/* * (C) Copyright 2000-2002 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include /****************************************************************************/ unsigned decrementer_count; /* count value for 1e6/HZ microseconds */ /****************************************************************************/ /* * CPM interrupt vector functions. */ struct cpm_action { interrupt_handler_t *handler; void *arg; }; static struct cpm_action cpm_vecs[CPMVEC_NR]; static void cpm_interrupt_init (void); static void cpm_interrupt(int irq, struct pt_regs * regs); /****************************************************************************/ static __inline__ unsigned long get_msr(void) { unsigned long msr; asm volatile("mfmsr %0" : "=r" (msr) :); return msr; } static __inline__ void set_msr(unsigned long msr) { asm volatile("mtmsr %0" : : "r" (msr)); } static __inline__ unsigned long get_dec(void) { unsigned long val; asm volatile("mfdec %0" : "=r" (val) :); return val; } static __inline__ void set_dec(unsigned long val) { asm volatile("mtdec %0" : : "r" (val)); } void enable_interrupts (void) { set_msr (get_msr() | MSR_EE); } /* returns flag if MSR_EE was set before */ int disable_interrupts (void) { ulong msr = get_msr(); set_msr (msr & ~MSR_EE); return ((msr & MSR_EE) != 0); } /****************************************************************************/ int interrupt_init(void) { volatile immap_t *immr = (immap_t *)CFG_IMMR; decrementer_count = get_tbclk() / CFG_HZ; cpm_interrupt_init(); /* disable all interrupts except for the CPM interrupt */ immr->im_siu_conf.sc_simask = 1 << (31-CPM_INTERRUPT); set_dec (decrementer_count); set_msr (get_msr() | MSR_EE); return (0); } /****************************************************************************/ /* * Handle external interrupts */ void external_interrupt(struct pt_regs *regs) { volatile immap_t *immr = (immap_t *)CFG_IMMR; int irq; ulong simask, newmask; ulong vec, v_bit; /* * read the SIVEC register and shift the bits down * to get the irq number */ vec = immr->im_siu_conf.sc_sivec; irq = vec >> 26; v_bit = 0x80000000UL >> irq; /* * Read Interrupt Mask Register and Mask Interrupts */ simask = immr->im_siu_conf.sc_simask; newmask = simask & (~(0xFFFF0000 >> irq)); immr->im_siu_conf.sc_simask = newmask; if (!(irq & 0x1)) { /* External Interrupt ? */ ulong siel; /* * Read Interrupt Edge/Level Register */ siel = immr->im_siu_conf.sc_siel; if (siel & v_bit) { /* edge triggered interrupt ? */ /* * Rewrite SIPEND Register to clear interrupt */ immr->im_siu_conf.sc_sipend = v_bit; } } switch (irq) { case CPM_INTERRUPT: cpm_interrupt (irq, regs); break; default: printf ("\nBogus External Interrupt IRQ %d Vector %ld\n", irq, vec); /* turn off the bogus interrupt to avoid it from now */ simask &= ~v_bit; break; } /* * Re-Enable old Interrupt Mask */ immr->im_siu_conf.sc_simask = simask; } /****************************************************************************/ /* * CPM interrupt handler */ static void cpm_interrupt(int irq, struct pt_regs * regs) { volatile immap_t *immr = (immap_t *)CFG_IMMR; uint vec; /* * Get the vector by setting the ACK bit * and then reading the register. */ immr->im_cpic.cpic_civr = 1; vec = immr->im_cpic.cpic_civr; vec >>= 11; if (cpm_vecs[vec].handler != NULL) { (*cpm_vecs[vec].handler)(cpm_vecs[vec].arg); } else { immr->im_cpic.cpic_cimr &= ~(1 << vec); printf ("Masking bogus CPM interrupt vector 0x%x\n", vec); } /* * After servicing the interrupt, we have to remove the status indicator. */ immr->im_cpic.cpic_cisr |= (1 << vec); } /* * The CPM can generate the error interrupt when there is a race * condition between generating and masking interrupts. All we have * to do is ACK it and return. This is a no-op function so we don't * need any special tests in the interrupt handler. */ static void cpm_error_interrupt (void *dummy) { } /****************************************************************************/ /* * Install and free a CPM interrupt handler. */ void irq_install_handler(int vec, interrupt_handler_t *handler, void *arg) { volatile immap_t *immr = (immap_t *)CFG_IMMR; if (cpm_vecs[vec].handler != NULL) { printf ("CPM interrupt 0x%x replacing 0x%x\n", (uint)handler, (uint)cpm_vecs[vec].handler); } cpm_vecs[vec].handler = handler; cpm_vecs[vec].arg = arg; immr->im_cpic.cpic_cimr |= (1 << vec); #if 0 printf ("Install CPM interrupt for vector %d ==> %p\n", vec, handler); #endif } void irq_free_handler(int vec) { volatile immap_t *immr = (immap_t *)CFG_IMMR; #if 0 printf ("Free CPM interrupt for vector %d ==> %p\n", vec, cpm_vecs[vec].handler); #endif immr->im_cpic.cpic_cimr &= ~(1 << vec); cpm_vecs[vec].handler = NULL; cpm_vecs[vec].arg = NULL; } /****************************************************************************/ static void cpm_interrupt_init (void) { volatile immap_t *immr = (immap_t *)CFG_IMMR; /* * Initialize the CPM interrupt controller. */ immr->im_cpic.cpic_cicr = ( CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1 ) | ((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK; immr->im_cpic.cpic_cimr = 0; /* * Install the error handler. */ irq_install_handler(CPMVEC_ERROR, cpm_error_interrupt, NULL); immr->im_cpic.cpic_cicr |= CICR_IEN; } /****************************************************************************/ volatile ulong timestamp = 0; /* * timer_interrupt - gets called when the decrementer overflows, * with interrupts disabled. * Trivial implementation - no need to be really accurate. */ void timer_interrupt(struct pt_regs *regs) { volatile immap_t *immr = (immap_t *)CFG_IMMR; #ifdef CONFIG_STATUS_LED extern void status_led_tick (ulong); #endif #if 0 printf ("*** Timer Interrupt *** "); #endif /* Reset Timer Expired and Timers Interrupt Status */ immr->im_clkrstk.cark_plprcrk = KAPWR_KEY; __asm__("nop"); immr->im_clkrst.car_plprcr |= PLPRCR_TEXPS | PLPRCR_TMIST; /* Restore Decrementer Count */ set_dec (decrementer_count); timestamp++; #ifdef CONFIG_STATUS_LED status_led_tick (timestamp); #endif /* CONFIG_STATUS_LED */ #if defined(CONFIG_WATCHDOG) || defined(CFG_CMA_LCD_HEARTBEAT) /* * The shortest watchdog period of all boards (except LWMON) * is approx. 1 sec, thus re-trigger watchdog at least * every 500 ms = CFG_HZ / 2 */ #ifndef CONFIG_LWMON if ((timestamp % (CFG_HZ / 2)) == 0) { #else if ((timestamp % (CFG_HZ / 20)) == 0) { #endif #if defined(CFG_CMA_LCD_HEARTBEAT) extern void lcd_heartbeat(void); lcd_heartbeat(); #endif /* CFG_CMA_LCD_HEARTBEAT */ #if defined(CONFIG_WATCHDOG) reset_8xx_watchdog(immr); #endif /* CONFIG_WATCHDOG */ } #endif /* CONFIG_WATCHDOG || CFG_CMA_LCD_HEARTBEAT */ } /****************************************************************************/ void reset_timer (void) { timestamp = 0; } ulong get_timer (ulong base) { return (timestamp - base); } void set_timer (ulong t) { timestamp = t; } /****************************************************************************/