/* * Copyright 2013-2014 Toradex, Inc. * * Based on vf610twr.c: * Copyright 2013 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../common/configblock.h" DECLARE_GLOBAL_DATA_PTR; #define UART_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_25ohm | PAD_CTL_OBE_IBE_ENABLE) #define ESDHC_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_HIGH | \ PAD_CTL_DSE_20ohm | PAD_CTL_OBE_IBE_ENABLE) #define ENET_PAD_CTRL (PAD_CTL_PUS_47K_UP | PAD_CTL_SPEED_HIGH | \ PAD_CTL_DSE_50ohm | PAD_CTL_OBE_IBE_ENABLE) int dram_init(void) { setup_iomux_ddr(); ddr_ctrl_init(3120, 64, 1, 2, NULL); gd->ram_size = get_ram_size((void *)PHYS_SDRAM, PHYS_SDRAM_SIZE); return 0; } static void setup_iomux_uart(void) { static const iomux_v3_cfg_t uart_pads[] = { NEW_PAD_CTRL(VF610_PAD_PTB4__UART1_TX, UART_PAD_CTRL), /* UART_C_TXD: SCI1_TX */ NEW_PAD_CTRL(VF610_PAD_PTB5__UART1_RX, UART_PAD_CTRL), /* UART_C_RXD: SCI1_RX */ NEW_PAD_CTRL(VF610_PAD_PTB10__UART0_TX, UART_PAD_CTRL), /* UART_A_TXD: SCI0_TX */ NEW_PAD_CTRL(VF610_PAD_PTB11__UART0_RX, UART_PAD_CTRL), /* UART_A_RXD: SCI0_RX */ }; imx_iomux_v3_setup_multiple_pads(uart_pads, ARRAY_SIZE(uart_pads)); } static void setup_iomux_enet(void) { static const iomux_v3_cfg_t enet0_pads[] = { NEW_PAD_CTRL(VF610_PAD_PTA6__RMII0_CLKOUT, ENET_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTC10__RMII1_MDIO, ENET_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTC9__RMII1_MDC, ENET_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTC11__RMII1_CRS_DV, ENET_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTC12__RMII1_RD1, ENET_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTC13__RMII1_RD0, ENET_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTC14__RMII1_RXER, ENET_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTC15__RMII1_TD1, ENET_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTC16__RMII1_TD0, ENET_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTC17__RMII1_TXEN, ENET_PAD_CTRL), }; imx_iomux_v3_setup_multiple_pads(enet0_pads, ARRAY_SIZE(enet0_pads)); } static void setup_iomux_i2c(void) { static const iomux_v3_cfg_t i2c0_pads[] = { VF610_PAD_PTB14__I2C0_SCL, VF610_PAD_PTB15__I2C0_SDA, }; imx_iomux_v3_setup_multiple_pads(i2c0_pads, ARRAY_SIZE(i2c0_pads)); } #ifdef CONFIG_NAND_VF610_NFC static void setup_iomux_nfc(void) { static const iomux_v3_cfg_t nfc_pads[] = { VF610_PAD_PTD23__NF_IO7, VF610_PAD_PTD22__NF_IO6, VF610_PAD_PTD21__NF_IO5, VF610_PAD_PTD20__NF_IO4, VF610_PAD_PTD19__NF_IO3, VF610_PAD_PTD18__NF_IO2, VF610_PAD_PTD17__NF_IO1, VF610_PAD_PTD16__NF_IO0, VF610_PAD_PTB24__NF_WE_B, VF610_PAD_PTB25__NF_CE0_B, VF610_PAD_PTB27__NF_RE_B, VF610_PAD_PTC26__NF_RB_B, VF610_PAD_PTC27__NF_ALE, VF610_PAD_PTC28__NF_CLE }; imx_iomux_v3_setup_multiple_pads(nfc_pads, ARRAY_SIZE(nfc_pads)); } #endif #ifdef CONFIG_FSL_ESDHC struct fsl_esdhc_cfg esdhc_cfg[1] = { {ESDHC1_BASE_ADDR}, }; int board_mmc_getcd(struct mmc *mmc) { /* eSDHC1 is always present */ return 1; } int board_mmc_init(bd_t *bis) { static const iomux_v3_cfg_t esdhc1_pads[] = { NEW_PAD_CTRL(VF610_PAD_PTA24__ESDHC1_CLK, ESDHC_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTA25__ESDHC1_CMD, ESDHC_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTA26__ESDHC1_DAT0, ESDHC_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTA27__ESDHC1_DAT1, ESDHC_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTA28__ESDHC1_DAT2, ESDHC_PAD_CTRL), NEW_PAD_CTRL(VF610_PAD_PTA29__ESDHC1_DAT3, ESDHC_PAD_CTRL), }; esdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK); imx_iomux_v3_setup_multiple_pads( esdhc1_pads, ARRAY_SIZE(esdhc1_pads)); return fsl_esdhc_initialize(bis, &esdhc_cfg[0]); } #endif static inline int is_colibri_vf61(void) { struct mscm *mscm = (struct mscm*)MSCM_BASE_ADDR; /* * Detect board type by Level 2 Cache: VF50 don't have any * Level 2 Cache. */ return !!mscm->cpxcfg1; } static void clock_init(void) { struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR; struct anadig_reg *anadig = (struct anadig_reg *)ANADIG_BASE_ADDR; u32 pfd_clk_sel, ddr_clk_sel; clrsetbits_le32(&ccm->ccgr0, CCM_REG_CTRL_MASK, CCM_CCGR0_UART0_CTRL_MASK); clrsetbits_le32(&ccm->ccgr1, CCM_REG_CTRL_MASK, CCM_CCGR1_PIT_CTRL_MASK | CCM_CCGR1_WDOGA5_CTRL_MASK | CCM_CCGR1_USBC0_CTRL_MASK); clrsetbits_le32(&ccm->ccgr2, CCM_REG_CTRL_MASK, CCM_CCGR2_IOMUXC_CTRL_MASK | CCM_CCGR2_PORTA_CTRL_MASK | CCM_CCGR2_PORTB_CTRL_MASK | CCM_CCGR2_PORTC_CTRL_MASK | CCM_CCGR2_PORTD_CTRL_MASK | CCM_CCGR2_PORTE_CTRL_MASK); clrsetbits_le32(&ccm->ccgr3, CCM_REG_CTRL_MASK, CCM_CCGR3_ANADIG_CTRL_MASK | CCM_CCGR3_SCSC_CTRL_MASK); clrsetbits_le32(&ccm->ccgr4, CCM_REG_CTRL_MASK, CCM_CCGR4_WKUP_CTRL_MASK | CCM_CCGR4_CCM_CTRL_MASK | CCM_CCGR4_GPC_CTRL_MASK | CCM_CCGR4_I2C0_CTRL_MASK); clrsetbits_le32(&ccm->ccgr6, CCM_REG_CTRL_MASK, CCM_CCGR6_OCOTP_CTRL_MASK | CCM_CCGR6_DDRMC_CTRL_MASK); clrsetbits_le32(&ccm->ccgr7, CCM_REG_CTRL_MASK, CCM_CCGR7_SDHC1_CTRL_MASK | CCM_CCGR7_USBC1_CTRL_MASK); clrsetbits_le32(&ccm->ccgr9, CCM_REG_CTRL_MASK, CCM_CCGR9_FEC0_CTRL_MASK | CCM_CCGR9_FEC1_CTRL_MASK); clrsetbits_le32(&ccm->ccgr10, CCM_REG_CTRL_MASK, CCM_CCGR10_NFC_CTRL_MASK); clrsetbits_le32(&anadig->pll7_ctrl, ANADIG_PLL7_CTRL_BYPASS | ANADIG_PLL7_CTRL_POWERDOWN | ANADIG_PLL7_CTRL_DIV_SELECT, ANADIG_PLL7_CTRL_ENABLE); clrsetbits_le32(&anadig->pll5_ctrl, ANADIG_PLL5_CTRL_BYPASS | ANADIG_PLL5_CTRL_POWERDOWN, ANADIG_PLL5_CTRL_ENABLE | ANADIG_PLL5_CTRL_DIV_SELECT); clrsetbits_le32(&anadig->pll3_ctrl, ANADIG_PLL3_CTRL_BYPASS | ANADIG_PLL3_CTRL_POWERDOWN | ANADIG_PLL3_CTRL_DIV_SELECT, ANADIG_PLL3_CTRL_ENABLE); if (is_colibri_vf61()) { clrsetbits_le32(&anadig->pll2_ctrl, ANADIG_PLL5_CTRL_BYPASS | ANADIG_PLL2_CTRL_POWERDOWN, ANADIG_PLL2_CTRL_ENABLE | ANADIG_PLL2_CTRL_DIV_SELECT); } clrsetbits_le32(&anadig->pll1_ctrl, ANADIG_PLL1_CTRL_POWERDOWN, ANADIG_PLL1_CTRL_ENABLE | ANADIG_PLL1_CTRL_DIV_SELECT); clrsetbits_le32(&ccm->ccr, CCM_CCR_OSCNT_MASK, CCM_CCR_FIRC_EN | CCM_CCR_OSCNT(5)); /* See "Typical PLL Configuration" */ if (is_colibri_vf61()) { pfd_clk_sel = CCM_CCSR_PLL1_PFD_CLK_SEL(1); ddr_clk_sel = CCM_CCSR_DDRC_CLK_SEL(0); } else { pfd_clk_sel = CCM_CCSR_PLL1_PFD_CLK_SEL(3); ddr_clk_sel = CCM_CCSR_DDRC_CLK_SEL(1); } clrsetbits_le32(&ccm->ccsr, CCM_REG_CTRL_MASK, pfd_clk_sel | CCM_CCSR_PLL3_PFD4_EN | CCM_CCSR_PLL3_PFD3_EN | CCM_CCSR_PLL3_PFD2_EN | CCM_CCSR_PLL3_PFD1_EN | CCM_CCSR_PLL2_PFD4_EN | CCM_CCSR_PLL2_PFD3_EN | CCM_CCSR_PLL2_PFD2_EN | CCM_CCSR_PLL2_PFD1_EN | CCM_CCSR_PLL1_PFD4_EN | CCM_CCSR_PLL1_PFD3_EN | CCM_CCSR_PLL1_PFD2_EN | CCM_CCSR_PLL1_PFD1_EN | ddr_clk_sel | CCM_CCSR_FAST_CLK_SEL(1) | CCM_CCSR_SYS_CLK_SEL(4)); clrsetbits_le32(&ccm->cacrr, CCM_REG_CTRL_MASK, CCM_CACRR_IPG_CLK_DIV(1) | CCM_CACRR_BUS_CLK_DIV(2) | CCM_CACRR_ARM_CLK_DIV(0)); clrsetbits_le32(&ccm->cscmr1, CCM_REG_CTRL_MASK, CCM_CSCMR1_ESDHC1_CLK_SEL(3) | CCM_CSCMR1_NFC_CLK_SEL(0)); clrsetbits_le32(&ccm->cscdr1, CCM_REG_CTRL_MASK, CCM_CSCDR1_RMII_CLK_EN); clrsetbits_le32(&ccm->cscdr2, CCM_REG_CTRL_MASK, CCM_CSCDR2_ESDHC1_EN | CCM_CSCDR2_ESDHC1_CLK_DIV(0) | CCM_CSCDR2_NFC_EN); clrsetbits_le32(&ccm->cscdr3, CCM_REG_CTRL_MASK, CCM_CSCDR3_NFC_PRE_DIV(5)); clrsetbits_le32(&ccm->cscmr2, CCM_REG_CTRL_MASK, CCM_CSCMR2_RMII_CLK_SEL(2)); /* PLL5 main clock */ } static void mscm_init(void) { struct mscm_ir *mscmir = (struct mscm_ir *)MSCM_IR_BASE_ADDR; int i; for (i = 0; i < MSCM_IRSPRC_NUM; i++) writew(MSCM_IRSPRC_CP0_EN, &mscmir->irsprc[i]); } int board_phy_config(struct phy_device *phydev) { if (phydev->drv->config) phydev->drv->config(phydev); return 0; } int board_early_init_f(void) { clock_init(); mscm_init(); setup_iomux_uart(); setup_iomux_enet(); setup_iomux_i2c(); #ifdef CONFIG_NAND_VF610_NFC setup_iomux_nfc(); #endif return 0; } #ifdef CONFIG_BOARD_LATE_INIT int board_late_init(void) { struct src *src = (struct src *)SRC_BASE_ADDR; /* Default memory arguments */ if (!getenv("memargs")) { switch (gd->ram_size) { case 0x08000000: /* 128 MB */ setenv("memargs", "mem=128M"); break; case 0x10000000: /* 256 MB */ setenv("memargs", "mem=256M"); break; default: printf("Failed detecting RAM size.\n"); } } if (((src->sbmr2 & SRC_SBMR2_BMOD_MASK) >> SRC_SBMR2_BMOD_SHIFT) == SRC_SBMR2_BMOD_SERIAL) { printf("Serial Downloader recovery mode, disable autoboot\n"); setenv("bootdelay", "-1"); } #ifdef CONFIG_TRDX_CFG_BLOCK if (read_trdx_cfg_block()) printf("Missing Colibri config block\n"); #endif return 0; } #endif /* CONFIG_BOARD_LATE_INIT */ int board_init(void) { struct scsc_reg *scsc = (struct scsc_reg *)SCSC_BASE_ADDR; if (!is_colibri_vf61()) gd->bd->bi_arch_number = MACH_TYPE_COLIBRI_VF50; else gd->bd->bi_arch_number = MACH_TYPE_COLIBRI_VF61; /* address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; /* * Enable external 32K Oscillator * * The internal clock experiences significant drift * so we must use the external oscillator in order * to maintain correct time in the hwclock */ setbits_le32(&scsc->sosc_ctr, SCSC_SOSC_CTR_SOSC_EN); return 0; } int checkboard(void) { if (is_colibri_vf61()) puts("Board: Colibri VF61\n"); else puts("Board: Colibri VF50\n"); return 0; } int g_dnl_bind_fixup(struct usb_device_descriptor *dev, const char *name) { char serialnr[64]; unsigned short prodnr; unsigned short usb_pid; #ifdef CONFIG_TRDX_CFG_BLOCK get_board_serial_char(serialnr); get_board_product_number(&prodnr); #endif put_unaligned(CONFIG_TRDX_VID, &dev->idVendor); switch (prodnr) { case 10: usb_pid = CONFIG_TRDX_PID_COLIBRI_VF50; break; case 11: usb_pid = CONFIG_TRDX_PID_COLIBRI_VF61; break; case 12: usb_pid = CONFIG_TRDX_PID_COLIBRI_VF61IT; break; case 13: usb_pid = CONFIG_TRDX_PID_COLIBRI_VF50IT; break; default: if (is_colibri_vf61()) usb_pid = CONFIG_TRDX_PID_COLIBRI_VF61IT; else usb_pid = CONFIG_TRDX_PID_COLIBRI_VF50; break; } put_unaligned(usb_pid, &dev->idProduct); g_dnl_set_serialnumber((char *)serialnr); return 0; }