware ecc generator
 * - ecc.mode: mode of ecc, see defines
 * - chip_delay: chip dependent delay for transfering data from array to
 *   read regs (tR)
 * - options: various chip options. They can partly be set to inform
 *   nand_scan about special functionality. See the defines for further
 *   explanation
 */
int gpmc_nand_init(struct nand_chip *nand)
{
	int32_t gpmc_config = 0;
	int cs = cs_next++;
	int err = 0;
	struct omap_nand_info *info;
	struct udevice *dev;

	if (IS_ENABLED(CONFIG_TI_GPMC)) {
		err = uclass_get_device_by_driver(UCLASS_SIMPLE_BUS,
						  DM_GET_DRIVER(ti_gpmc),
						  &dev);
		if (err) {
			printf("GPMC init failed: %d\n", err);
			return err;
		}
	}

	/*
	 * xloader/Uboot's gpmc configuration would have configured GPMC for
	 * nand type of memory. The following logic scans and latches on to the
	 * first CS with NAND type memory.
	 * TBD: need to make this logic generic to handle multiple CS NAND
	 * devices.
	 */
	while (cs < GPMC_CS_NUM) {
		/* Check if NAND type is set */
		if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
			/* Found it!! */
			break;
		}
		cs++;
	}
	if (cs >= GPMC_CS_NUM) {
		printf("nand: error: Unable to find NAND settings in "
			"GPMC Configuration - quitting\n");
		return -ENODEV;
	}

	gpmc_config = readl(&gpmc_cfg->config);
	/* Disable Write protect */
	gpmc_config |= 0x10;
	writel(gpmc_config, &gpmc_cfg->config);

	nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
	nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;

	info = &omap_nand_info[cs];
	info->control = NULL;
	info->cs = cs;
	info->ws = wscfg[cs];
	info->fifo = (void __iomem *)CONFIG_SYS_NAND_BASE;

	/* Some SoC's have 32-bit at least, read limitation */
	if (soc_device_match(force32bit_soc_attr)) {
		debug("nand: forcing 32-bit reads\n");
		info->force_32bit = true;
	}

	nand_set_controller_data(nand, &omap_nand_info[cs]);
	nand->cmd_ctrl	= omap_nand_hwcontrol;
	nand->options	|= NAND_NO_PADDING | NAND_CACHEPRG;
	nand->chip_delay = 100;
	nand->ecc.layout = kzalloc(sizeof(*nand->ecc.layout), GFP_KERNEL);
	if (!nand->ecc.layout)
		return -ENOMEM;

	/* configure driver and controller based on NAND device bus-width */
	gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
	nand->options |= NAND_BUSWIDTH_16;
	writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
#else
	nand->options &= ~NAND_BUSWIDTH_16;
	writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
#endif
	/* select ECC scheme */
#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
	err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
			CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
#else
	/* pagesize and oobsize are not required to configure sw ecc-scheme */
	err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
			0, 0);
#endif
	if (err)
		return err;

#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
	nand->read_buf = omap_nand_read_prefetch;
#else
	nand->read_buf = omap_nand_read_buf;
#endif

	nand->dev_ready = omap_dev_ready;

	if (info->force_32bit)
		nand->quirks |= NAND_QUIRK_FORCE_32BIT_READS;

	return 0;
}

static struct nand_chip *nand_chip;	/* First NAND chip for SPL use only */

#ifdef CONFIG_SYS_NAND_SELF_INIT

static int gpmc_nand_probe(struct udevice *dev)
{
	struct nand_chip *nand = dev_get_priv(dev);
	struct mtd_info *mtd = nand_to_mtd(nand);
	int ret;

	gpmc_nand_init(nand);

	ret = nand_scan(mtd, CONFIG_SYS_NAND_MAX_CHIPS);
	if (ret)
		return ret;

	ret = nand_register(0, mtd);
	if (ret)
		return ret;

	if (!nand_chip)
		nand_chip = nand;

	return 0;
}

static const struct udevice_id gpmc_nand_ids[] = {
	{ .compatible = "ti,am64-nand" },
	{ .compatible = "ti,omap2-nand" },
	{ }
};

U_BOOT_DRIVER(gpmc_nand) = {
	.name           = "gpmc-nand",
	.id             = UCLASS_MTD,
	.of_match       = gpmc_nand_ids,
	.probe          = gpmc_nand_probe,
	.priv_auto_alloc_size = sizeof(struct nand_chip),
};

void board_nand_init(void)
{
	struct udevice *dev;
	int ret;

#ifdef CONFIG_NAND_OMAP_ELM
	ret = uclass_get_device_by_driver(UCLASS_MTD,
					  DM_GET_DRIVER(gpmc_elm), &dev);
	if (ret && ret != -ENODEV) {
		pr_err("%s: Failed to get ELM device: %d\n", __func__, ret);
		return;
	}
#endif

	ret = uclass_get_device_by_driver(UCLASS_MTD,
					  DM_GET_DRIVER(gpmc_nand), &dev);
	if (ret && ret != -ENODEV)
		pr_err("%s: Failed to get GPMC device: %d\n", __func__, ret);
}
#else
int board_nand_init(struct nand_chip *chip) __attribute__((weak));
int board_nand_init(struct nand_chip *chip)
{
	int ret;

	ret = gpmc_nand_init(chip);
	if (!ret && !nand_chip)
		nand_chip = chip;

	return ret;
}

#endif /* CONFIG_SYS_NAND_SELF_INIT */

#if defined(CONFIG_SPL_BUILD)

#if !defined(CONFIG_SPL_NAND_INIT) && !defined(CONFIG_SPL_NAND_SIMPLE) && \
	!defined(CONFIG_SPL_NAND_AM33XX_BCH)
/* nand_init() - initialize data to make nand usable by SPL */
void nand_init(void)
{
	int ret;
	struct mtd_info *mtd;

	nand_chip = kzalloc(sizeof(*nand_chip), GFP_KERNEL);
	if (!nand_chip)
		return;

	mtd = nand_to_mtd(nand_chip);

	ret = board_nand_init(nand_chip);
	if (ret)
		printf("%s: board_nand_init failed: %d\n", __func__, ret);

	ret = nand_scan(mtd, 1);
	if (ret)
		printf("%s: nand_scan() error: %d\n", __func__, ret);
}
#endif

#if !defined(CONFIG_SPL_NAND_SIMPLE) && !defined(CONFIG_SPL_NAND_AM33XX_BCH)
/* Unselect after operation */
void nand_deselect(void)
{
	struct mtd_info *mtd = nand_to_mtd(nand_chip);

	if (nand_chip->select_chip)
		nand_chip->select_chip(mtd, -1);
}

static int nand_is_bad_block(int block)
{
	struct mtd_info *mtd = nand_to_mtd(nand_chip);

	loff_t ofs = block * CONFIG_SYS_NAND_BLOCK_SIZE;

	return nand_chip->block_bad(mtd, ofs);
}

static int nand_read_page(int block, int page, uchar *dst)
{
	int page_addr = block * CONFIG_SYS_NAND_PAGE_COUNT + page;
	loff_t ofs = page_addr * CONFIG_SYS_NAND_PAGE_SIZE;
	int ret;
	size_t len = CONFIG_SYS_NAND_PAGE_SIZE;
	struct mtd_info *mtd = nand_to_mtd(nand_chip);

	ret = nand_read(mtd, ofs, &len, dst);
	if (ret)
		printf("nand_read failed %d\n", ret);

	return ret;
}

#include "nand_spl_loaders.c"
#endif /* CONFIG_SPL_NAND_SIMPLE */
#endif /* CONFIG_SPL_BUILD */