/* * Copyright (C) 2015 Freescale Semiconductor, Inc. * 2016 Toradex AG * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SYS_I2C_MXC #include #include #endif #include #ifdef CONFIG_VIDEO_MXS #include #include #endif #ifdef CONFIG_FASTBOOT #include #ifdef CONFIG_ANDROID_RECOVERY #include #endif #endif /*CONFIG_FASTBOOT*/ #include "../common/configblock.h" #define COLIBRI_EXT_PHYCLK DECLARE_GLOBAL_DATA_PTR; #define BUTTON_PAD_CTRL (PAD_CTL_PUS_PU5KOHM | PAD_CTL_DSE_3P3V_98OHM) #define ENET_PAD_CTRL (PAD_CTL_PUS_PU100KOHM | PAD_CTL_DSE_3P3V_32OHM) #define ENET_PAD_CTRL_MII (PAD_CTL_DSE_3P3V_32OHM) #define ENET_RX_PAD_CTRL (PAD_CTL_PUS_PU100KOHM | PAD_CTL_DSE_3P3V_49OHM) #define I2C_PAD_CTRL (PAD_CTL_DSE_3P3V_32OHM | PAD_CTL_SRE_SLOW | \ PAD_CTL_HYS | PAD_CTL_PUE | PAD_CTL_PUS_PU100KOHM) #define LCD_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_PU100KOHM | \ PAD_CTL_DSE_3P3V_49OHM) #define NAND_PAD_CTRL (PAD_CTL_DSE_3P3V_49OHM | PAD_CTL_SRE_SLOW | PAD_CTL_HYS) #define NAND_PAD_READY0_CTRL (PAD_CTL_DSE_3P3V_49OHM | PAD_CTL_PUS_PU5KOHM) #define QSPI_PAD_CTRL \ (PAD_CTL_DSE_3P3V_49OHM | PAD_CTL_PUE | PAD_CTL_PUS_PU47KOHM) #define SPI_PAD_CTRL (PAD_CTL_DSE_3P3V_49OHM | PAD_CTL_SRE_SLOW | PAD_CTL_HYS) #define UART_PAD_CTRL (PAD_CTL_DSE_3P3V_49OHM | \ PAD_CTL_PUS_PU100KOHM | PAD_CTL_HYS) #define USDHC_PAD_CTRL (PAD_CTL_DSE_3P3V_32OHM | PAD_CTL_SRE_SLOW | \ PAD_CTL_HYS | PAD_CTL_PUE | PAD_CTL_PUS_PU47KOHM) #define NO_PULLUP (PAD_CTL_HYS | PAD_CTL_SRE_SLOW | PAD_CTL_DSE_3P3V_49OHM) #define WEAK_PULLUP (PAD_CTL_PUS_PU47KOHM | PAD_CTL_PUE \ | PAD_CTL_HYS | PAD_CTL_SRE_SLOW | PAD_CTL_DSE_3P3V_49OHM) #define WEAK_PULLDOWN (PAD_CTL_PUS_PU47KOHM | PAD_CTL_PUE \ | PAD_CTL_HYS | PAD_CTL_SRE_SLOW | PAD_CTL_DSE_3P3V_49OHM) #ifdef CONFIG_SYS_I2C_MXC #define PC MUX_PAD_CTRL(I2C_PAD_CTRL) /* I2C1 for PMIC */ struct i2c_pads_info i2c_pad_info1 = { .scl = { .i2c_mode = MX7D_PAD_GPIO1_IO04__I2C1_SCL | PC, .gpio_mode = MX7D_PAD_GPIO1_IO04__GPIO1_IO4 | PC, .gp = IMX_GPIO_NR(1, 4), }, .sda = { .i2c_mode = MX7D_PAD_GPIO1_IO05__I2C1_SDA | PC, .gpio_mode = MX7D_PAD_GPIO1_IO05__GPIO1_IO5 | PC, .gp = IMX_GPIO_NR(1, 5), }, }; /* I2C4 for Colibri I2C */ struct i2c_pads_info i2c_pad_info4 = { .scl = { .i2c_mode = MX7D_PAD_ENET1_RGMII_TD2__I2C4_SCL | PC, .gpio_mode = MX7D_PAD_ENET1_RGMII_TD2__GPIO7_IO8 | PC, .gp = IMX_GPIO_NR(7, 8), }, .sda = { .i2c_mode = MX7D_PAD_ENET1_RGMII_TD3__I2C4_SDA | PC, .gpio_mode = MX7D_PAD_ENET1_RGMII_TD3__GPIO7_IO9 | PC, .gp = IMX_GPIO_NR(7, 9), }, }; #endif int dram_init(void) { gd->ram_size = get_ram_size((void *)PHYS_SDRAM, PHYS_SDRAM_SIZE); return 0; } static iomux_v3_cfg_t const uart1_pads[] = { MX7D_PAD_UART1_RX_DATA__UART1_DTE_TX | MUX_PAD_CTRL(UART_PAD_CTRL), MX7D_PAD_UART1_TX_DATA__UART1_DTE_RX | MUX_PAD_CTRL(UART_PAD_CTRL), MX7D_PAD_SAI2_TX_BCLK__UART1_DTE_CTS | MUX_PAD_CTRL(UART_PAD_CTRL), MX7D_PAD_SAI2_TX_SYNC__UART1_DTE_RTS | MUX_PAD_CTRL(UART_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc1_pads[] = { MX7D_PAD_SD1_CLK__SD1_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_CMD__SD1_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_DATA0__SD1_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_DATA1__SD1_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_DATA2__SD1_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_DATA3__SD1_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_GPIO1_IO00__GPIO1_IO0 | MUX_PAD_CTRL(NO_PAD_CTRL), #define USDHC1_CD_GPIO IMX_GPIO_NR(1, 0) }; #ifdef CONFIG_SYS_USE_NAND static iomux_v3_cfg_t const gpmi_pads[] = { MX7D_PAD_SD3_DATA0__NAND_DATA00 | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_DATA1__NAND_DATA01 | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_DATA2__NAND_DATA02 | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_DATA3__NAND_DATA03 | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_DATA4__NAND_DATA04 | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_DATA5__NAND_DATA05 | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_DATA6__NAND_DATA06 | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_DATA7__NAND_DATA07 | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_CLK__NAND_CLE | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_CMD__NAND_ALE | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_STROBE__NAND_RE_B | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SD3_RESET_B__NAND_WE_B | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SAI1_RX_DATA__NAND_CE1_B | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SAI1_TX_BCLK__NAND_CE0_B | MUX_PAD_CTRL(NAND_PAD_CTRL), MX7D_PAD_SAI1_TX_DATA__NAND_READY_B | MUX_PAD_CTRL(NAND_PAD_READY0_CTRL), }; static void setup_gpmi_nand(void) { imx_iomux_v3_setup_multiple_pads(gpmi_pads, ARRAY_SIZE(gpmi_pads)); /* * NAND_USDHC_BUS_CLK is set in rom */ set_clk_nand(); /* * APBH clock root is set in init_esdhc, USDHC3_CLK. * There is no clk gate for APBHDMA. * No touch here. */ } #endif #ifdef CONFIG_VIDEO_MXS static iomux_v3_cfg_t const lcd_pads[] = { MX7D_PAD_LCD_CLK__LCD_CLK | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_ENABLE__LCD_ENABLE | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_HSYNC__LCD_HSYNC | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_VSYNC__LCD_VSYNC | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA00__LCD_DATA0 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA01__LCD_DATA1 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA02__LCD_DATA2 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA03__LCD_DATA3 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA04__LCD_DATA4 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA05__LCD_DATA5 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA06__LCD_DATA6 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA07__LCD_DATA7 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA08__LCD_DATA8 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA09__LCD_DATA9 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA10__LCD_DATA10 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA11__LCD_DATA11 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA12__LCD_DATA12 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA13__LCD_DATA13 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA14__LCD_DATA14 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA15__LCD_DATA15 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA16__LCD_DATA16 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA17__LCD_DATA17 | MUX_PAD_CTRL(LCD_PAD_CTRL), #if 0 MX7D_PAD_LCD_DATA18__LCD_DATA18 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA19__LCD_DATA19 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA20__LCD_DATA20 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA21__LCD_DATA21 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA22__LCD_DATA22 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA23__LCD_DATA23 | MUX_PAD_CTRL(LCD_PAD_CTRL), #endif }; static iomux_v3_cfg_t const backlight_pads[] = { /* Backlight On */ MX7D_PAD_SD1_WP__GPIO5_IO1 | MUX_PAD_CTRL(NO_PAD_CTRL), #define RGB_BACKLIGHT_GP IMX_GPIO_NR(5, 1) /* TODO PWM not GPIO */ MX7D_PAD_GPIO1_IO08__GPIO1_IO8 | MUX_PAD_CTRL(NO_PULLUP), MX7D_PAD_ECSPI2_MOSI__GPIO4_IO21 | MUX_PAD_CTRL(NO_PAD_CTRL), #define RGB_BACKLIGHTPWM_GP IMX_GPIO_NR(1, 8) }; struct lcd_panel_info_t { unsigned int lcdif_base_addr; int depth; void (*enable)(struct lcd_panel_info_t const *dev); struct fb_videomode mode; }; void do_enable_parallel_lcd(struct lcd_panel_info_t const *dev) { imx_iomux_v3_setup_multiple_pads(lcd_pads, ARRAY_SIZE(lcd_pads)); imx_iomux_v3_setup_multiple_pads(backlight_pads, ARRAY_SIZE(backlight_pads)); /* Set Brightness to high */ gpio_direction_output(RGB_BACKLIGHT_GP , 1); gpio_direction_output(RGB_BACKLIGHTPWM_GP , 0); } static struct lcd_panel_info_t const displays[] = {{ .lcdif_base_addr = ELCDIF1_IPS_BASE_ADDR, .depth = 18, .enable = do_enable_parallel_lcd, .mode = { .name = "vga-rgb", .refresh = 60, .xres = 640, .yres = 480, .pixclock = 39722, .left_margin = 48, .right_margin = 16, .upper_margin = 33, .lower_margin = 10, .hsync_len = 96, .vsync_len = 2, .sync = 0, .vmode = FB_VMODE_NONINTERLACED } }, { .lcdif_base_addr = ELCDIF1_IPS_BASE_ADDR, .depth = 18, .enable = do_enable_parallel_lcd, .mode = { .name = "wvga-rgb", .refresh = 60, .xres = 800, .yres = 480, .pixclock = 25000, .left_margin = 40, .right_margin = 88, .upper_margin = 33, .lower_margin = 10, .hsync_len = 128, .vsync_len = 2, .sync = 0, .vmode = FB_VMODE_NONINTERLACED } } }; int board_video_skip(void) { int i; int ret; char const *panel = getenv("panel"); if (!panel) { panel = displays[0].mode.name; printf("No panel detected: default to %s\n", panel); i = 0; } else { for (i = 0; i < ARRAY_SIZE(displays); i++) { if (!strcmp(panel, displays[i].mode.name)) break; } } if (i < ARRAY_SIZE(displays)) { ret = mxs_lcd_panel_setup(displays[i].mode, displays[i].depth, displays[i].lcdif_base_addr); if (!ret) { if (displays[i].enable) displays[i].enable(displays+i); printf("Display: %s (%ux%u)\n", displays[i].mode.name, displays[i].mode.xres, displays[i].mode.yres); } else printf("LCD %s cannot be configured: %d\n", displays[i].mode.name, ret); } else { printf("unsupported panel %s\n", panel); return -EINVAL; } return 0; } #endif #ifdef CONFIG_FEC_MXC static iomux_v3_cfg_t const fec1_pads[] = { MX7D_PAD_ENET1_CRS__GPIO7_IO14 | MUX_PAD_CTRL(WEAK_PULLDOWN), /* don't interfere with RX_CTL */ MX7D_PAD_ENET1_RGMII_RX_CTL__ENET1_RGMII_RX_CTL | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX7D_PAD_ENET1_RGMII_RD0__ENET1_RGMII_RD0 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX7D_PAD_ENET1_RGMII_RD1__ENET1_RGMII_RD1 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX7D_PAD_ENET1_RGMII_RXC__ENET1_RX_ER | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), // MX7D_PAD_ENET1_RGMII_RXC__ENET1_RGMII_RXC | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX7D_PAD_ENET1_RGMII_TX_CTL__ENET1_RGMII_TX_CTL | MUX_PAD_CTRL(ENET_PAD_CTRL), MX7D_PAD_ENET1_RGMII_TD0__ENET1_RGMII_TD0 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX7D_PAD_ENET1_RGMII_TD1__ENET1_RGMII_TD1 | MUX_PAD_CTRL(ENET_PAD_CTRL), #ifndef COLIBRI_EXT_PHYCLK MX7D_PAD_GPIO1_IO12__CCM_ENET_REF_CLK1 | MUX_PAD_CTRL(ENET_PAD_CTRL) | MUX_MODE_SION, #else MX7D_PAD_GPIO1_IO12__CCM_ENET_REF_CLK1 | MUX_PAD_CTRL(ENET_PAD_CTRL), #endif MX7D_PAD_SD2_CD_B__ENET1_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL_MII), MX7D_PAD_SD2_WP__ENET1_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL_MII), }; static void setup_iomux_fec(void) { imx_iomux_v3_setup_multiple_pads(fec1_pads, ARRAY_SIZE(fec1_pads)); } #endif /* UARTs are used in DTE mode, switch the mode on all UARTs before * any pinmuxing connects a (DCE) output to a transceiver output. */ #define UFCR 0x90 /* FIFO Control Register */ #define UFCR_DCEDTE (1<<6) /* DCE=0 */ static void setup_dtemode_uart(void) { setbits_le32((u32 *)(UART1_IPS_BASE_ADDR + UFCR), UFCR_DCEDTE); setbits_le32((u32 *)(UART2_IPS_BASE_ADDR + UFCR), UFCR_DCEDTE); setbits_le32((u32 *)(UART3_IPS_BASE_ADDR + UFCR), UFCR_DCEDTE); } static void setup_iomux_uart(void) { imx_iomux_v3_setup_multiple_pads(uart1_pads, ARRAY_SIZE(uart1_pads)); } #ifdef CONFIG_FSL_ESDHC static struct fsl_esdhc_cfg usdhc_cfg[2] = { {USDHC1_BASE_ADDR, 0, 4}, }; int mmc_get_env_devno(void) { struct bootrom_sw_info **p = (struct bootrom_sw_info **)ROM_SW_INFO_ADDR; u8 boot_type = (*p)->boot_dev_type; u8 dev_no = (*p)->boot_dev_instance; /* If not boot from sd/mmc, use default value */ if ((boot_type != BOOT_TYPE_SD) && (boot_type != BOOT_TYPE_MMC)) return CONFIG_SYS_MMC_ENV_DEV; if (2 == dev_no) dev_no--; return dev_no; } int mmc_map_to_kernel_blk(int dev_no) { if (1 == dev_no) dev_no++; return dev_no; } int board_mmc_getcd(struct mmc *mmc) { struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv; int ret = 0; switch (cfg->esdhc_base) { case USDHC1_BASE_ADDR: ret = !gpio_get_value(USDHC1_CD_GPIO); break; } return ret; } int board_mmc_init(bd_t *bis) { int i, ret; /* * (U-boot device node) (Physical Port) * mmc0 USDHC1 */ for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) { switch (i) { case 0: imx_iomux_v3_setup_multiple_pads( usdhc1_pads, ARRAY_SIZE(usdhc1_pads)); gpio_request(USDHC1_CD_GPIO, "usdhc1_cd"); gpio_direction_input(USDHC1_CD_GPIO); usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK); break; default: printf("Warning: you configured more USDHC controllers" "(%d) than supported by the board\n", i + 1); return 0; } ret = fsl_esdhc_initialize(bis, &usdhc_cfg[i]); if (ret) return ret; } return 0; } int check_mmc_autodetect(void) { char *autodetect_str = getenv("mmcautodetect"); if ((autodetect_str != NULL) && (strcmp(autodetect_str, "yes") == 0)) { return 1; } return 0; } void board_late_mmc_init(void) { char cmd[32]; char mmcblk[32]; u32 dev_no = mmc_get_env_devno(); if (!check_mmc_autodetect()) return; setenv_ulong("mmcdev", dev_no); /* Set mmcblk env */ sprintf(mmcblk, "/dev/mmcblk%dp2 rootwait rw", mmc_map_to_kernel_blk(dev_no)); setenv("mmcroot", mmcblk); sprintf(cmd, "mmc dev %d", dev_no); run_command(cmd, 0); } #endif #ifdef CONFIG_FEC_MXC int board_eth_init(bd_t *bis) { int ret; setup_iomux_fec(); ret = fecmxc_initialize_multi(bis, 0, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE); if (ret) printf("FEC1 MXC: %s:failed\n", __func__); return ret; } static int setup_fec(void) { struct iomuxc_gpr_base_regs *const iomuxc_gpr_regs = (struct iomuxc_gpr_base_regs *) IOMUXC_GPR_BASE_ADDR; int ret; #ifndef COLIBRI_EXT_PHYCLK /* Use 50M anatop REF_CLK1 for ENET1, clear gpr1[13], set gpr1[17] * and output it on the pin */ clrsetbits_le32(&iomuxc_gpr_regs->gpr[1], IOMUXC_GPR_GPR1_GPR_ENET1_TX_CLK_SEL_MASK, IOMUXC_GPR_GPR1_GPR_ENET1_CLK_DIR_MASK); #else /* Use 50M external CLK for ENET1, set gpr1[13], clear gpr1[17] */ clrsetbits_le32(&iomuxc_gpr_regs->gpr[1], IOMUXC_GPR_GPR1_GPR_ENET1_CLK_DIR_MASK, IOMUXC_GPR_GPR1_GPR_ENET1_TX_CLK_SEL_MASK); #endif ret = set_clk_enet(ENET_50MHz); if (ret) return ret; return 0; } int board_phy_config(struct phy_device *phydev) { #if 0 /* enable rgmii rxc skew and phy mode select to RGMII copper */ phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x21); phy_write(phydev, MDIO_DEVAD_NONE, 0x1f, 0x7ea8); phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x2f); phy_write(phydev, MDIO_DEVAD_NONE, 0x1f, 0x71b7); #endif if (phydev->drv->config) phydev->drv->config(phydev); return 0; } #endif int board_early_init_f(void) { setup_dtemode_uart(); setup_iomux_uart(); #ifdef CONFIG_SYS_I2C_MXC setup_i2c(0, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info1); setup_i2c(3, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info4); #endif return 0; } int board_init(void) { /* address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; #ifdef CONFIG_FEC_MXC setup_fec(); #endif #ifdef CONFIG_SYS_USE_NAND setup_gpmi_nand(); #endif #ifdef CONFIG_FSL_QSPI board_qspi_init(); #endif return 0; } int checkboard_fallback(void) { printf("Model: Toradex Colibri iMX7 %s\n", (gd->ram_size == 0x20000000) ? "Dual" : "Solo"); return 0; } #ifdef CONFIG_CMD_BMODE static const struct boot_mode board_boot_modes[] = { /* 4 bit bus width */ {"nand", MAKE_CFGVAL(0x40, 0x34, 0x00, 0x00)}, {"sd1", MAKE_CFGVAL(0x10, 0x10, 0x00, 0x00)}, {NULL, 0}, }; #endif #ifdef CONFIG_POWER #define I2C_PMIC 0 int power_init_board(void) { struct pmic *p; int ret; unsigned int reg, ver; ret = power_rn5t567_init(I2C_PMIC); if (ret) return ret; p = pmic_get("RN5T567"); ret = pmic_probe(p); if (ret) return ret; pmic_reg_read(p, RN5T567_LSIVER, &ver); pmic_reg_read(p, RN5T567_OTPVER, ®); printf("PMIC: RN5T567 LSIVER=0x%x OTPVER=0x%x\n", ver, reg); /* set jduge and press timer of N_OE to minimal values */ pmic_reg_read(p, RN5T567_NOETIMSETCNT, ®); reg &= ~0x7; pmic_reg_write(p, RN5T567_NOETIMSETCNT, reg); /* configure sleep slot so rails get disabled on suspend */ pmic_reg_read(p, RN5T567_LDO1_SLOT, ®); reg = (reg & 0xf0) | reg >> 4; pmic_reg_write(p, RN5T567_LDO1_SLOT, reg); /* disable DCDC2 discharge to avoid backfeeding through VFB2 */ pmic_reg_read(p, RN5T567_DC2CTL, ®); reg &= ~(0x2); pmic_reg_write(p, RN5T567_DC2CTL, reg); pmic_reg_read(p, RN5T567_DC2_SLOT, ®); reg = (reg & 0xf0) | reg >> 4; pmic_reg_write(p, RN5T567_DC2_SLOT, reg); return 0; } void reset_cpu(ulong addr) { struct pmic *p; p = pmic_get("RN5T567"); /* Use PMIC to reset, set REPWRTIM to 0 and REPWRON to 1 */ pmic_reg_write(p, RN5T567_REPCNT, 0x1); pmic_reg_write(p, RN5T567_SLPCNT, 0x1); } #endif int board_late_init(void) { #ifdef CONFIG_CMD_BMODE add_board_boot_modes(board_boot_modes); #endif #ifdef CONFIG_ENV_IS_IN_MMC board_late_mmc_init(); #endif return 0; } #ifdef CONFIG_USB_EHCI_MX7 iomux_v3_cfg_t const usb_otg1_pads[] = { MX7D_PAD_GPIO1_IO05__USB_OTG1_PWR | MUX_PAD_CTRL(NO_PAD_CTRL), }; iomux_v3_cfg_t const usb_otg2_pads[] = { MX7D_PAD_UART3_CTS_B__GPIO4_IO7 | MUX_PAD_CTRL(NO_PAD_CTRL), }; #define USBH_PWR IMX_GPIO_NR(4, 7) int board_ehci_hcd_init(int port) { switch (port) { case 0: #if 0 /* TODO make this a USB device */ imx_iomux_v3_setup_multiple_pads(usb_otg1_pads, ARRAY_SIZE(usb_otg1_pads)); #endif break; case 1: /* i.MX 7Solo only has one USB instance... */ if (is_cpu_type(MXC_CPU_MX7S)) return -ENODEV; imx_iomux_v3_setup_multiple_pads(usb_otg2_pads, ARRAY_SIZE(usb_otg2_pads)); gpio_direction_output(USBH_PWR , 1); break; default: printf("MXC USB port %d not yet supported\n", port); return 1; } return 0; } int board_ehci_power(int port, int on) { switch (port) { case 0: break; case 1: imx_iomux_v3_setup_multiple_pads(usb_otg2_pads, ARRAY_SIZE(usb_otg2_pads)); gpio_direction_output(USBH_PWR , !on); break; default: printf("MXC USB port %d not yet supported\n", port); return 1; } return 0; } #endif #ifdef CONFIG_FASTBOOT void board_fastboot_setup(void) { switch (get_boot_device()) { #if defined(CONFIG_FASTBOOT_STORAGE_MMC) case SD1_BOOT: case MMC1_BOOT: if (!getenv("fastboot_dev")) setenv("fastboot_dev", "mmc0"); if (!getenv("bootcmd")) setenv("bootcmd", "booti mmc0"); break; case SD3_BOOT: case MMC3_BOOT: if (!getenv("fastboot_dev")) setenv("fastboot_dev", "mmc1"); if (!getenv("bootcmd")) setenv("bootcmd", "booti mmc1"); break; #endif /*CONFIG_FASTBOOT_STORAGE_MMC*/ default: printf("unsupported boot devices\n"); break; } } #ifdef CONFIG_ANDROID_RECOVERY /* Use S3 button for recovery key */ #define GPIO_VOL_DN_KEY IMX_GPIO_NR(5, 10) iomux_v3_cfg_t const recovery_key_pads[] = { (MX7D_PAD_SD2_WP__GPIO5_IO10 | MUX_PAD_CTRL(BUTTON_PAD_CTRL)), }; int check_recovery_cmd_file(void) { int button_pressed = 0; int recovery_mode = 0; recovery_mode = recovery_check_and_clean_flag(); /* Check Recovery Combo Button press or not. */ imx_iomux_v3_setup_multiple_pads(recovery_key_pads, ARRAY_SIZE(recovery_key_pads)); gpio_direction_input(GPIO_VOL_DN_KEY); if (gpio_get_value(GPIO_VOL_DN_KEY) == 0) { /* VOL_DN key is low assert */ button_pressed = 1; printf("Recovery key pressed\n"); } return recovery_mode || button_pressed; } void board_recovery_setup(void) { int bootdev = get_boot_device(); switch (bootdev) { #if defined(CONFIG_FASTBOOT_STORAGE_MMC) case SD1_BOOT: case MMC1_BOOT: if (!getenv("bootcmd_android_recovery")) setenv("bootcmd_android_recovery", "booti mmc0 recovery"); break; case SD3_BOOT: case MMC3_BOOT: if (!getenv("bootcmd_android_recovery")) setenv("bootcmd_android_recovery", "booti mmc1 recovery"); break; #endif /*CONFIG_FASTBOOT_STORAGE_MMC*/ default: printf("Unsupported bootup device for recovery: dev: %d\n", bootdev); return; } printf("setup env for recovery..\n"); setenv("bootcmd", "run bootcmd_android_recovery"); } #endif /*CONFIG_ANDROID_RECOVERY*/ #endif /*CONFIG_FASTBOOT*/ #ifdef CONFIG_IMX_UDC void udc_pins_setting(void) { } #endif /*CONFIG_IMX_UDC*/ #if defined(CONFIG_CMD_BOOTAUX) ulong board_get_usable_ram_top(ulong total_size) { /* Reserve last 1MiB for M4 on modules with 256MiB RAM */ if (gd->ram_size == SZ_256M) return gd->ram_top - SZ_1M; else return gd->ram_top; } #if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP) int ft_board_setup(void *blob, bd_t *bd) { int up; up = arch_auxiliary_core_check_up(0); if (up) { int ret; int areas = 1; u64 start[2], size[2]; /* * Reserve 1MB of memory for M4 (1MiB is also the minimum * alignment for Linux due to MMU section size restrictions). */ start[0] = gd->bd->bi_dram[0].start; size[0] = SZ_256M - SZ_1M; /* If needed, create a second entry for memory beyond 256M */ if (gd->bd->bi_dram[0].size > SZ_256M) { start[1] = gd->bd->bi_dram[0].start + SZ_256M; size[1] = gd->bd->bi_dram[0].size - SZ_256M; areas = 2; } ret = fdt_set_usable_memory(blob, start, size, areas); if (ret) { eprintf("Cannot set usable memory\n"); return ret; } } else { int off; off = fdt_node_offset_by_compatible(blob, -1, "fsl,imx7d-rpmsg"); if (off > 0) fdt_status_disabled(blob, off); } return 0; } #endif #endif