/**************************************************************************** * * SciTech OS Portability Manager Library * * ======================================================================== * * The contents of this file are subject to the SciTech MGL Public * License Version 1.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.scitechsoft.com/mgl-license.txt * * Software distributed under the License is distributed on an * "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is Copyright (C) 1991-1998 SciTech Software, Inc. * * The Initial Developer of the Original Code is SciTech Software, Inc. * All Rights Reserved. * * ======================================================================== * * Language: ANSI C * Environment: 32 bit SMX embedded systems development. * * Description: Implementation for the OS Portability Manager Library, which * contains functions to implement OS specific services in a * generic, cross platform API. Porting the OS Portability * Manager library is the first step to porting any SciTech * products to a new platform. * ****************************************************************************/ #include "pmapi.h" #include "drvlib/os/os.h" #include "ztimerc.h" #include "event.h" #include "mtrr.h" #include "pm_help.h" #include #include #include #include #include #ifdef __GNUC__ #include #include #include #else #include #endif #ifdef __BORLANDC__ #pragma warn -par #endif /*--------------------------- Global variables ----------------------------*/ typedef struct { int oldMode; int old50Lines; } DOS_stateBuf; #define MAX_RM_BLOCKS 10 static struct { void *p; uint tag; } rmBlocks[MAX_RM_BLOCKS]; static uint VESABuf_len = 1024; /* Length of the VESABuf buffer */ static void *VESABuf_ptr = NULL; /* Near pointer to VESABuf */ static uint VESABuf_rseg; /* Real mode segment of VESABuf */ static uint VESABuf_roff; /* Real mode offset of VESABuf */ static void (PMAPIP fatalErrorCleanup)(void) = NULL; ushort _VARAPI _PM_savedDS = 0; static ulong PDB = 0,*pPDB = NULL; static uint VXD_version = -1; /*----------------------------- Implementation ----------------------------*/ ulong _ASMAPI _PM_getPDB(void); void _ASMAPI _PM_VxDCall(VXD_regs *regs,uint off,uint sel); /**************************************************************************** REMARKS: External function to call the PMHELP helper VxD. ****************************************************************************/ void PMAPI PM_VxDCall( VXD_regs *regs) { } /**************************************************************************** RETURNS: BCD coded version number of the VxD, or 0 if not loaded (ie: 0x202 - 2.2) REMARKS: This function gets the version number for the VxD that we have connected to. ****************************************************************************/ uint PMAPI PMHELP_getVersion(void) { return VXD_version = 0; } void PMAPI PM_init(void) { #ifndef REALMODE MTRR_init(); #endif } /**************************************************************************** PARAMETERS: base - The starting physical base address of the region size - The size in bytes of the region type - Type to place into the MTRR register RETURNS: Error code describing the result. REMARKS: Function to enable write combining for the specified region of memory. ****************************************************************************/ int PMAPI PM_enableWriteCombine( ulong base, ulong size, uint type) { #ifndef REALMODE return MTRR_enableWriteCombine(base,size,type); #else return PM_MTRR_NOT_SUPPORTED; #endif } ibool PMAPI PM_haveBIOSAccess(void) { return false; } long PMAPI PM_getOSType(void) { return _OS_SMX; } int PMAPI PM_getModeType(void) { return PM_386; } void PMAPI PM_backslash(char *s) { uint pos = strlen(s); if (s[pos-1] != '\\') { s[pos] = '\\'; s[pos+1] = '\0'; } } void PMAPI PM_setFatalErrorCleanup( void (PMAPIP cleanup)(void)) { fatalErrorCleanup = cleanup; } void MGLOutput(char *); void PMAPI PM_fatalError(const char *msg) { if (fatalErrorCleanup) fatalErrorCleanup(); MGLOutput(msg); /* No support for fprintf() under smx currently! */ /* fprintf(stderr,"%s\n", msg); */ exit(1); } static void ExitVBEBuf(void) { if (VESABuf_ptr) PM_freeRealSeg(VESABuf_ptr); VESABuf_ptr = 0; } void * PMAPI PM_getVESABuf(uint *len,uint *rseg,uint *roff) { if (!VESABuf_ptr) { /* Allocate a global buffer for communicating with the VESA VBE */ if ((VESABuf_ptr = PM_allocRealSeg(VESABuf_len, &VESABuf_rseg, &VESABuf_roff)) == NULL) return NULL; atexit(ExitVBEBuf); } *len = VESABuf_len; *rseg = VESABuf_rseg; *roff = VESABuf_roff; return VESABuf_ptr; } int PMAPI PM_int386(int intno, PMREGS *in, PMREGS *out) { PMSREGS sregs; PM_segread(&sregs); return PM_int386x(intno,in,out,&sregs); } /* Routines to set and get the real mode interrupt vectors, by making * direct real mode calls to DOS and bypassing the DOS extenders API. * This is the safest way to handle this, as some servers try to be * smart about changing real mode vectors. */ void PMAPI _PM_getRMvect(int intno, long *realisr) { RMREGS regs; RMSREGS sregs; PM_saveDS(); regs.h.ah = 0x35; regs.h.al = intno; PM_int86x(0x21, ®s, ®s, &sregs); *realisr = ((long)sregs.es << 16) | regs.x.bx; } void PMAPI _PM_setRMvect(int intno, long realisr) { RMREGS regs; RMSREGS sregs; PM_saveDS(); regs.h.ah = 0x25; regs.h.al = intno; sregs.ds = (int)(realisr >> 16); regs.x.dx = (int)(realisr & 0xFFFF); PM_int86x(0x21, ®s, ®s, &sregs); } void PMAPI _PM_addRealModeBlock(void *mem,uint tag) { int i; for (i = 0; i < MAX_RM_BLOCKS; i++) { if (rmBlocks[i].p == NULL) { rmBlocks[i].p = mem; rmBlocks[i].tag = tag; return; } } PM_fatalError("To many real mode memory block allocations!"); } uint PMAPI _PM_findRealModeBlock(void *mem) { int i; for (i = 0; i < MAX_RM_BLOCKS; i++) { if (rmBlocks[i].p == mem) return rmBlocks[i].tag; } PM_fatalError("Could not find prior real mode memory block allocation!"); return 0; } char * PMAPI PM_getCurrentPath( char *path, int maxLen) { return getcwd(path,maxLen); } char PMAPI PM_getBootDrive(void) { return 'C'; } const char * PMAPI PM_getVBEAFPath(void) { return "c:\\"; } const char * PMAPI PM_getNucleusPath(void) { static char path[256]; char *env; if ((env = getenv("NUCLEUS_PATH")) != NULL) return env; return "c:\\nucleus"; } const char * PMAPI PM_getNucleusConfigPath(void) { static char path[256]; strcpy(path,PM_getNucleusPath()); PM_backslash(path); strcat(path,"config"); return path; } const char * PMAPI PM_getUniqueID(void) { return "SMX"; } const char * PMAPI PM_getMachineName(void) { return "SMX"; } int PMAPI PM_kbhit(void) { int hit; event_t evt; hit = EVT_peekNext(&evt,EVT_KEYDOWN | EVT_KEYREPEAT); EVT_flush(~(EVT_KEYDOWN | EVT_KEYREPEAT)); return hit; } int PMAPI PM_getch(void) { event_t evt; EVT_halt(&evt,EVT_KEYDOWN); return EVT_asciiCode(evt.message); } PM_HWND PMAPI PM_openConsole(PM_HWND hwndUser,int device,int xRes,int yRes,int bpp,ibool fullScreen) { /* Not used for SMX */ (void)hwndUser; (void)device; (void)xRes; (void)yRes; (void)bpp; (void)fullScreen; return 0; } int PMAPI PM_getConsoleStateSize(void) { return sizeof(DOS_stateBuf); } void PMAPI PM_saveConsoleState(void *stateBuf,PM_HWND hwndConsole) { RMREGS regs; DOS_stateBuf *sb = stateBuf; /* Save the old video mode state */ regs.h.ah = 0x0F; PM_int86(0x10,®s,®s); sb->oldMode = regs.h.al & 0x7F; sb->old50Lines = false; if (sb->oldMode == 0x3) { regs.x.ax = 0x1130; regs.x.bx = 0; regs.x.dx = 0; PM_int86(0x10,®s,®s); sb->old50Lines = (regs.h.dl == 42 || regs.h.dl == 49); } (void)hwndConsole; } void PMAPI PM_setSuspendAppCallback(int (_ASMAPIP saveState)(int flags)) { /* Not used for SMX */ (void)saveState; } void PMAPI PM_restoreConsoleState(const void *stateBuf,PM_HWND hwndConsole) { RMREGS regs; const DOS_stateBuf *sb = stateBuf; /* Retore 50 line mode if set */ if (sb->old50Lines) { regs.x.ax = 0x1112; regs.x.bx = 0; PM_int86(0x10,®s,®s); } (void)hwndConsole; } void PMAPI PM_closeConsole(PM_HWND hwndConsole) { /* Not used for SMX */ (void)hwndConsole; } void PMAPI PM_setOSCursorLocation(int x,int y) { uchar *_biosPtr = PM_getBIOSPointer(); PM_setByte(_biosPtr+0x50,x); PM_setByte(_biosPtr+0x51,y); } void PMAPI PM_setOSScreenWidth(int width,int height) { uchar *_biosPtr = PM_getBIOSPointer(); PM_setWord(_biosPtr+0x4A,width); PM_setWord(_biosPtr+0x4C,width*2); PM_setByte(_biosPtr+0x84,height-1); if (height > 25) { PM_setWord(_biosPtr+0x60,0x0607); PM_setByte(_biosPtr+0x85,0x08); } else { PM_setWord(_biosPtr+0x60,0x0D0E); PM_setByte(_biosPtr+0x85,0x016); } } void * PMAPI PM_mallocShared(long size) { return PM_malloc(size); } void PMAPI PM_freeShared(void *ptr) { PM_free(ptr); } #define GetRMVect(intno,isr) *(isr) = ((ulong*)rmZeroPtr)[intno] #define SetRMVect(intno,isr) ((ulong*)rmZeroPtr)[intno] = (isr) ibool PMAPI PM_doBIOSPOST( ushort axVal, ulong BIOSPhysAddr, void *mappedBIOS, ulong BIOSLen) { static int firstTime = true; static uchar *rmZeroPtr; long Current10,Current6D,Current42; RMREGS regs; RMSREGS sregs; /* Create a zero memory mapping for us to use */ if (firstTime) { rmZeroPtr = PM_mapPhysicalAddr(0,0x7FFF,true); firstTime = false; } /* Remap the secondary BIOS to 0xC0000 physical */ if (BIOSPhysAddr != 0xC0000L || BIOSLen > 32768) { /* SMX cannot virtually remap the BIOS, so we can only work if all * the secondary controllers are identical, and we then use the * BIOS on the first controller for all the remaining controllers. * * For OS'es that do virtual memory, and remapping of 0xC0000 * physical (perhaps a copy on write mapping) should be all that * is needed. */ return false; } /* Save current handlers of int 10h and 6Dh */ GetRMVect(0x10,&Current10); GetRMVect(0x6D,&Current6D); /* POST the secondary BIOS */ GetRMVect(0x42,&Current42); SetRMVect(0x10,Current42); /* Restore int 10h to STD-BIOS */ regs.x.ax = axVal; PM_callRealMode(0xC000,0x0003,®s,&sregs); /* Restore current handlers */ SetRMVect(0x10,Current10); SetRMVect(0x6D,Current6D); /* Second the primary BIOS mappin 1:1 for 0xC0000 physical */ if (BIOSPhysAddr != 0xC0000L) { /* SMX does not support this */ (void)mappedBIOS; } return true; } void PMAPI PM_sleep(ulong milliseconds) { ulong microseconds = milliseconds * 1000L; LZTimerObject tm; LZTimerOnExt(&tm); while (LZTimerLapExt(&tm) < microseconds) ; LZTimerOffExt(&tm); } int PMAPI PM_getCOMPort(int port) { switch (port) { case 0: return 0x3F8; case 1: return 0x2F8; } return 0; } int PMAPI PM_getLPTPort(int port) { switch (port) { case 0: return 0x3BC; case 1: return 0x378; case 2: return 0x278; } return 0; } PM_MODULE PMAPI PM_loadLibrary( const char *szDLLName) { (void)szDLLName; return NULL; } void * PMAPI PM_getProcAddress( PM_MODULE hModule, const char *szProcName) { (void)hModule; (void)szProcName; return NULL; } void PMAPI PM_freeLibrary( PM_MODULE hModule) { (void)hModule; } int PMAPI PM_setIOPL( int level) { return level; } /**************************************************************************** REMARKS: Internal function to convert the find data to the generic interface. ****************************************************************************/ static void convertFindData( PM_findData *findData, struct find_t *blk) { ulong dwSize = findData->dwSize; memset(findData,0,findData->dwSize); findData->dwSize = dwSize; if (blk->attrib & _A_RDONLY) findData->attrib |= PM_FILE_READONLY; if (blk->attrib & _A_SUBDIR) findData->attrib |= PM_FILE_DIRECTORY; if (blk->attrib & _A_ARCH) findData->attrib |= PM_FILE_ARCHIVE; if (blk->attrib & _A_HIDDEN) findData->attrib |= PM_FILE_HIDDEN; if (blk->attrib & _A_SYSTEM) findData->attrib |= PM_FILE_SYSTEM; findData->sizeLo = blk->size; strncpy(findData->name,blk->name,PM_MAX_PATH); findData->name[PM_MAX_PATH-1] = 0; } #define FIND_MASK (_A_RDONLY | _A_ARCH | _A_SUBDIR | _A_HIDDEN | _A_SYSTEM) /**************************************************************************** REMARKS: Function to find the first file matching a search criteria in a directory. ****************************************************************************/ void * PMAPI PM_findFirstFile( const char *filename, PM_findData *findData) { struct find_t *blk; if ((blk = PM_malloc(sizeof(*blk))) == NULL) return PM_FILE_INVALID; if (_dos_findfirst((char*)filename,FIND_MASK,blk) == 0) { convertFindData(findData,blk); return blk; } return PM_FILE_INVALID; } /**************************************************************************** REMARKS: Function to find the next file matching a search criteria in a directory. ****************************************************************************/ ibool PMAPI PM_findNextFile( void *handle, PM_findData *findData) { struct find_t *blk = handle; if (_dos_findnext(blk) == 0) { convertFindData(findData,blk); return true; } return false; } /**************************************************************************** REMARKS: Function to close the find process ****************************************************************************/ void PMAPI PM_findClose( void *handle) { PM_free(handle); } /**************************************************************************** REMARKS: Function to determine if a drive is a valid drive or not. Under Unix this function will return false for anything except a value of 3 (considered the root drive, and equivalent to C: for non-Unix systems). The drive numbering is: 1 - Drive A: 2 - Drive B: 3 - Drive C: etc ****************************************************************************/ ibool PMAPI PM_driveValid( char drive) { RMREGS regs; regs.h.dl = (uchar)(drive - 'A' + 1); regs.h.ah = 0x36; /* Get disk information service */ PM_int86(0x21,®s,®s); return regs.x.ax != 0xFFFF; /* AX = 0xFFFF if disk is invalid */ } /**************************************************************************** REMARKS: Function to get the current working directory for the specififed drive. Under Unix this will always return the current working directory regardless of what the value of 'drive' is. ****************************************************************************/ void PMAPI PM_getdcwd( int drive, char *dir, int len) { uint oldDrive,maxDrives; _dos_getdrive(&oldDrive); _dos_setdrive(drive,&maxDrives); getcwd(dir,len); _dos_setdrive(oldDrive,&maxDrives); } /**************************************************************************** REMARKS: Function to change the file attributes for a specific file. ****************************************************************************/ void PMAPI PM_setFileAttr( const char *filename, uint attrib) { #if defined(TNT) && defined(_MSC_VER) DWORD attr = 0; if (attrib & PM_FILE_READONLY) attr |= FILE_ATTRIBUTE_READONLY; if (attrib & PM_FILE_ARCHIVE) attr |= FILE_ATTRIBUTE_ARCHIVE; if (attrib & PM_FILE_HIDDEN) attr |= FILE_ATTRIBUTE_HIDDEN; if (attrib & PM_FILE_SYSTEM) attr |= FILE_ATTRIBUTE_SYSTEM; SetFileAttributes((LPSTR)filename, attr); #else uint attr = 0; if (attrib & PM_FILE_READONLY) attr |= _A_RDONLY; if (attrib & PM_FILE_ARCHIVE) attr |= _A_ARCH; if (attrib & PM_FILE_HIDDEN) attr |= _A_HIDDEN; if (attrib & PM_FILE_SYSTEM) attr |= _A_SYSTEM; _dos_setfileattr(filename,attr); #endif } /**************************************************************************** REMARKS: Function to create a directory. ****************************************************************************/ ibool PMAPI PM_mkdir( const char *filename) { #ifdef __GNUC__ return mkdir(filename,S_IRUSR) == 0; #else /*AM: return mkdir(filename) == 0; */ return(false); #endif } /**************************************************************************** REMARKS: Function to remove a directory. ****************************************************************************/ ibool PMAPI PM_rmdir( const char *filename) { /*AM: return rmdir(filename) == 0; */ return(false); } /**************************************************************************** REMARKS: Allocates a block of locked, physically contiguous memory. The memory may be required to be below the 16Meg boundary. ****************************************************************************/ void * PMAPI PM_allocLockedMem( uint size, ulong *physAddr, ibool contiguous, ibool below16M) { void *p; uint r_seg,r_off; PM_lockHandle lh; /* Under DOS the only way to know the physical memory address is to * allocate the memory below the 1Meg boundary as real mode memory. * We also allocate 4095 bytes more memory than we need, so we can * properly page align the start of the memory block for DMA operations. */ if (size > 4096) return NULL; if ((p = PM_allocRealSeg((size + 0xFFF) & ~0xFFF,&r_seg,&r_off)) == NULL) return NULL; *physAddr = ((r_seg << 4) + r_off + 0xFFF) & ~0xFFF; PM_lockDataPages(p,size*2,&lh); return p; } void PMAPI PM_freeLockedMem(void *p,uint size,ibool contiguous) { (void)size; PM_freeRealSeg(p); } /*-------------------------------------------------------------------------*/ /* Generic DPMI routines common to 16/32 bit code */ /*-------------------------------------------------------------------------*/ ulong PMAPI DPMI_mapPhysicalToLinear(ulong physAddr,ulong limit) { PMREGS r; ulong physOfs; if (physAddr < 0x100000L) { /* We can't map memory below 1Mb, but the linear address are already * mapped 1:1 for this memory anyway so we just return the base address. */ return physAddr; } /* Round the physical address to a 4Kb boundary and the limit to a * 4Kb-1 boundary before passing the values to DPMI as some extenders * will fail the calls unless this is the case. If we round the * physical address, then we also add an extra offset into the address * that we return. */ physOfs = physAddr & 4095; physAddr = physAddr & ~4095; limit = ((limit+physOfs+1+4095) & ~4095)-1; r.x.ax = 0x800; /* DPMI map physical to linear */ r.x.bx = physAddr >> 16; r.x.cx = physAddr & 0xFFFF; r.x.si = limit >> 16; r.x.di = limit & 0xFFFF; PM_int386(0x31, &r, &r); if (r.x.cflag) return 0xFFFFFFFFUL; return ((ulong)r.x.bx << 16) + r.x.cx + physOfs; } int PMAPI DPMI_setSelectorBase(ushort sel,ulong linAddr) { PMREGS r; r.x.ax = 7; /* DPMI set selector base address */ r.x.bx = sel; r.x.cx = linAddr >> 16; r.x.dx = linAddr & 0xFFFF; PM_int386(0x31, &r, &r); if (r.x.cflag) return 0; return 1; } ulong PMAPI DPMI_getSelectorBase(ushort sel) { PMREGS r; r.x.ax = 6; /* DPMI get selector base address */ r.x.bx = sel; PM_int386(0x31, &r, &r); return ((ulong)r.x.cx << 16) + r.x.dx; } int PMAPI DPMI_setSelectorLimit(ushort sel,ulong limit) { PMREGS r; r.x.ax = 8; /* DPMI set selector limit */ r.x.bx = sel; r.x.cx = limit >> 16; r.x.dx = limit & 0xFFFF; PM_int386(0x31, &r, &r); if (r.x.cflag) return 0; return 1; } uint PMAPI DPMI_createSelector(ulong base,ulong limit) { uint sel; PMREGS r; /* Allocate 1 descriptor */ r.x.ax = 0; r.x.cx = 1; PM_int386(0x31, &r, &r); if (r.x.cflag) return 0; sel = r.x.ax; /* Set the descriptor access rights (for a 32 bit page granular * segment, ring 0). */ r.x.ax = 9; r.x.bx = sel; r.x.cx = 0x4093; PM_int386(0x31, &r, &r); /* Map physical memory and create selector */ if ((base = DPMI_mapPhysicalToLinear(base,limit)) == 0xFFFFFFFFUL) return 0; if (!DPMI_setSelectorBase(sel,base)) return 0; if (!DPMI_setSelectorLimit(sel,limit)) return 0; return sel; } void PMAPI DPMI_freeSelector(uint sel) { PMREGS r; r.x.ax = 1; r.x.bx = sel; PM_int386(0x31, &r, &r); } int PMAPI DPMI_lockLinearPages(ulong linear,ulong len) { PMREGS r; r.x.ax = 0x600; /* DPMI Lock Linear Region */ r.x.bx = (linear >> 16); /* Linear address in BX:CX */ r.x.cx = (linear & 0xFFFF); r.x.si = (len >> 16); /* Length in SI:DI */ r.x.di = (len & 0xFFFF); PM_int386(0x31, &r, &r); return (!r.x.cflag); } int PMAPI DPMI_unlockLinearPages(ulong linear,ulong len) { PMREGS r; r.x.ax = 0x601; /* DPMI Unlock Linear Region */ r.x.bx = (linear >> 16); /* Linear address in BX:CX */ r.x.cx = (linear & 0xFFFF); r.x.si = (len >> 16); /* Length in SI:DI */ r.x.di = (len & 0xFFFF); PM_int386(0x31, &r, &r); return (!r.x.cflag); } void * PMAPI DPMI_mapPhysicalAddr(ulong base,ulong limit,ibool isCached) { PMSREGS sregs; ulong linAddr; ulong DSBaseAddr; /* Get the base address for the default DS selector */ PM_segread(&sregs); DSBaseAddr = DPMI_getSelectorBase(sregs.ds); if ((base < 0x100000) && (DSBaseAddr == 0)) { /* DS is zero based, so we can directly access the first 1Mb of * system memory (like under DOS4GW). */ return (void*)base; } /* Map the memory to a linear address using DPMI function 0x800 */ if ((linAddr = DPMI_mapPhysicalToLinear(base,limit)) == 0) { if (base >= 0x100000) return NULL; /* If the linear address mapping fails but we are trying to * map an area in the first 1Mb of system memory, then we must * be running under a Windows or OS/2 DOS box. Under these * environments we can use the segment wrap around as a fallback * measure, as this does work properly. */ linAddr = base; } /* Now expand the default DS selector to 4Gb so we can access it */ if (!DPMI_setSelectorLimit(sregs.ds,0xFFFFFFFFUL)) return NULL; /* Finally enable caching for the page tables that we just mapped in, * since DOS4GW and PMODE/W create the page table entries without * caching enabled which hurts the performance of the linear framebuffer * as it disables write combining on Pentium Pro and above processors. * * For those processors cache disabling is better handled through the * MTRR registers anyway (we can write combine a region but disable * caching) so that MMIO register regions do not screw up. */ if (isCached) { if ((PDB = _PM_getPDB()) != 0 && DSBaseAddr == 0) { int startPDB,endPDB,iPDB,startPage,endPage,start,end,iPage; ulong pageTable,*pPageTable; if (!pPDB) { if (PDB >= 0x100000) pPDB = (ulong*)DPMI_mapPhysicalToLinear(PDB,0xFFF); else pPDB = (ulong*)PDB; } if (pPDB) { startPDB = (linAddr >> 22) & 0x3FF; startPage = (linAddr >> 12) & 0x3FF; endPDB = ((linAddr+limit) >> 22) & 0x3FF; endPage = ((linAddr+limit) >> 12) & 0x3FF; for (iPDB = startPDB; iPDB <= endPDB; iPDB++) { pageTable = pPDB[iPDB] & ~0xFFF; if (pageTable >= 0x100000) pPageTable = (ulong*)DPMI_mapPhysicalToLinear(pageTable,0xFFF); else pPageTable = (ulong*)pageTable; start = (iPDB == startPDB) ? startPage : 0; end = (iPDB == endPDB) ? endPage : 0x3FF; for (iPage = start; iPage <= end; iPage++) pPageTable[iPage] &= ~0x18; } } } } /* Now return the base address of the memory into the default DS */ return (void*)(linAddr - DSBaseAddr); } /* Some DOS extender implementations do not directly support calling a * real mode procedure from protected mode. However we can simulate what * we need temporarily hooking the INT 6Ah vector with a small real mode * stub that will call our real mode code for us. */ static uchar int6AHandler[] = { 0x00,0x00,0x00,0x00, /* __PMODE_callReal variable */ 0xFB, /* sti */ 0x2E,0xFF,0x1E,0x00,0x00, /* call [cs:__PMODE_callReal] */ 0xCF, /* iretf */ }; static uchar *crPtr = NULL; /* Pointer to of int 6A handler */ static uint crRSeg,crROff; /* Real mode seg:offset of handler */ void PMAPI PM_callRealMode(uint seg,uint off, RMREGS *in, RMSREGS *sregs) { uchar *p; uint oldSeg,oldOff; if (!crPtr) { /* Allocate and copy the memory block only once */ crPtr = PM_allocRealSeg(sizeof(int6AHandler), &crRSeg, &crROff); memcpy(crPtr,int6AHandler,sizeof(int6AHandler)); } PM_setWord(crPtr,off); /* Plug in address to call */ PM_setWord(crPtr+2,seg); p = PM_mapRealPointer(0,0x6A * 4); oldOff = PM_getWord(p); /* Save old handler address */ oldSeg = PM_getWord(p+2); PM_setWord(p,crROff+4); /* Hook 6A handler */ PM_setWord(p+2,crRSeg); PM_int86x(0x6A, in, in, sregs); /* Call real mode code */ PM_setWord(p,oldOff); /* Restore old handler */ PM_setWord(p+2,oldSeg); } void * PMAPI PM_getBIOSPointer(void) { return PM_mapPhysicalAddr(0x400,0xFFFF,true); } void * PMAPI PM_getA0000Pointer(void) { return PM_mapPhysicalAddr(0xA0000,0xFFFF,true); } void * PMAPI PM_mapPhysicalAddr(ulong base,ulong limit,ibool isCached) { return DPMI_mapPhysicalAddr(base,limit,isCached); } void PMAPI PM_freePhysicalAddr(void *ptr,ulong limit) { /* Mapping cannot be free */ } ulong PMAPI PM_getPhysicalAddr(void *p) { /* TODO: This function should find the physical address of a linear */ /* address. */ (void)p; return 0xFFFFFFFFUL; } void * PMAPI PM_mapToProcess(void *base,ulong limit) { (void)limit; return (void*)base; } void * PMAPI PM_mapRealPointer(uint r_seg,uint r_off) { static uchar *zeroPtr = NULL; if (!zeroPtr) zeroPtr = PM_mapPhysicalAddr(0,0xFFFFF,true); return (void*)(zeroPtr + MK_PHYS(r_seg,r_off)); } void * PMAPI PM_allocRealSeg(uint size,uint *r_seg,uint *r_off) { PMREGS r; void *p; r.x.ax = 0x100; /* DPMI allocate DOS memory */ r.x.bx = (size + 0xF) >> 4; /* number of paragraphs */ PM_int386(0x31, &r, &r); if (r.x.cflag) return NULL; /* DPMI call failed */ *r_seg = r.x.ax; /* Real mode segment */ *r_off = 0; p = PM_mapRealPointer(*r_seg,*r_off); _PM_addRealModeBlock(p,r.x.dx); return p; } void PMAPI PM_freeRealSeg(void *mem) { PMREGS r; r.x.ax = 0x101; /* DPMI free DOS memory */ r.x.dx = _PM_findRealModeBlock(mem);/* DX := selector from 0x100 */ PM_int386(0x31, &r, &r); } static DPMI_handler_t DPMI_int10 = NULL; void PMAPI DPMI_setInt10Handler(DPMI_handler_t handler) { DPMI_int10 = handler; } void PMAPI DPMI_int86(int intno, DPMI_regs *regs) { PMREGS r; PMSREGS sr; if (intno == 0x10 && DPMI_int10) { if (DPMI_int10(regs)) return; } PM_segread(&sr); r.x.ax = 0x300; /* DPMI issue real interrupt */ r.h.bl = intno; r.h.bh = 0; r.x.cx = 0; sr.es = sr.ds; r.e.edi = (uint)regs; PM_int386x(0x31, &r, &r, &sr); /* Issue the interrupt */ } #define IN(reg) rmregs.reg = in->e.reg #define OUT(reg) out->e.reg = rmregs.reg int PMAPI PM_int86(int intno, RMREGS *in, RMREGS *out) { DPMI_regs rmregs; memset(&rmregs, 0, sizeof(rmregs)); IN(eax); IN(ebx); IN(ecx); IN(edx); IN(esi); IN(edi); /* These real mode ints may cause crashes. */ /*AM: DPMI_int86(intno,&rmregs); /###* DPMI issue real interrupt */ OUT(eax); OUT(ebx); OUT(ecx); OUT(edx); OUT(esi); OUT(edi); out->x.cflag = rmregs.flags & 0x1; return out->x.ax; } int PMAPI PM_int86x(int intno, RMREGS *in, RMREGS *out, RMSREGS *sregs) { DPMI_regs rmregs; memset(&rmregs, 0, sizeof(rmregs)); IN(eax); IN(ebx); IN(ecx); IN(edx); IN(esi); IN(edi); rmregs.es = sregs->es; rmregs.ds = sregs->ds; /*AM: DPMI_int86(intno,&rmregs); /###* DPMI issue real interrupt */ OUT(eax); OUT(ebx); OUT(ecx); OUT(edx); OUT(esi); OUT(edi); sregs->es = rmregs.es; sregs->cs = rmregs.cs; sregs->ss = rmregs.ss; sregs->ds = rmregs.ds; out->x.cflag = rmregs.flags & 0x1; return out->x.ax; } #pragma pack(1) typedef struct { uint LargestBlockAvail; uint MaxUnlockedPage; uint LargestLockablePage; uint LinAddrSpace; uint NumFreePagesAvail; uint NumPhysicalPagesFree; uint TotalPhysicalPages; uint FreeLinAddrSpace; uint SizeOfPageFile; uint res[3]; } MemInfo; #pragma pack() void PMAPI PM_availableMemory(ulong *physical,ulong *total) { PMREGS r; PMSREGS sr; MemInfo memInfo; PM_segread(&sr); r.x.ax = 0x500; /* DPMI get free memory info */ sr.es = sr.ds; r.e.edi = (uint)&memInfo; PM_int386x(0x31, &r, &r, &sr); /* Issue the interrupt */ *physical = memInfo.NumPhysicalPagesFree * 4096; *total = memInfo.LargestBlockAvail; if (*total < *physical) *physical = *total; } /**************************************************************************** REMARKS: Function to get the file attributes for a specific file. ****************************************************************************/ uint PMAPI PM_getFileAttr( const char *filename) { /* TODO: Implement this! */ return 0; } /**************************************************************************** REMARKS: Function to get the file time and date for a specific file. ****************************************************************************/ ibool PMAPI PM_getFileTime( const char *filename, ibool gmTime, PM_time *time) { /* TODO: Implement this! */ return false; } /**************************************************************************** REMARKS: Function to set the file time and date for a specific file. ****************************************************************************/ ibool PMAPI PM_setFileTime( const char *filename, ibool gmTime, PM_time *time) { /* TODO: Implement this! */ return false; }