summaryrefslogtreecommitdiff
path: root/board/freescale/imx8mm_evk/ddr/ddr4/ddr4_swffc_fw09.c
blob: b8a05b9b2ef974e2b5c98ca9f2fd3ebcf4516946 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/*
 * Copyright 2018 NXP
 *
 * SPDX-License-Identifier: GPL-2.0+
 */

#include <common.h>
#include <errno.h>
#include <asm/io.h>
#include <asm/arch/ddr.h>
#include <asm/arch/clock.h>
#include "anamix_common.h"
#include "ddr4_define.h"

unsigned int mr_value[3][7] = {
	{0xa34, 0x105, 0x1028, 0x240, 0x200, 0x200, 0x814}, /* pstate0 MR */
	{0x204, 0x104, 0x1000, 0x040, 0x200, 0x200, 0x014}, /* pstate1 MR */
	{0x204, 0x104, 0x1000, 0x040, 0x200, 0x200, 0x014} }; /* pstate2 MR */

static unsigned int cur_pstate;
unsigned int after_retention = 0;

void ddr4_dll_change(unsigned int pstate);
void ddr4_dll_no_change(unsigned int pstate);

void umctl2_cfg(void)
{
#ifdef DDR_ONE_RANK
	reg32_write(DDRC_MSTR(0), 0x81040010);
#else
	reg32_write(DDRC_MSTR(0), 0x83040010);
#endif

	reg32_write(DDRC_PWRCTL(0), 0x000000aa);
	reg32_write(DDRC_PWRTMG(0), 0x00221306);

	reg32_write(DDRC_RFSHCTL0(0), 0x00c0a070);
	reg32_write(DDRC_RFSHCTL1(0), 0x00010008);
	reg32_write(DDRC_RFSHCTL3(0), 0x00000010);
	reg32_write(DDRC_RFSHTMG(0), 0x004980f4);
	reg32_write(DDRC_CRCPARCTL0(0), 0x00000000);
	reg32_write(DDRC_CRCPARCTL1(0), 0x00001010);
	reg32_write(DDRC_INIT0(0), 0xc0030002);
	reg32_write(DDRC_INIT1(0), 0x00020009);
	reg32_write(DDRC_INIT2(0), 0x0000350f);
	reg32_write(DDRC_INIT3(0), (mr_value[0][0]<<16) | (mr_value[0][1]));
	reg32_write(DDRC_INIT4(0), (mr_value[0][2]<<16) | (mr_value[0][3]));
	reg32_write(DDRC_INIT5(0), 0x001103cb);
	reg32_write(DDRC_INIT6(0), (mr_value[0][4]<<16) | (mr_value[0][5]));
	reg32_write(DDRC_INIT7(0), mr_value[0][6]);
	reg32_write(DDRC_DIMMCTL(0), 0x00000032);
	reg32_write(DDRC_RANKCTL(0), 0x00000fc7);
	reg32_write(DDRC_DRAMTMG0(0), 0x14132813);
	reg32_write(DDRC_DRAMTMG1(0), 0x0004051b);
	reg32_write(DDRC_DRAMTMG2(0), 0x0808030f);
	reg32_write(DDRC_DRAMTMG3(0), 0x0000400c);
	reg32_write(DDRC_DRAMTMG4(0), 0x08030409);
	reg32_write(DDRC_DRAMTMG5(0), 0x0e090504);
	reg32_write(DDRC_DRAMTMG6(0), 0x05030000);
	reg32_write(DDRC_DRAMTMG7(0), 0x0000090e);
	reg32_write(DDRC_DRAMTMG8(0), 0x0606700c);
	reg32_write(DDRC_DRAMTMG9(0), 0x0002040c);
	reg32_write(DDRC_DRAMTMG10(0), 0x000f0c07);
	reg32_write(DDRC_DRAMTMG11(0), 0x1809011d);
	reg32_write(DDRC_DRAMTMG12(0), 0x0000000d);
	reg32_write(DDRC_DRAMTMG13(0), 0x2b000000);
	reg32_write(DDRC_DRAMTMG14(0), 0x000000a4);
	reg32_write(DDRC_DRAMTMG15(0), 0x00000000);
	reg32_write(DDRC_DRAMTMG17(0), 0x00250078);
	reg32_write(DDRC_ZQCTL0(0), 0x51000040);
	reg32_write(DDRC_ZQCTL1(0), 0x00000070);
	reg32_write(DDRC_ZQCTL2(0), 0x00000000);
	reg32_write(DDRC_DFITMG0(0), 0x038b820b);
	reg32_write(DDRC_DFITMG1(0), 0x02020103);
	reg32_write(DDRC_DFILPCFG0(0), 0x07f04011); /*  [8]dfi_lp_en_sr = 0 */
	reg32_write(DDRC_DFILPCFG1(0), 0x000000b0);
	reg32_write(DDRC_DFIUPD0(0), 0xe0400018);
	reg32_write(DDRC_DFIUPD1(0), 0x0048005a);
	reg32_write(DDRC_DFIUPD2(0), 0x80000000);
	reg32_write(DDRC_DFIMISC(0), 0x00000001);
	reg32_write(DDRC_DFITMG2(0), 0x00000b0b);
	reg32_write(DDRC_DFITMG3(0), 0x00000001);
	reg32_write(DDRC_DBICTL(0), 0x00000000);
	reg32_write(DDRC_DFIPHYMSTR(0), 0x00000000);

#ifdef DDR_ONE_RANK
	reg32_write(DDRC_ADDRMAP0(0), 0x0000001F);
#else
	reg32_write(DDRC_ADDRMAP0(0), 0x00000017); /* [4:0]cs0: 6+23 */
#endif
	reg32_write(DDRC_ADDRMAP1(0), 0x003F0909); /* [5:0] bank b0: 2+9; [13:8] b1: P3+9 ; [21:16] b2: 4+, unused */
	reg32_write(DDRC_ADDRMAP2(0), 0x01010100); /* [3:0] col-b2: 2;  [11:8] col-b3: 3+1; [19:16] col-b4: 4+1 ; [27:24] col-b5: 5+1 */
	reg32_write(DDRC_ADDRMAP3(0), 0x01010101); /* [3:0] col-b6: 6+1;  [11:8] col-b7: 7+1; [19:16] col-b8: 8+1 ; [27:24] col-b9: 9+1 */
	reg32_write(DDRC_ADDRMAP4(0), 0x00001f1f); /* col-b10, col-b11 not used */
	reg32_write(DDRC_ADDRMAP5(0), 0x07070707); /* [3:0] row-b0: 6+7;  [11:8] row-b1: 7+7; [19:16] row-b2_b10: 8~16+7; [27:24] row-b11: 17+7 */
	reg32_write(DDRC_ADDRMAP6(0), 0x07070707); /* [3:0] row-b12:18+7; [11:8] row-b13: 19+7; [19:16] row-b14:20+7; [27:24] row-b15: 21+7 */
	reg32_write(DDRC_ADDRMAP7(0), 0x00000f0f); /* col-b10, col-b11 not used */
	reg32_write(DDRC_ADDRMAP8(0), 0x00003F01); /* [5:0] bg-b0: 2+1; [13:8]bg-b1:3+, unused */
	reg32_write(DDRC_ADDRMAP9(0), 0x0a020b06); /*  it's valid only when ADDRMAP5.addrmap_row_b2_10 is set to value 15 */
	reg32_write(DDRC_ADDRMAP10(0), 0x0a0a0a0a);/*  it's valid only when ADDRMAP5.addrmap_row_b2_10 is set to value 15 */
	reg32_write(DDRC_ADDRMAP11(0), 0x00000000);

	/* FREQ0: BL8, CL=16, CWL=16, WR_PREAMBLE = 1,RD_PREAMBLE = 1, CRC_MODE = 1, so wr_odt_hold=5+1+1=7 */
	/* wr_odt_delay=DFITMG1.dfi_t_cmd_lat=0 */
	reg32_write(DDRC_ODTCFG(0), 0x07000600);
#ifdef DDR_ONE_RANK
	reg32_write(DDRC_ODTMAP(0), 0x0001);
#else
	reg32_write(DDRC_ODTMAP(0), 0x0201);/* disable ODT0x00001120); */
#endif
	reg32_write(DDRC_SCHED(0), 0x317d1a07);
	reg32_write(DDRC_SCHED1(0), 0x0000000f);
	reg32_write(DDRC_PERFHPR1(0), 0x2a001b76);
	reg32_write(DDRC_PERFLPR1(0), 0x7300b473);
	reg32_write(DDRC_PERFWR1(0), 0x30000e06);
	reg32_write(DDRC_DBG0(0), 0x00000014);
	reg32_write(DDRC_DBG1(0), 0x00000000);
	reg32_write(DDRC_DBGCMD(0), 0x00000000);
	reg32_write(DDRC_SWCTL(0), 0x00000001);
	reg32_write(DDRC_POISONCFG(0), 0x00000010);
	reg32_write(DDRC_PCCFG(0), 0x00000100);/* bl_exp_mode=1 */
	reg32_write(DDRC_PCFGR_0(0), 0x00013193);
	reg32_write(DDRC_PCFGW_0(0), 0x00006096);
	reg32_write(DDRC_PCTRL_0(0), 0x00000001);
	reg32_write(DDRC_PCFGQOS0_0(0), 0x02000c00);
	reg32_write(DDRC_PCFGQOS1_0(0), 0x003c00db);
	reg32_write(DDRC_PCFGWQOS0_0(0), 0x00100009);
	reg32_write(DDRC_PCFGWQOS1_0(0), 0x00000002);

}

void umctl2_freq1_cfg(void)
{
	reg32_write(DDRC_FREQ1_RFSHCTL0(0), 0x0021a0c0);
#ifdef PLLBYPASS_250MBPS
	reg32_write(DDRC_FREQ1_RFSHTMG(0), 0x000f0011);/* tREFI=7.8us */
#endif
#ifdef PLLBYPASS_400MBPS
	reg32_write(DDRC_FREQ1_RFSHTMG(0), 0x0018001a);/* tREFI=7.8us */
#endif

	reg32_write(DDRC_FREQ1_INIT3(0), (mr_value[1][0]<<16) | (mr_value[1][1]));
	reg32_write(DDRC_FREQ1_INIT4(0), (mr_value[1][2]<<16) | (mr_value[1][3]));
	reg32_write(DDRC_FREQ1_INIT6(0), (mr_value[1][4]<<16) | (mr_value[1][5]));
	reg32_write(DDRC_FREQ1_INIT7(0),  mr_value[1][6]);
#ifdef PLLBYPASS_250MBPS
	reg32_write(DDRC_FREQ1_DRAMTMG0(0), 0x0c0e0403);/* t_ras_max=9*7.8us, t_ras_min=35ns */
#endif
#ifdef PLLBYPASS_400MBPS
	reg32_write(DDRC_FREQ1_DRAMTMG0(0), 0x0c0e0604);/* t_ras_max=9*7.8us, t_ras_min=35ns */
#endif
	reg32_write(DDRC_FREQ1_DRAMTMG1(0), 0x00030314);
	reg32_write(DDRC_FREQ1_DRAMTMG2(0), 0x0505040a);
	reg32_write(DDRC_FREQ1_DRAMTMG3(0), 0x0000400c);
	reg32_write(DDRC_FREQ1_DRAMTMG4(0), 0x06040307); /*  tRP=6 --> 7 */
	reg32_write(DDRC_FREQ1_DRAMTMG5(0), 0x090d0202);
	reg32_write(DDRC_FREQ1_DRAMTMG6(0), 0x0a070008);
	reg32_write(DDRC_FREQ1_DRAMTMG7(0), 0x00000d09);
	reg32_write(DDRC_FREQ1_DRAMTMG8(0), 0x08084b09);
	reg32_write(DDRC_FREQ1_DRAMTMG9(0), 0x00020308);
	reg32_write(DDRC_FREQ1_DRAMTMG10(0), 0x000f0d06);
	reg32_write(DDRC_FREQ1_DRAMTMG11(0), 0x12060111);
	reg32_write(DDRC_FREQ1_DRAMTMG12(0), 0x00000008);
	reg32_write(DDRC_FREQ1_DRAMTMG13(0), 0x21000000);
	reg32_write(DDRC_FREQ1_DRAMTMG14(0), 0x00000000);
	reg32_write(DDRC_FREQ1_DRAMTMG15(0), 0x00000000);
	reg32_write(DDRC_FREQ1_DRAMTMG17(0), 0x00c6007d);
	reg32_write(DDRC_FREQ1_ZQCTL0(0), 0x51000040);
	reg32_write(DDRC_FREQ1_DFITMG0(0), 0x03858204);
	reg32_write(DDRC_FREQ1_DFITMG1(0), 0x00020103);
	reg32_write(DDRC_FREQ1_DFITMG2(0), 0x00000504);
	reg32_write(DDRC_FREQ1_DFITMG3(0), 0x00000001);
	/* FREQ1: BL8, CL=10, CWL=9, WR_PREAMBLE = 1,RD_PREAMBLE = 1, CRC_MODE = 1 */
	/* wr_odt_delay=DFITMG1.dfi_t_cmd_lat=0 */
	reg32_write(DDRC_FREQ1_ODTCFG(0), 0x07000601);
}

void umctl2_freq2_cfg(void)
{
	reg32_write(DDRC_FREQ2_RFSHCTL0(0), 0x0021a0c0);
	reg32_write(DDRC_FREQ2_RFSHTMG(0), 0x0006000e);/* tREFI=7.8us */
	reg32_write(DDRC_FREQ2_INIT3(0), (mr_value[2][0]<<16) | (mr_value[2][1]));
	reg32_write(DDRC_FREQ2_INIT4(0), (mr_value[2][2]<<16) | (mr_value[2][3]));
	reg32_write(DDRC_FREQ2_INIT6(0), (mr_value[2][4]<<16) | (mr_value[2][5]));
	reg32_write(DDRC_FREQ2_INIT7(0),  mr_value[2][6]);
	reg32_write(DDRC_FREQ2_DRAMTMG0(0), 0x0c0e0101);/* t_ras_max=9*7.8us, t_ras_min=35ns */
	reg32_write(DDRC_FREQ2_DRAMTMG1(0), 0x00030314);
	reg32_write(DDRC_FREQ2_DRAMTMG2(0), 0x0505040a);
	reg32_write(DDRC_FREQ2_DRAMTMG3(0), 0x0000400c);
	reg32_write(DDRC_FREQ2_DRAMTMG4(0), 0x06040307); /*  tRP=6 --> 7 */
	reg32_write(DDRC_FREQ2_DRAMTMG5(0), 0x090d0202);
	reg32_write(DDRC_FREQ2_DRAMTMG6(0), 0x0a070008);
	reg32_write(DDRC_FREQ2_DRAMTMG7(0), 0x00000d09);
	reg32_write(DDRC_FREQ2_DRAMTMG8(0), 0x08084b09);
	reg32_write(DDRC_FREQ2_DRAMTMG9(0), 0x00020308);
	reg32_write(DDRC_FREQ2_DRAMTMG10(0), 0x000f0d06);
	reg32_write(DDRC_FREQ2_DRAMTMG11(0), 0x12060111);
	reg32_write(DDRC_FREQ2_DRAMTMG12(0), 0x00000008);
	reg32_write(DDRC_FREQ2_DRAMTMG13(0), 0x21000000);
	reg32_write(DDRC_FREQ2_DRAMTMG14(0), 0x00000000);
	reg32_write(DDRC_FREQ2_DRAMTMG15(0), 0x00000000);
	reg32_write(DDRC_FREQ2_DRAMTMG17(0), 0x00c6007d);
	reg32_write(DDRC_FREQ2_ZQCTL0(0), 0x51000040);
	reg32_write(DDRC_FREQ2_DFITMG0(0), 0x03858204);
	reg32_write(DDRC_FREQ2_DFITMG1(0), 0x00020103);
	reg32_write(DDRC_FREQ2_DFITMG2(0), 0x00000504);
	reg32_write(DDRC_FREQ2_DFITMG3(0), 0x00000001);
	/* FREQ1: BL8, CL=10, CWL=9, WR_PREAMBLE = 1,RD_PREAMBLE = 1, CRC_MODE = 1 */
	/* wr_odt_delay=DFITMG1.dfi_t_cmd_lat=0 */
	reg32_write(DDRC_FREQ2_ODTCFG(0), 0x07000601);
}


void ddr4_pub_train(void)
{
	volatile unsigned int tmp_t;
	after_retention = 0;

	reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00003F); /*  assert [0]ddr1_preset_n, [1]ddr1_core_reset_n, [2]ddr1_phy_reset, [3]ddr1_phy_pwrokin_n, [4]src_system_rst_b! */
	reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F); /*  deassert [4]src_system_rst_b! */

	/* change the clock source of dram_apb_clk_root */
	clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(4) | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV4)); /* to source 4 --800MHz/4 */

	/* DDR_PLL_CONFIG_600MHz(); */
	dram_pll_init(DRAM_PLL_OUT_600M);
	ddr_dbg("C: dram pll init finished\n");

	reg32_write(0x303A00EC, 0x0000ffff); /* PGC_CPU_MAPPING */
	reg32setbit(0x303A00F8, 5);/* PU_PGC_SW_PUP_REQ */

	reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000006); /*  release [0]ddr1_preset_n, [3]ddr1_phy_pwrokin_n */

	reg32_write(DDRC_DBG1(0), 0x00000001);
	reg32_write(DDRC_PWRCTL(0), 0x00000001);

	while (0 != (0x7 & reg32_read(DDRC_STAT(0))))
		;

	ddr_dbg("C: cfg umctl2 regs ...\n");
	umctl2_cfg();
#ifdef DDR4_SW_FFC
	umctl2_freq1_cfg();
	umctl2_freq2_cfg();
#endif

	reg32_write(DDRC_RFSHCTL3(0), 0x00000011);
	/* RESET: <ctn> DEASSERTED */
	/* RESET: <a Port 0  DEASSERTED(0) */
	reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000004);
	reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000000);

	reg32_write(DDRC_DBG1(0), 0x00000000);
	reg32_write(DDRC_PWRCTL(0), 0x00000aa);
	reg32_write(DDRC_SWCTL(0), 0x00000000);

	reg32_write(DDRC_DFIMISC(0), 0x00000000);

	ddr_dbg("C: phy training ...\n");
	ddr4_phyinit_train_sw_ffc(1);/*  for dvfs flow, 2D training is a must item */

	do {
		tmp_t = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0)+4*0x00020097);
		ddr_dbg("C: Waiting CalBusy value = 0\n");
	} while (tmp_t  != 0);

	reg32_write(DDRC_DFIMISC(0), 0x00000020);

	/*  wait DFISTAT.dfi_init_complete to 1 */
	while (0 == (0x1 & reg32_read(DDRC_DFISTAT(0))))
		;

	/*  clear DFIMISC.dfi_init_complete_en */
	reg32_write(DDRC_DFIMISC(0), 0x00000000);
	/*  set DFIMISC.dfi_init_complete_en again */
	reg32_write(DDRC_DFIMISC(0), 0x00000001);
	reg32_write(DDRC_PWRCTL(0), 0x0000088);

	/*  set SWCTL.sw_done to enable quasi-dynamic register programming outside reset. */
	reg32_write(DDRC_SWCTL(0), 0x00000001);
	/* wait SWSTAT.sw_done_ack to 1 */
	while (0 == (0x1 & reg32_read(DDRC_SWSTAT(0))))
		;

	/* wait STAT to normal state */
	while (0x1 != (0x7 & reg32_read(DDRC_STAT(0))))
		;

	reg32_write(DDRC_PWRCTL(0), 0x0000088);
	reg32_write(DDRC_PCTRL_0(0), 0x00000001);
	reg32_write(DDRC_RFSHCTL3(0), 0x00000010); /*  dis_auto-refresh is set to 0 */
}

void ddr4_switch_freq(unsigned int pstate)
{
	if ((pstate != 0 && cur_pstate == 0) || (pstate == 0 && cur_pstate != 0)) {
		ddr4_dll_change(pstate);
	} else {
		ddr4_dll_no_change(pstate);
		ddr_dbg("dll no change\n");
	}
	cur_pstate = pstate;
}

void dram_all_mr_cfg(unsigned int pstate)
{
	unsigned int i;
	/* 15. Perform MRS commands as required to re-program timing registers in the SDRAM for the new */
	/* frequency (in particular, CL, CWL and WR may need to be changed). */
	for (i = 0; i < 7; i++)
		ddr4_mr_write(i, mr_value[pstate][i], 0, 0x1);

#ifndef DDR_ONE_RANK
	for (i = 0; i < 7; i++)
		ddr4_mr_write(i, mr_value[pstate][i], 0, 0x2);
#endif
}

void sw_pstate(unsigned int pstate)
{
	volatile unsigned int tmp;
	unsigned int i;
	/* the the following software programming sequence to switch from DLL-on to DLL-off, or reverse: */
	reg32_write(DDRC_SWCTL(0), 0x0000);
	/* 12. Change the clock frequency to the desired value. */
	/* 13. Update any registers which may be required to change for the new frequency. This includes quasidynamic and dynamic registers. This includes both uMCTL2 registers and PHY registers. */
	reg32_write(DDRC_DFIMISC(0), 0x00000000);
	reg32_write(DDRC_MSTR2(0), pstate);/*  UMCTL2_REGS_FREQ1 */
	reg32setbit(DDRC_MSTR(0), 29);

	/* dvfs.18. Toggle RFSHCTL3.refresh_update_level to allow the new refresh-related register values to */
	/* propagate to the refresh logic. */
	tmp = reg32_read(DDRC_RFSHCTL3(0));
	if ((tmp & 0x2) == 0x2)
		reg32_write(DDRC_RFSHCTL3(0), tmp & 0xFFFFFFFD);
	else
		reg32_write(DDRC_RFSHCTL3(0), tmp | 0x2);

	/* dvfs.19. If required, trigger the initialization in the PHY. If using the gen2 multiPHY, PLL initialization */
	/* should be triggered at this point. See the PHY databook for details about the frequency change */
	/* procedure. */
	reg32_write(DDRC_DFIMISC(0), 0x00000000 | (pstate<<8));/* pstate1 */
	reg32_write(DDRC_DFIMISC(0), 0x00000020 | (pstate<<8));

	/*  wait DFISTAT.dfi_init_complete to 0 */
	do {
		tmp = 0x1 & reg32_read(DDRC_DFISTAT(0));
	} while (tmp);

	dwc_ddrphy_phyinit_userCustom_E_setDfiClk(pstate);

	reg32_write(DDRC_DFIMISC(0), 0x00000000 | (pstate<<8));
	/*  wait DFISTAT.dfi_init_complete to 1 */
	do {
		tmp = 0x1 & reg32_read(DDRC_DFISTAT(0));
	} while (!tmp);

	/* When changing frequencies the controller may violate the JEDEC requirement that no */
	/* more than 16 refreshes should be issued within 2*tREFI. These extra refreshes are not */
	/* expected to cause a problem in the SDRAM. This issue can be avoided by waiting for at */
	/* least 2*tREFI before exiting self-refresh in step 19. */
	for (i = 20; i > 0; i--)
		;
	ddr_dbg("C: waiting for 2*tREFI (2*7.8us)\n");

	/* 14. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
	reg32clrbit(DDRC_PWRCTL(0), 5);
	do {
		tmp  = 0x3f & (reg32_read((DDRC_STAT(0))));
		ddr_dbg("C: waiting for exit Self Refresh\n");
	} while (tmp == 0x23);
}

void ddr4_dll_change(unsigned int pstate)
{
	volatile unsigned int tmp;
	enum DLL_STATE { NO_CHANGE = 0, ON2OFF = 1, OFF2ON = 2} dll_sw; /* 0-no change, 1-on2off, 2-off2on.; */

	if (pstate != 0 && cur_pstate == 0) {
		dll_sw = ON2OFF;
		ddr_dbg("dll ON2OFF\n");
	} else if (pstate == 0 && cur_pstate != 0) {
		dll_sw = OFF2ON;
		ddr_dbg("dll OFF2ON\n");
	} else {
		dll_sw = NO_CHANGE;
	}

	/* the the following software programming sequence to switch from DLL-on to DLL-off, or reverse: */
	reg32_write(DDRC_SWCTL(0), 0x0000);

	/* 1. Set the DBG1.dis_hif = 1. This prevents further reads/writes being received on the HIF. */
	reg32setbit(DDRC_DBG1(0), 1);
	/* 2. Set ZQCTL0.dis_auto_zq=1, to disable automatic generation of ZQCS/MPC(ZQ calibration) */
	/* commands */
	if (pstate == 1)
		reg32setbit(DDRC_FREQ1_ZQCTL0(0), 31);
	else if (pstate == 2)
		reg32setbit(DDRC_FREQ2_ZQCTL0(0), 31);
	else
		reg32setbit(DDRC_ZQCTL0(0), 31);

	/* 3. Set RFSHCTL3.dis_auto_refresh=1, to disable automatic refreshes */
	reg32setbit(DDRC_RFSHCTL3(0), 0);
	/* 4. Ensure all commands have been flushed from the uMCTL2 by polling */
	/* DBGCAM.wr_data_pipeline_empty, DBGCAM.rd_data_pipeline_empty1, */
	/* DBGCAM.dbg_wr_q_depth, DBGCAM.dbg_lpr_q_depth, DBGCAM.dbg_rd_q_empty, */
	/* DBGCAM.dbg_wr_q_empty. */
	do {
		tmp = 0x06000000 & reg32_read(DDRC_DBGCAM(0));
	} while (tmp  != 0x06000000);
	reg32_write(DDRC_PCTRL_0(0), 0x00000000);
	/* 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) to disable RTT_NOM: */
	/* a. DDR3: Write 0 to MR1[9], MR1[6] and MR1[2] */
	/* b. DDR4: Write 0 to MR1[10:8] */
	if (mr_value[pstate][1] & 0x700) {
		ddr4_mr_write(1, mr_value[pstate][1] & 0xF8FF, 0, 0x1);
#ifndef DDR_ONE_RANK
		ddr4_mr_write(1, mr_value[pstate][1] & 0xF8FF, 0, 0x2);
#endif
	}
	/* 6. For DDR4 only: Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) to write 0 to */
	/* MR5[8:6] to disable RTT_PARK */
	if (mr_value[pstate][5] & 0x1C0) {
		ddr4_mr_write(5, mr_value[pstate][5] & 0xFE3F, 0, 0x1);
#ifndef DDR_ONE_RANK
		ddr4_mr_write(5, mr_value[pstate][5] & 0xFE3F, 0, 0x2);
#endif
	}

	if (dll_sw == ON2OFF) {
		/* 7. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) to write 0 to MR2[11:9], to */
		/* disable RTT_WR (and therefore disable dynamic ODT). This applies for both DDR3 and DDR4. */
		if (mr_value[pstate][2] & 0xE00) {
		    ddr4_mr_write(2, mr_value[pstate][2] & 0xF1FF, 0, 0x1);
#ifndef DDR_ONE_RANK
		    ddr4_mr_write(2, mr_value[pstate][2] & 0xF1FF, 0, 0x2);
#endif
		}
		/* 8. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) to disable the DLL. The */
		/* timing of this MRS is automatically handled by the uMCTL2. */
		/* a. DDR3: Write 1 to MR1[0] */
		/* b. DDR4: Write 0 to MR1[0] */
		ddr4_mr_write(1, mr_value[pstate][1] & 0xFFFE, 0, 0x1);
#ifndef DDR_ONE_RANK
		ddr4_mr_write(1, mr_value[pstate][1] & 0xFFFE, 0, 0x2);
#endif
	}

	/* 9. Put the SDRAM into self-refresh mode by setting PWRCTL.selfref_sw = 1, and polling */
	/* STAT.operating_mode to ensure the DDRC has entered self-refresh. */
	reg32setbit(DDRC_PWRCTL(0), 5);
	/* 10. Wait until STAT.operating_mode[1:0]==11 indicating that the DWC_ddr_umctl2 core is in selfrefresh mode. Ensure transition to self-refresh was due to software by checking that */
	/* STAT.selfref_type[1:0]=2`b10. */
	do {
		tmp  = 0x3f & (reg32_read((DDRC_STAT(0))));
		ddr_dbg("C: wait DRAM in Self Refresh\n");
	} while (tmp  != 0x23);

	/* 11. Set the MSTR.dll_off_mode = 1 or 0. */
	if (dll_sw == ON2OFF)
		reg32setbit(DDRC_MSTR(0), 15);

	if (dll_sw == OFF2ON)
		reg32clrbit(DDRC_MSTR(0), 15);

	sw_pstate(pstate);

	/* DRAM dll enable */
	if (dll_sw == OFF2ON) {
		ddr4_mr_write(1, mr_value[pstate][1] | 0x1, 0, 0x1);
#ifndef DDR_ONE_RANK
		ddr4_mr_write(1, mr_value[pstate][1] | 0x1, 0, 0x2);
#endif
		/* DRAM dll reset, self-clear */
		ddr4_mr_write(0, mr_value[pstate][0] | 0x100, 0, 0x1);
#ifndef DDR_ONE_RANK
		ddr4_mr_write(0, mr_value[pstate][0] | 0x100, 0, 0x2);
#endif
	}

	dram_all_mr_cfg(pstate);

	/* 16. Re-enable automatic generation of ZQCS/MPC(ZQ calibration) commands, by setting */
	/* ZQCTL0.dis_auto_zq=0 if they were previously disabled */
	if (pstate == 1)
		reg32clrbit(DDRC_FREQ1_ZQCTL0(0), 31);
	else if (pstate == 2)
		reg32clrbit(DDRC_FREQ2_ZQCTL0(0), 31);
	else
		reg32clrbit(DDRC_ZQCTL0(0), 31);

	/* 17. Re-enable automatic refreshes (RFSHCTL3.dis_auto_refresh = 0) if they have been previously */
	/* disabled. */
	reg32clrbit(DDRC_RFSHCTL3(0), 0);
	/* 18. Restore ZQCTL0.dis_srx_zqcl */
	/* 19. Write DBG1.dis_hif = 0 to re-enable reads and writes. */
	reg32clrbit(DDRC_DBG1(0), 1);

	reg32_write(DDRC_PCTRL_0(0), 0x00000001);
	/* 27. Write 1 to SBRCTL.scrub_en. Enable SBR if desired, only required if SBR instantiated. */

	/*  set SWCTL.sw_done to enable quasi-dynamic register programming outside reset. */
	reg32_write(DDRC_SWCTL(0), 0x0001);

	/* wait SWSTAT.sw_done_ack to 1 */
	do {
		tmp = 0x1 & reg32_read(DDRC_SWSTAT(0));
	} while (!tmp);
}

void ddr4_dll_no_change(unsigned int pstate)
{
	volatile unsigned int tmp;
	/* ------------------------------------------------------------------------------------- */
	/*   change to pstate1 */
	/* ------------------------------------------------------------------------------------- */
	/* 1. Program one of UMCTL2_REGS_FREQ1/2/3, whichever you prefer, timing register-set with the */
	/* timing settings required for the alternative clock frequency. */
	/*  set SWCTL.sw_done to disable quasi-dynamic register programming outside reset. */
	reg32_write(DDRC_SWCTL(0), 0x0000);

	/*    set SWCTL.sw_done to enable quasi-dynamic register programming outside reset. */
	/*    wait SWSTAT.sw_done_ack to 1 */

	/* 2. Write 0 to PCTRL_n.port_en. This blocks AXI port(s) from taking any transaction (blocks traffic on */
	/* AXI ports). */
	reg32_write(DDRC_PCTRL_0(0), 0x00000000);
	/* 3. Poll PSTAT.rd_port_busy_n=0 and PSTAT.wr_port_busy_n=0. Wait until all AXI ports are idle (the */
	/* uMCTL2 core has to be idle). */
	do {
		tmp = reg32_read(DDRC_PSTAT(0));
	} while (tmp & 0x10001);

	/* 4. Write 0 to SBRCTL.scrub_en. Disable SBR, required only if SBR instantiated. */
	/* 5. Poll SBRSTAT.scrub_busy=0. Indicates that there are no outstanding SBR read commands (required */
	/* only if SBR instantiated). */
	/* 6. Set DERATEEN.derate_enable = 0, if DERATEEN.derate_eanble = 1 and the read latency (RL) value */
	/* needs to change after the frequency change (LPDDR2/3/4 only). */
	/* 7. Set DBG1.dis_hif=1 so that no new commands will be accepted by the uMCTL2. */
	reg32setbit(DDRC_DBG1(0), 1);
	/* 8. Poll DBGCAM.dbg_wr_q_empty and DBGCAM.dbg_rd_q_empty to ensure that write and read data */
	/* buffers are empty. */
	do {
		tmp = 0x06000000 & reg32_read(DDRC_DBGCAM(0));
	} while (tmp != 0x06000000);
	/* 9. For DDR4, update MR6 with the new tDLLK value via the Mode Register Write signals */
	/* (MRCTRL0.mr_x/MRCTRL1.mr_x). */
	/* 10. Set DFILPCFG0.dfi_lp_en_sr = 0, if DFILPCFG0.dfi_lp_en_sr = 1, and wait until DFISTAT.dfi_lp_ack */
	/* = 0. */
	/* 11. If DFI PHY Master interface is active in uMCTL2 (DFIPHYMSTR.phymstr_en == 1'b1) then disable it */
	/* by programming DFIPHYMSTR.phymstr_en = 1'b0. */
	/* 12. Wait until STAT.operating_mode[1:0]!=11 indicating that the DWC_ddr_umctl2 controller is not in */
	/* self-refresh mode. */
	tmp  = 0x3 & (reg32_read((DDRC_STAT(0))));
	if (tmp == 0x3) {
		ddr_dbg("C: Error DRAM should not in Self Refresh\n");
		ddr_dbg("vt_error\n");
	}
	/* 13. Assert PWRCTL.selfref_sw for the DWC_ddr_umctl2 core to enter the self-refresh mode. */
	reg32setbit(DDRC_PWRCTL(0), 5);
	/* 14. Wait until STAT.operating_mode[1:0]==11 indicating that the DWC_ddr_umctl2 core is in selfrefresh mode. Ensure transition to self-refresh was due to software by checking that STAT.selfref_type[1:0]=2'b10. */
	do {
		tmp  = 0x3f & (reg32_read((DDRC_STAT(0))));
		ddr_dbg("C: DRAM in Self Refresh\n");
	} while (tmp != 0x23);

	sw_pstate(pstate);
	dram_all_mr_cfg(pstate);


	/* 23. Enable HIF commands by setting DBG1.dis_hif=0. */
	reg32clrbit(DDRC_DBG1(0), 1);
	/* 24. Reset DERATEEN.derate_enable = 1 if DERATEEN.derate_enable has been set to 0 in step 6. */
	/* 25. If DFI PHY Master interface was active in uMCTL2 (DFIPHYMSTR.phymstr_en == 1'b1) before the */
	/* step 11 then enable it back by programming DFIPHYMSTR.phymstr_en = 1'b1. */
	/* 26. Write 1 to PCTRL_n.port_en. AXI port(s) are no longer blocked from taking transactions (Re-enable */
	/* traffic on AXI ports). */
	reg32_write(DDRC_PCTRL_0(0), 0x00000001);
	/* 27. Write 1 to SBRCTL.scrub_en. Enable SBR if desired, only required if SBR instantiated. */



	/*  set SWCTL.sw_done to enable quasi-dynamic register programming outside reset. */
	reg32_write(DDRC_SWCTL(0), 0x0001);

	/* wait SWSTAT.sw_done_ack to 1 */
	do {
		tmp  = 0x1 & reg32_read(DDRC_SWSTAT(0));
	} while (!tmp);


}

void ddr_init(void)
{
    /* initialize DDR4-2400 (umctl2@800MHz) */
    ddr4_pub_train();
}