/* * (C) Copyright 2007 * Sascha Hauer, Pengutronix * * (C) Copyright 2009 Freescale Semiconductor, Inc. * Copyright 2018 NXP * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_IMX_SEC_INIT #include #endif enum ldo_reg { LDO_ARM, LDO_SOC, LDO_PU, }; struct scu_regs { u32 ctrl; u32 config; u32 status; u32 invalidate; u32 fpga_rev; }; #if defined(CONFIG_IMX_THERMAL) static const struct imx_thermal_plat imx6_thermal_plat = { .regs = (void *)ANATOP_BASE_ADDR, .fuse_bank = 1, .fuse_word = 6, }; U_BOOT_DEVICE(imx6_thermal) = { .name = "imx_thermal", .platdata = &imx6_thermal_plat, }; #endif #if defined(CONFIG_SECURE_BOOT) struct imx_sec_config_fuse_t const imx_sec_config_fuse = { .bank = 0, .word = 6, }; #endif u32 get_nr_cpus(void) { struct scu_regs *scu = (struct scu_regs *)SCU_BASE_ADDR; return readl(&scu->config) & 3; } u32 get_cpu_rev(void) { struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR; u32 reg = readl(&anatop->digprog_sololite); u32 type = ((reg >> 16) & 0xff); u32 major, cfg = 0; if (type != MXC_CPU_MX6SL) { reg = readl(&anatop->digprog); struct scu_regs *scu = (struct scu_regs *)SCU_BASE_ADDR; cfg = readl(&scu->config) & 3; type = ((reg >> 16) & 0xff); if (type == MXC_CPU_MX6DL) { if (!cfg) type = MXC_CPU_MX6SOLO; } if (type == MXC_CPU_MX6Q) { if (cfg == 1) type = MXC_CPU_MX6D; } if (type == MXC_CPU_MX6ULL) { if (readl(SRC_BASE_ADDR + 0x1c) & (1 << 6)) type = MXC_CPU_MX6ULZ; } } major = ((reg >> 8) & 0xff); if ((major >= 1) && ((type == MXC_CPU_MX6Q) || (type == MXC_CPU_MX6D))) { major--; type = MXC_CPU_MX6QP; if (cfg == 1) type = MXC_CPU_MX6DP; } reg &= 0xff; /* mx6 silicon revision */ return (type << 12) | (reg + (0x10 * (major + 1))); } /* * OCOTP_CFG3[17:16] (see Fusemap Description Table offset 0x440) * defines a 2-bit SPEED_GRADING */ #define OCOTP_CFG3_SPEED_SHIFT 16 #define OCOTP_CFG3_SPEED_800MHZ 0 #define OCOTP_CFG3_SPEED_850MHZ 1 #define OCOTP_CFG3_SPEED_1GHZ 2 #define OCOTP_CFG3_SPEED_1P2GHZ 3 /* * For i.MX6UL */ #define OCOTP_CFG3_SPEED_528MHZ 1 #define OCOTP_CFG3_SPEED_696MHZ 2 /* * For i.MX6ULL */ #define OCOTP_CFG3_SPEED_792MHZ 2 #define OCOTP_CFG3_SPEED_900MHZ 3 u32 get_cpu_speed_grade_hz(void) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[0]; struct fuse_bank0_regs *fuse = (struct fuse_bank0_regs *)bank->fuse_regs; uint32_t val; val = readl(&fuse->cfg3); val >>= OCOTP_CFG3_SPEED_SHIFT; val &= 0x3; if (is_mx6ul()) { if (val == OCOTP_CFG3_SPEED_528MHZ) return 528000000; else if (val == OCOTP_CFG3_SPEED_696MHZ) return 696000000; else return 0; } if (is_mx6ull()) { if (val == OCOTP_CFG3_SPEED_528MHZ) return 528000000; else if (val == OCOTP_CFG3_SPEED_792MHZ) return 792000000; else if (val == OCOTP_CFG3_SPEED_900MHZ) return 900000000; else return 0; } switch (val) { /* Valid for IMX6DQ */ case OCOTP_CFG3_SPEED_1P2GHZ: if (is_mx6dq() || is_mx6dqp()) return 1200000000; /* Valid for IMX6SX/IMX6SDL/IMX6DQ */ case OCOTP_CFG3_SPEED_1GHZ: return 996000000; /* Valid for IMX6DQ */ case OCOTP_CFG3_SPEED_850MHZ: if (is_mx6dq() || is_mx6dqp()) return 852000000; /* Valid for IMX6SX/IMX6SDL/IMX6DQ */ case OCOTP_CFG3_SPEED_800MHZ: return 792000000; } return 0; } /* * OCOTP_MEM0[7:6] (see Fusemap Description Table offset 0x480) * defines a 2-bit Temperature Grade * * return temperature grade and min/max temperature in Celsius */ #define OCOTP_MEM0_TEMP_SHIFT 6 u32 get_cpu_temp_grade(int *minc, int *maxc) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[1]; struct fuse_bank1_regs *fuse = (struct fuse_bank1_regs *)bank->fuse_regs; uint32_t val; val = readl(&fuse->mem0); val >>= OCOTP_MEM0_TEMP_SHIFT; val &= 0x3; if (minc && maxc) { if (val == TEMP_AUTOMOTIVE) { *minc = -40; *maxc = 125; } else if (val == TEMP_INDUSTRIAL) { *minc = -40; *maxc = 105; } else if (val == TEMP_EXTCOMMERCIAL) { *minc = -20; *maxc = 105; } else { *minc = 0; *maxc = 95; } } return val; } #ifdef CONFIG_REVISION_TAG u32 __weak get_board_rev(void) { u32 cpurev = get_cpu_rev(); u32 type = ((cpurev >> 12) & 0xff); if (type == MXC_CPU_MX6SOLO) cpurev = (MXC_CPU_MX6DL) << 12 | (cpurev & 0xFFF); if (type == MXC_CPU_MX6D) cpurev = (MXC_CPU_MX6Q) << 12 | (cpurev & 0xFFF); return cpurev; } #endif #ifdef CONFIG_IMX_TRUSTY_OS #ifdef CONFIG_MX6UL void smp_set_core_boot_addr(unsigned long addr, int corenr) { return; } void smp_waitloop(unsigned previous_address) { return; } #endif #endif static void init_csu(void) { #ifdef CONFIG_ARMV7_NONSEC int i; u32 csu = CSU_BASE_ADDR; /* * This is to allow device can be accessed in non-secure world. * All imx6 chips CSU have 40 Config security level registers. */ for (i = 0; i < 40; i ++) { *((u32 *)csu + i) = 0xffffffff; } #endif } static void clear_ldo_ramp(void) { struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR; int reg; /* ROM may modify LDO ramp up time according to fuse setting, so in * order to be in the safe side we neeed to reset these settings to * match the reset value: 0'b00 */ reg = readl(&anatop->ana_misc2); reg &= ~(0x3f << 24); writel(reg, &anatop->ana_misc2); } /* * Set the PMU_REG_CORE register * * Set LDO_SOC/PU/ARM regulators to the specified millivolt level. * Possible values are from 0.725V to 1.450V in steps of * 0.025V (25mV). */ static int set_ldo_voltage(enum ldo_reg ldo, u32 mv) { struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR; u32 val, step, old, reg = readl(&anatop->reg_core); u8 shift; /* No LDO_SOC/PU/ARM */ if (is_mx6sll()) return 0; if (mv < 725) val = 0x00; /* Power gated off */ else if (mv > 1450) val = 0x1F; /* Power FET switched full on. No regulation */ else val = (mv - 700) / 25; clear_ldo_ramp(); switch (ldo) { case LDO_SOC: shift = 18; break; case LDO_PU: shift = 9; break; case LDO_ARM: shift = 0; break; default: return -EINVAL; } old = (reg & (0x1F << shift)) >> shift; step = abs(val - old); if (step == 0) return 0; reg = (reg & ~(0x1F << shift)) | (val << shift); writel(reg, &anatop->reg_core); /* * The LDO ramp-up is based on 64 clock cycles of 24 MHz = 2.6 us per * step */ udelay(3 * step); return 0; } static void set_ahb_rate(u32 val) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; u32 reg, div; div = get_periph_clk() / val - 1; reg = readl(&mxc_ccm->cbcdr); writel((reg & (~MXC_CCM_CBCDR_AHB_PODF_MASK)) | (div << MXC_CCM_CBCDR_AHB_PODF_OFFSET), &mxc_ccm->cbcdr); } static void clear_mmdc_ch_mask(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; u32 reg; reg = readl(&mxc_ccm->ccdr); /* Clear MMDC channel mask */ if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() || is_mx6sll()) reg &= ~(MXC_CCM_CCDR_MMDC_CH1_HS_MASK); else reg &= ~(MXC_CCM_CCDR_MMDC_CH1_HS_MASK | MXC_CCM_CCDR_MMDC_CH0_HS_MASK); writel(reg, &mxc_ccm->ccdr); } #define OCOTP_MEM0_REFTOP_TRIM_SHIFT 8 static void init_bandgap(void) { struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR; struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[1]; struct fuse_bank1_regs *fuse = (struct fuse_bank1_regs *)bank->fuse_regs; uint32_t val; /* * Ensure the bandgap has stabilized. */ while (!(readl(&anatop->ana_misc0) & 0x80)) ; /* * For best noise performance of the analog blocks using the * outputs of the bandgap, the reftop_selfbiasoff bit should * be set. */ writel(BM_ANADIG_ANA_MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_set); /* * On i.MX6ULL,we need to set VBGADJ bits according to the * REFTOP_TRIM[3:0] in fuse table * 000 - set REFTOP_VBGADJ[2:0] to 3b'110, * 110 - set REFTOP_VBGADJ[2:0] to 3b'000, * 001 - set REFTOP_VBGADJ[2:0] to 3b'001, * 010 - set REFTOP_VBGADJ[2:0] to 3b'010, * 011 - set REFTOP_VBGADJ[2:0] to 3b'011, * 100 - set REFTOP_VBGADJ[2:0] to 3b'100, * 101 - set REFTOP_VBGADJ[2:0] to 3b'101, * 111 - set REFTOP_VBGADJ[2:0] to 3b'111, */ if (is_mx6ull()) { val = readl(&fuse->mem0); val >>= OCOTP_MEM0_REFTOP_TRIM_SHIFT; val &= 0x7; writel(val << BM_ANADIG_ANA_MISC0_REFTOP_VBGADJ_SHIFT, &anatop->ana_misc0_set); } } static void set_preclk_from_osc(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; u32 reg; reg = readl(&mxc_ccm->cscmr1); reg |= MXC_CCM_CSCMR1_PER_CLK_SEL_MASK; writel(reg, &mxc_ccm->cscmr1); } #ifdef CONFIG_MX6SX void vadc_power_up(void) { struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR; u32 val; /* csi0 */ val = readl(&iomux->gpr[5]); val &= ~IMX6SX_GPR5_CSI1_MUX_CTRL_MASK, val |= IMX6SX_GPR5_CSI1_MUX_CTRL_CVD; writel(val, &iomux->gpr[5]); /* Power on vadc analog * Power down vadc ext power */ val = readl(GPC_BASE_ADDR + 0); val &= ~0x60000; writel(val, GPC_BASE_ADDR + 0); /* software reset afe */ val = readl(&iomux->gpr[1]); writel(val | 0x80000, &iomux->gpr[1]); udelay(10*1000); /* Release reset bit */ writel(val & ~0x80000, &iomux->gpr[1]); /* Power on vadc ext power */ val = readl(GPC_BASE_ADDR + 0); val |= 0x40000; writel(val, GPC_BASE_ADDR + 0); } void vadc_power_down(void) { struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR; u32 val; /* Power down vadc ext power * Power off vadc analog */ val = readl(GPC_BASE_ADDR + 0); val &= ~0x40000; val |= 0x20000; writel(val, GPC_BASE_ADDR + 0); /* clean csi0 connect to vadc */ val = readl(&iomux->gpr[5]); val &= ~IMX6SX_GPR5_CSI1_MUX_CTRL_MASK, writel(val, &iomux->gpr[5]); } void pcie_power_up(void) { set_ldo_voltage(LDO_PU, 1100); /* Set VDDPU to 1.1V */ } void pcie_power_off(void) { set_ldo_voltage(LDO_PU, 0); /* Set VDDPU to 1.1V */ } #endif static void set_uart_from_osc(void) { u32 reg; /* set uart clk to OSC */ reg = readl(CCM_BASE_ADDR + 0x24); reg |= MXC_CCM_CSCDR1_UART_CLK_SEL; writel(reg, CCM_BASE_ADDR + 0x24); } static void imx_set_vddpu_power_down(void) { struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR; u32 val; /* need to power down xPU in GPC before turn off PU LDO */ val = readl(GPC_BASE_ADDR + 0x260); writel(val | 0x1, GPC_BASE_ADDR + 0x260); val = readl(GPC_BASE_ADDR + 0x0); writel(val | 0x1, GPC_BASE_ADDR + 0x0); while (readl(GPC_BASE_ADDR + 0x0) & 0x1) ; /* disable VDDPU */ val = 0x3e00; writel(val, &anatop->reg_core_clr); } static void imx_set_pcie_phy_power_down(void) { u32 val; if (!is_cpu_type(MXC_CPU_MX6SX)) { val = readl(IOMUXC_BASE_ADDR + 0x4); val |= 0x1 << 18; writel(val, IOMUXC_BASE_ADDR + 0x4); } else { val = readl(IOMUXC_GPR_BASE_ADDR + 0x30); val |= 0x1 << 30; writel(val, IOMUXC_GPR_BASE_ADDR + 0x30); } } int arch_cpu_init(void) { if (!is_mx6sl() && !is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sll()) { /* * imx6sl doesn't have pcie at all. * this bit is not used by imx6sx anymore */ u32 val; /* * There are about 0.02% percentage, random pcie link down * when warm-reset is used. * clear the ref_ssp_en bit16 of gpr1 to workaround it. * then warm-reset imx6q/dl/solo again. */ val = readl(IOMUXC_BASE_ADDR + 0x4); if (val & (0x1 << 16)) { val &= ~(0x1 << 16); writel(val, IOMUXC_BASE_ADDR + 0x4); reset_cpu(0); } } init_aips(); init_csu(); /* Need to clear MMDC_CHx_MASK to make warm reset work. */ clear_mmdc_ch_mask(); /* * Disable self-bias circuit in the analog bandap. * The self-bias circuit is used by the bandgap during startup. * This bit should be set after the bandgap has initialized. */ init_bandgap(); if (!is_mx6ul() && !is_mx6ull()) { /* * When low freq boot is enabled, ROM will not set AHB * freq, so we need to ensure AHB freq is 132MHz in such * scenario. * * To i.MX6UL, when power up, default ARM core and * AHB rate is 396M and 132M. */ if (mxc_get_clock(MXC_ARM_CLK) == 396000000) set_ahb_rate(132000000); } if (is_mx6ul()) { if (is_soc_rev(CHIP_REV_1_0) == 0) { /* * According to the design team's requirement on * i.MX6UL,the PMIC_STBY_REQ PAD should be configured * as open drain 100K (0x0000b8a0). * Only exists on TO1.0 */ writel(0x0000b8a0, IOMUXC_BASE_ADDR + 0x29c); } else { /* * From TO1.1, SNVS adds internal pull up control * for POR_B, the register filed is GPBIT[1:0], * after system boot up, it can be set to 2b'01 * to disable internal pull up.It can save about * 30uA power in SNVS mode. */ writel((readl(MX6UL_SNVS_LP_BASE_ADDR + 0x10) & (~0x1400)) | 0x400, MX6UL_SNVS_LP_BASE_ADDR + 0x10); } } if (is_mx6ull()) { /* * GPBIT[1:0] is suggested to set to 2'b11: * 2'b00 : always PUP100K * 2'b01 : PUP100K when PMIC_ON_REQ or SOC_NOT_FAIL * 2'b10 : always disable PUP100K * 2'b11 : PDN100K when SOC_FAIL, PUP100K when SOC_NOT_FAIL * register offset is different from i.MX6UL, since * i.MX6UL is fixed by ECO. */ writel(readl(MX6UL_SNVS_LP_BASE_ADDR) | 0x3, MX6UL_SNVS_LP_BASE_ADDR); } if (is_mx6ull() || is_mx6ul()) { struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR; if (iomux->gpr[9] & 0x1) { /* When trust zone is enabled, * set Region 0 attribute to allow secure and non-secure read/write permission * Because PL301 hard code to non-secure for some masters on m_3/4/5 ports. * Like LCDIF, PXP, CSI can't work with secure memory. */ writel(0xf0000000, IP2APB_TZASC1_BASE_ADDR + 0x108); } } /* Set perclk to source from OSC 24MHz */ if (is_mx6sl()) set_preclk_from_osc(); imx_wdog_disable_powerdown(); /* Disable PDE bit of WMCR register */ if (is_mx6sx()) set_uart_from_osc(); if (!is_mx6sl() && !is_mx6ul() && !is_mx6ull() && !is_mx6sll()) imx_set_pcie_phy_power_down(); if (!is_mx6dqp() && !is_mx6ul() && !is_mx6ull() && !is_mx6sll()) imx_set_vddpu_power_down(); init_src(); if (is_mx6dqp()) writel(0x80000201, 0xbb0608); #ifdef CONFIG_IMX_SEC_INIT /* Secure init function such RNG */ imx_sec_init(); #endif return 0; } #ifndef CONFIG_SYS_MMC_ENV_DEV #define CONFIG_SYS_MMC_ENV_DEV -1 #endif __weak int board_mmc_get_env_dev(int devno) { return CONFIG_SYS_MMC_ENV_DEV; } static int mmc_get_boot_dev(void) { struct src *src_regs = (struct src *)SRC_BASE_ADDR; u32 soc_sbmr = readl(&src_regs->sbmr1); u32 bootsel; int devno; /* * Refer to * "i.MX 6Dual/6Quad Applications Processor Reference Manual" * Chapter "8.5.3.1 Expansion Device eFUSE Configuration" * i.MX6SL/SX/UL has same layout. */ bootsel = (soc_sbmr & 0x000000FF) >> 6; /* No boot from sd/mmc */ if (bootsel != 1) return -1; /* BOOT_CFG2[3] and BOOT_CFG2[4] */ devno = (soc_sbmr & 0x00001800) >> 11; return devno; } int mmc_get_env_dev(void) { int devno = mmc_get_boot_dev(); /* If not boot from sd/mmc, use default value */ if (devno < 0) return env_get_ulong("mmcdev", 10, CONFIG_SYS_MMC_ENV_DEV); return board_mmc_get_env_dev(devno); } #ifdef CONFIG_SYS_MMC_ENV_PART __weak int board_mmc_get_env_part(int devno) { return CONFIG_SYS_MMC_ENV_PART; } uint mmc_get_env_part(struct mmc *mmc) { int devno = mmc_get_boot_dev(); /* If not boot from sd/mmc, use default value */ if (devno < 0) return CONFIG_SYS_MMC_ENV_PART; return board_mmc_get_env_part(devno); } #endif int board_postclk_init(void) { /* NO LDO SOC on i.MX6SLL */ if (is_mx6sll()) return 0; set_ldo_voltage(LDO_SOC, 1175); /* Set VDDSOC to 1.175V */ return 0; } #ifdef CONFIG_SERIAL_TAG void get_board_serial(struct tag_serialnr *serialnr) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[0]; struct fuse_bank0_regs *fuse = (struct fuse_bank0_regs *)bank->fuse_regs; serialnr->low = fuse->uid_low; serialnr->high = fuse->uid_high; } #endif #ifndef CONFIG_SPL_BUILD /* * cfg_val will be used for * Boot_cfg4[7:0]:Boot_cfg3[7:0]:Boot_cfg2[7:0]:Boot_cfg1[7:0] * After reset, if GPR10[28] is 1, ROM will use GPR9[25:0] * instead of SBMR1 to determine the boot device. */ const struct boot_mode soc_boot_modes[] = { {"normal", MAKE_CFGVAL(0x00, 0x00, 0x00, 0x00)}, /* reserved value should start rom usb */ #if defined(CONFIG_MX6UL) || defined(CONFIG_MX6ULL) {"usb", MAKE_CFGVAL(0x20, 0x00, 0x00, 0x00)}, #else {"usb", MAKE_CFGVAL(0x01, 0x00, 0x00, 0x00)}, #endif {"sata", MAKE_CFGVAL(0x20, 0x00, 0x00, 0x00)}, {"ecspi1:0", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x08)}, {"ecspi1:1", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x18)}, {"ecspi1:2", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x28)}, {"ecspi1:3", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x38)}, /* 4 bit bus width */ {"esdhc1", MAKE_CFGVAL(0x40, 0x20, 0x00, 0x00)}, {"esdhc2", MAKE_CFGVAL(0x40, 0x28, 0x00, 0x00)}, {"esdhc3", MAKE_CFGVAL(0x40, 0x30, 0x00, 0x00)}, {"esdhc4", MAKE_CFGVAL(0x40, 0x38, 0x00, 0x00)}, {NULL, 0}, }; #endif enum boot_device get_boot_device(void) { enum boot_device boot_dev = UNKNOWN_BOOT; uint soc_sbmr = readl(SRC_BASE_ADDR + 0x4); uint bt_mem_ctl = (soc_sbmr & 0x000000FF) >> 4 ; uint bt_mem_type = (soc_sbmr & 0x00000008) >> 3; uint bt_dev_port = (soc_sbmr & 0x00001800) >> 11; switch (bt_mem_ctl) { case 0x0: if (bt_mem_type) boot_dev = ONE_NAND_BOOT; else boot_dev = WEIM_NOR_BOOT; break; case 0x2: boot_dev = SATA_BOOT; break; case 0x3: if (bt_mem_type) boot_dev = I2C_BOOT; else boot_dev = SPI_NOR_BOOT; break; case 0x4: case 0x5: boot_dev = bt_dev_port + SD1_BOOT; break; case 0x6: case 0x7: boot_dev = bt_dev_port + MMC1_BOOT; break; case 0x8 ... 0xf: boot_dev = NAND_BOOT; break; default: boot_dev = UNKNOWN_BOOT; break; } return boot_dev; } void set_wdog_reset(struct wdog_regs *wdog) { u32 reg = readw(&wdog->wcr); /* * use WDOG_B mode to reset external pmic because it's risky for the * following watchdog reboot in case of cpu freq at lowest 400Mhz with * ldo-bypass mode. Because boot frequency maybe higher 800Mhz i.e. So * in ldo-bypass mode watchdog reset will only triger POR reset, not * WDOG reset. But below code depends on hardware design, if HW didn't * connect WDOG_B pin to external pmic such as i.mx6slevk, we can skip * these code since it assumed boot from 400Mhz always. */ reg = readw(&wdog->wcr); reg |= 1 << 3; /* * WDZST bit is write-once only bit. Align this bit in kernel, * otherwise kernel code will have no chance to set this bit. */ reg |= 1 << 0; writew(reg, &wdog->wcr); } void reset_misc(void) { #ifdef CONFIG_VIDEO_MXS lcdif_power_down(); #endif } void s_init(void) { struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR; struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; u32 mask480; u32 mask528; u32 reg, periph1, periph2; #if defined(CONFIG_ANDROID_SUPPORT) /* Enable RTC */ writel(0x21, 0x020cc038); #endif if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sll()) return; /* Due to hardware limitation, on MX6Q we need to gate/ungate all PFDs * to make sure PFD is working right, otherwise, PFDs may * not output clock after reset, MX6DL and MX6SL have added 396M pfd * workaround in ROM code, as bus clock need it */ mask480 = ANATOP_PFD_CLKGATE_MASK(0) | ANATOP_PFD_CLKGATE_MASK(1) | ANATOP_PFD_CLKGATE_MASK(2) | ANATOP_PFD_CLKGATE_MASK(3); mask528 = ANATOP_PFD_CLKGATE_MASK(1) | ANATOP_PFD_CLKGATE_MASK(3); reg = readl(&ccm->cbcmr); periph2 = ((reg & MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >> MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET); periph1 = ((reg & MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK) >> MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET); /* Checking if PLL2 PFD0 or PLL2 PFD2 is using for periph clock */ if ((periph2 != 0x2) && (periph1 != 0x2)) mask528 |= ANATOP_PFD_CLKGATE_MASK(0); if ((periph2 != 0x1) && (periph1 != 0x1) && (periph2 != 0x3) && (periph1 != 0x3)) mask528 |= ANATOP_PFD_CLKGATE_MASK(2); writel(mask480, &anatop->pfd_480_set); writel(mask528, &anatop->pfd_528_set); writel(mask480, &anatop->pfd_480_clr); writel(mask528, &anatop->pfd_528_clr); } #ifdef CONFIG_IMX_HDMI void imx_enable_hdmi_phy(void) { struct hdmi_regs *hdmi = (struct hdmi_regs *)HDMI_ARB_BASE_ADDR; u8 reg; reg = readb(&hdmi->phy_conf0); reg |= HDMI_PHY_CONF0_PDZ_MASK; writeb(reg, &hdmi->phy_conf0); udelay(3000); reg |= HDMI_PHY_CONF0_ENTMDS_MASK; writeb(reg, &hdmi->phy_conf0); udelay(3000); reg |= HDMI_PHY_CONF0_GEN2_TXPWRON_MASK; writeb(reg, &hdmi->phy_conf0); writeb(HDMI_MC_PHYRSTZ_ASSERT, &hdmi->mc_phyrstz); } void imx_setup_hdmi(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; struct hdmi_regs *hdmi = (struct hdmi_regs *)HDMI_ARB_BASE_ADDR; int reg, count; u8 val; /* Turn on HDMI PHY clock */ reg = readl(&mxc_ccm->CCGR2); reg |= MXC_CCM_CCGR2_HDMI_TX_IAHBCLK_MASK| MXC_CCM_CCGR2_HDMI_TX_ISFRCLK_MASK; writel(reg, &mxc_ccm->CCGR2); writeb(HDMI_MC_PHYRSTZ_DEASSERT, &hdmi->mc_phyrstz); reg = readl(&mxc_ccm->chsccdr); reg &= ~(MXC_CCM_CHSCCDR_IPU1_DI0_PRE_CLK_SEL_MASK| MXC_CCM_CHSCCDR_IPU1_DI0_PODF_MASK| MXC_CCM_CHSCCDR_IPU1_DI0_CLK_SEL_MASK); reg |= (CHSCCDR_PODF_DIVIDE_BY_3 << MXC_CCM_CHSCCDR_IPU1_DI0_PODF_OFFSET) |(CHSCCDR_IPU_PRE_CLK_540M_PFD << MXC_CCM_CHSCCDR_IPU1_DI0_PRE_CLK_SEL_OFFSET); writel(reg, &mxc_ccm->chsccdr); /* Clear the overflow condition */ if (readb(&hdmi->ih_fc_stat2) & HDMI_IH_FC_STAT2_OVERFLOW_MASK) { /* TMDS software reset */ writeb((u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, &hdmi->mc_swrstz); val = readb(&hdmi->fc_invidconf); /* Need minimum 3 times to write to clear the register */ for (count = 0 ; count < 5 ; count++) writeb(val, &hdmi->fc_invidconf); } } #endif #ifdef CONFIG_LDO_BYPASS_CHECK DECLARE_GLOBAL_DATA_PTR; static int ldo_bypass; int check_ldo_bypass(void) { const int *ldo_mode; int node; /* get the right fdt_blob from the global working_fdt */ gd->fdt_blob = working_fdt; /* Get the node from FDT for anatop ldo-bypass */ node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx6q-gpc"); if (node < 0) { printf("No gpc device node %d, force to ldo-enable.\n", node); return 0; } ldo_mode = fdt_getprop(gd->fdt_blob, node, "fsl,ldo-bypass", NULL); /* * return 1 if "fsl,ldo-bypass = <1>", else return 0 if * "fsl,ldo-bypass = <0>" or no "fsl,ldo-bypass" property */ ldo_bypass = fdt32_to_cpu(*ldo_mode) == 1 ? 1 : 0; return ldo_bypass; } int check_1_2G(void) { u32 reg; int result = 0; struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[0]; struct fuse_bank0_regs *fuse_bank0 = (struct fuse_bank0_regs *)bank->fuse_regs; reg = readl(&fuse_bank0->cfg3); if (((reg >> 16) & 0x3) == 0x3) { if (ldo_bypass) { printf("Wrong dtb file used! i.MX6Q@1.2Ghz only " "works with ldo-enable mode!\n"); /* * Currently, only imx6q-sabresd board might be here, * since only i.MX6Q support 1.2G and only Sabresd board * support ldo-bypass mode. So hardcode here. * You can also modify your board(i.MX6Q) dtb name if it * supports both ldo-bypass and ldo-enable mode. */ printf("Please use imx6q-sabresd-ldo.dtb!\n"); hang(); } result = 1; } return result; } static int arm_orig_podf; void set_arm_freq_400M(bool is_400M) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; if (is_400M) writel(0x1, &mxc_ccm->cacrr); else writel(arm_orig_podf, &mxc_ccm->cacrr); } void prep_anatop_bypass(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; arm_orig_podf = readl(&mxc_ccm->cacrr); /* * Downgrade ARM speed to 400Mhz as half of boot 800Mhz before ldo * bypassed, also downgrade internal vddarm ldo to 0.975V. * VDDARM_IN 0.975V + 125mV = 1.1V < Max(1.3V) * otherwise at 800Mhz(i.mx6dl): * VDDARM_IN 1.175V + 125mV = 1.3V = Max(1.3V) * We need provide enough gap in this case. * skip if boot from 400M. */ if (!arm_orig_podf) set_arm_freq_400M(true); if (!is_mx6dl() && !is_mx6sx()) set_ldo_voltage(LDO_ARM, 975); else set_ldo_voltage(LDO_ARM, 1150); } int set_anatop_bypass(int wdog_reset_pin) { struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR; struct wdog_regs *wdog; u32 reg = readl(&anatop->reg_core); /* bypass VDDARM/VDDSOC */ reg = reg | (0x1F << 18) | 0x1F; writel(reg, &anatop->reg_core); if (wdog_reset_pin == 2) wdog = (struct wdog_regs *) WDOG2_BASE_ADDR; else if (wdog_reset_pin == 1) wdog = (struct wdog_regs *) WDOG1_BASE_ADDR; else return arm_orig_podf; set_wdog_reset(wdog); return arm_orig_podf; } void finish_anatop_bypass(void) { if (!arm_orig_podf) set_arm_freq_400M(false); } #endif void gpr_init(void) { struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR; /* enable AXI cache for VDOA/VPU/IPU */ writel(0xF00000CF, &iomux->gpr[4]); if (is_mx6dqp()) { /* set IPU AXI-id1 Qos=0x1 AXI-id0/2/3 Qos=0x7 */ writel(0x77177717, &iomux->gpr[6]); writel(0x77177717, &iomux->gpr[7]); } else { /* set IPU AXI-id0 Qos=0xf(bypass) AXI-id1 Qos=0x7 */ writel(0x007F007F, &iomux->gpr[6]); writel(0x007F007F, &iomux->gpr[7]); } }