/* * Copyright (C) 2014-2015 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MXC_RDC #include #include #endif #ifdef CONFIG_FSL_FASTBOOT #ifdef CONFIG_ANDROID_RECOVERY #include #endif #endif struct src *src_reg = (struct src *)SRC_BASE_ADDR; #if defined(CONFIG_IMX_THERMAL) static const struct imx_thermal_plat imx7_thermal_plat = { .regs = (void *)ANATOP_BASE_ADDR, .fuse_bank = 3, .fuse_word = 3, }; U_BOOT_DEVICE(imx7_thermal) = { .name = "imx_thermal", .platdata = &imx7_thermal_plat, }; #endif #ifdef CONFIG_MXC_RDC static rdc_peri_cfg_t const resources[] = { (RDC_PER_SIM1 | RDC_DOMAIN(0)), (RDC_PER_SIM2 | RDC_DOMAIN(0)), (RDC_PER_UART1 | RDC_DOMAIN(0)), (RDC_PER_UART2 | RDC_DOMAIN(0)), (RDC_PER_UART3 | RDC_DOMAIN(0)), (RDC_PER_UART4 | RDC_DOMAIN(0)), (RDC_PER_UART5 | RDC_DOMAIN(0)), (RDC_PER_UART6 | RDC_DOMAIN(0)), (RDC_PER_UART7 | RDC_DOMAIN(0)), (RDC_PER_SAI1 | RDC_DOMAIN(0)), (RDC_PER_SAI2 | RDC_DOMAIN(0)), (RDC_PER_SAI3 | RDC_DOMAIN(0)), (RDC_PER_WDOG1 | RDC_DOMAIN(0)), (RDC_PER_WDOG2 | RDC_DOMAIN(0)), (RDC_PER_WDOG3 | RDC_DOMAIN(0)), (RDC_PER_WDOG4 | RDC_DOMAIN(0)), (RDC_PER_GPT1 | RDC_DOMAIN(0)), (RDC_PER_GPT2 | RDC_DOMAIN(0)), (RDC_PER_GPT3 | RDC_DOMAIN(0)), (RDC_PER_GPT4 | RDC_DOMAIN(0)), (RDC_PER_PWM1 | RDC_DOMAIN(0)), (RDC_PER_PWM2 | RDC_DOMAIN(0)), (RDC_PER_PWM3 | RDC_DOMAIN(0)), (RDC_PER_PWM4 | RDC_DOMAIN(0)), (RDC_PER_ENET1 | RDC_DOMAIN(0)), (RDC_PER_ENET2 | RDC_DOMAIN(0)), }; static void isolate_resource(void) { /* At default, all resources are in domain 0 - 3. Here we setup * some resources to domain 0 where M4 codes will move the M4 * out of this domain. Then M4 is not able to access them any longer. * This is a workaround for ic issue. In current design, if any peripheral * was assigned to both A7 and M4, it will receive ipg_stop or ipg_wait * when any of the 2 platforms enter low power mode. So M4 sleep will cause * some peripherals fail to work at A core side. */ imx_rdc_setup_peripherals(resources, ARRAY_SIZE(resources)); } #endif u32 get_cpu_rev(void) { struct mxc_ccm_anatop_reg *ccm_anatop = (struct mxc_ccm_anatop_reg *) ANATOP_BASE_ADDR; u32 reg = readl(&ccm_anatop->digprog); u32 type = (reg >> 16) & 0xff; reg &= 0xff; return (type << 12) | reg; } #ifdef CONFIG_REVISION_TAG u32 __weak get_board_rev(void) { u32 cpurev = get_cpu_rev(); u32 type = ((cpurev >> 12) & 0xff); if (type == MXC_CPU_MX7D) cpurev = (MXC_CPU_MX7D) << 12 | (cpurev & 0xFFF); return cpurev; } #endif static void init_aips(void) { struct aipstz_regs *aips1, *aips2, *aips3; aips1 = (struct aipstz_regs *)AIPS1_ON_BASE_ADDR; aips2 = (struct aipstz_regs *)AIPS2_ON_BASE_ADDR; aips3 = (struct aipstz_regs *)AIPS3_ON_BASE_ADDR; /* * Set all MPROTx to be non-bufferable, trusted for R/W, * not forced to user-mode. */ writel(0x77777777, &aips1->mprot0); writel(0x77777777, &aips1->mprot1); writel(0x77777777, &aips2->mprot0); writel(0x77777777, &aips2->mprot1); writel(0x77777777, &aips3->mprot0); writel(0x77777777, &aips3->mprot1); /* * Set all OPACRx to be non-bufferable, not require * supervisor privilege level for access,allow for * write access and untrusted master access. */ writel(0x00000000, &aips1->opacr0); writel(0x00000000, &aips1->opacr1); writel(0x00000000, &aips1->opacr2); writel(0x00000000, &aips1->opacr3); writel(0x00000000, &aips1->opacr4); writel(0x00000000, &aips2->opacr0); writel(0x00000000, &aips2->opacr1); writel(0x00000000, &aips2->opacr2); writel(0x00000000, &aips2->opacr3); writel(0x00000000, &aips2->opacr4); writel(0x00000000, &aips3->opacr0); writel(0x00000000, &aips3->opacr1); writel(0x00000000, &aips3->opacr2); writel(0x00000000, &aips3->opacr3); writel(0x00000000, &aips3->opacr4); } static void imx_set_pcie_phy_power_down(void) { /* TODO */ } static void imx_set_wdog_powerdown(bool enable) { struct wdog_regs *wdog1 = (struct wdog_regs *)WDOG1_BASE_ADDR; struct wdog_regs *wdog2 = (struct wdog_regs *)WDOG2_BASE_ADDR; struct wdog_regs *wdog3 = (struct wdog_regs *)WDOG3_BASE_ADDR; struct wdog_regs *wdog4 = (struct wdog_regs *)WDOG4_BASE_ADDR; writew(enable, &wdog1->wmcr); writew(enable, &wdog2->wmcr); writew(enable, &wdog3->wmcr); writew(enable, &wdog4->wmcr); } static void set_epdc_qos(void) { #define REGS_QOS_BASE QOSC_IPS_BASE_ADDR #define REGS_QOS_EPDC (QOSC_IPS_BASE_ADDR + 0x3400) #define REGS_QOS_PXP0 (QOSC_IPS_BASE_ADDR + 0x2C00) #define REGS_QOS_PXP1 (QOSC_IPS_BASE_ADDR + 0x3C00) writel(0, REGS_QOS_BASE); /* Disable clkgate & soft_reset */ writel(0, REGS_QOS_BASE + 0x60); /* Enable all masters */ writel(0, REGS_QOS_EPDC); /* Disable clkgate & soft_reset */ writel(0, REGS_QOS_PXP0); /* Disable clkgate & soft_reset */ writel(0, REGS_QOS_PXP1); /* Disable clkgate & soft_reset */ writel(0x0f020722, REGS_QOS_EPDC + 0xd0); /* WR, init = 7 with red flag */ writel(0x0f020722, REGS_QOS_EPDC + 0xe0); /* RD, init = 7 with red flag */ writel(1, REGS_QOS_PXP0); /* OT_CTRL_EN =1 */ writel(1, REGS_QOS_PXP1); /* OT_CTRL_EN =1 */ writel(0x0f020222, REGS_QOS_PXP0 + 0x50); /* WR, init = 2 with red flag */ writel(0x0f020222, REGS_QOS_PXP1 + 0x50); /* WR, init = 2 with red flag */ writel(0x0f020222, REGS_QOS_PXP0 + 0x60); /* rD, init = 2 with red flag */ writel(0x0f020222, REGS_QOS_PXP1 + 0x60); /* rD, init = 2 with red flag */ writel(0x0f020422, REGS_QOS_PXP0 + 0x70); /* tOTAL, init = 4 with red flag */ writel(0x0f020422, REGS_QOS_PXP1 + 0x70); /* TOTAL, init = 4 with red flag */ writel(0xe080, IOMUXC_GPR_BASE_ADDR + 0x0034); /* EPDC AW/AR CACHE ENABLE */ } int arch_cpu_init(void) { init_aips(); /* Disable PDE bit of WMCR register */ imx_set_wdog_powerdown(false); imx_set_pcie_phy_power_down(); #ifdef CONFIG_APBH_DMA /* Start APBH DMA */ mxs_dma_init(); #endif set_epdc_qos(); #ifdef CONFIG_MXC_RDC isolate_resource(); #endif return 0; } #ifdef CONFIG_BOARD_POSTCLK_INIT int board_postclk_init(void) { /* * We do not need to set LDO_SOC as i.mx6, since LDO_ARM and LDO_SOC * does not exist. Check "Figure 7-9. i.MX7Dual Power Diagram" */ return 0; } #endif #ifdef CONFIG_SERIAL_TAG void get_board_serial(struct tag_serialnr *serialnr) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[0]; struct fuse_bank0_regs *fuse = (struct fuse_bank0_regs *)bank->fuse_regs; serialnr->low = fuse->tester0; serialnr->high = fuse->tester1; } #endif #ifndef CONFIG_SYS_DCACHE_OFF void enable_caches(void) { #if defined(CONFIG_SYS_ARM_CACHE_WRITETHROUGH) enum dcache_option option = DCACHE_WRITETHROUGH; #else enum dcache_option option = DCACHE_WRITEBACK; #endif /* Avoid random hang when download by usb */ invalidate_dcache_all(); /* Enable D-cache. I-cache is already enabled in start.S */ dcache_enable(); /* Enable caching on OCRAM and ROM */ mmu_set_region_dcache_behaviour(ROMCP_ARB_BASE_ADDR, ROMCP_ARB_END_ADDR, option); mmu_set_region_dcache_behaviour(IRAM_BASE_ADDR, IRAM_SIZE, option); } #endif #if defined(CONFIG_FEC_MXC) void imx_get_mac_from_fuse(int dev_id, unsigned char *mac) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[9]; struct fuse_bank9_regs *fuse = (struct fuse_bank9_regs *)bank->fuse_regs; if (0 == dev_id) { u32 value = readl(&fuse->mac_addr1); mac[0] = (value >> 8); mac[1] = value; value = readl(&fuse->mac_addr0); mac[2] = value >> 24; mac[3] = value >> 16; mac[4] = value >> 8; mac[5] = value; } else { u32 value = readl(&fuse->mac_addr2); mac[0] = value >> 24; mac[1] = value >> 16; mac[2] = value >> 8; mac[3] = value; value = readl(&fuse->mac_addr1); mac[4] = value >> 24; mac[5] = value >> 16; } } #endif int arch_auxiliary_core_up(u32 core_id, u32 boot_private_data) { u32 stack, pc; if (!boot_private_data) return 1; stack = *(u32 *)boot_private_data; pc = *(u32 *)(boot_private_data + 4); /* Set the stack and pc to M4 bootROM */ writel(stack, M4_BOOTROM_BASE_ADDR); writel(pc, M4_BOOTROM_BASE_ADDR + 4); /* Enable M4 */ setbits_le32(&src_reg->m4rcr, 0x00000008); clrbits_le32(&src_reg->m4rcr, 0x00000001); return 0; } int arch_auxiliary_core_check_up(u32 core_id) { uint32_t val; val = readl(&src_reg->m4rcr); if (val & 0x00000001) return 0; /* assert in reset */ return 1; } void boot_mode_apply(uint32_t cfg_val) { uint32_t reg; writel(cfg_val, &src_reg->gpr9); reg = readl(&src_reg->gpr10); if (cfg_val) reg |= 1 << 28; else reg &= ~(1 << 28); writel(reg, &src_reg->gpr10); } void set_wdog_reset(struct wdog_regs *wdog) { u32 reg = readw(&wdog->wcr); /* * Output WDOG_B signal to reset external pmic or POR_B decided by * the board desgin. Without external reset, the peripherals/DDR/ * PMIC are not reset, that may cause system working abnormal. */ reg = readw(&wdog->wcr); reg |= 1 << 3; /* * WDZST bit is write-once only bit. Align this bit in kernel, * otherwise kernel code will have no chance to set this bit. */ reg |= 1 << 0; writew(reg, &wdog->wcr); } /* * cfg_val will be used for * Boot_cfg4[7:0]:Boot_cfg3[7:0]:Boot_cfg2[7:0]:Boot_cfg1[7:0] * After reset, if GPR10[28] is 1, ROM will copy GPR9[25:0] * to SBMR1, which will determine the boot device. */ const struct boot_mode soc_boot_modes[] = { {"ecspi1:0", MAKE_CFGVAL(0x00, 0x60, 0x00, 0x00)}, {"ecspi1:1", MAKE_CFGVAL(0x40, 0x62, 0x00, 0x00)}, {"ecspi1:2", MAKE_CFGVAL(0x80, 0x64, 0x00, 0x00)}, {"ecspi1:3", MAKE_CFGVAL(0xc0, 0x66, 0x00, 0x00)}, {"weim", MAKE_CFGVAL(0x00, 0x50, 0x00, 0x00)}, {"qspi1", MAKE_CFGVAL(0x10, 0x40, 0x00, 0x00)}, /* 4 bit bus width */ {"usdhc1", MAKE_CFGVAL(0x10, 0x10, 0x00, 0x00)}, {"usdhc2", MAKE_CFGVAL(0x10, 0x14, 0x00, 0x00)}, {"usdhc3", MAKE_CFGVAL(0x10, 0x18, 0x00, 0x00)}, {"mmc1", MAKE_CFGVAL(0x10, 0x20, 0x00, 0x00)}, {"mmc2", MAKE_CFGVAL(0x10, 0x24, 0x00, 0x00)}, {"mmc3", MAKE_CFGVAL(0x10, 0x28, 0x00, 0x00)}, {NULL, 0}, }; enum boot_device get_boot_device(void) { struct bootrom_sw_info **p = (struct bootrom_sw_info **)ROM_SW_INFO_ADDR; enum boot_device boot_dev = SD1_BOOT; u8 boot_type = (*p)->boot_dev_type; u8 boot_instance = (*p)->boot_dev_instance; switch (boot_type) { case BOOT_TYPE_SD: boot_dev = boot_instance + SD1_BOOT; break; case BOOT_TYPE_MMC: boot_dev = boot_instance + MMC1_BOOT; break; case BOOT_TYPE_NAND: boot_dev = NAND_BOOT; break; case BOOT_TYPE_QSPI: boot_dev = QSPI_BOOT; break; case BOOT_TYPE_WEIM: boot_dev = WEIM_NOR_BOOT; break; case BOOT_TYPE_SPINOR: boot_dev = SPI_NOR_BOOT; break; default: break; } return boot_dev; } void s_init(void) { #if !defined CONFIG_SPL_BUILD /* Enable SMP mode for CPU0, by setting bit 6 of Auxiliary Ctl reg */ asm volatile( "mrc p15, 0, r0, c1, c0, 1\n" "orr r0, r0, #1 << 6\n" "mcr p15, 0, r0, c1, c0, 1\n"); #endif /* clock configuration. */ clock_init(); return; } void reset_misc(void) { #ifdef CONFIG_VIDEO_MXS lcdif_power_down(); #endif } #ifdef CONFIG_FSL_FASTBOOT #ifdef CONFIG_ANDROID_RECOVERY #define ANDROID_RECOVERY_BOOT (1 << 7) /* * check if the recovery bit is set by kernel, it can be set by kernel * issue a command '# reboot recovery' */ int recovery_check_and_clean_flag(void) { int flag_set = 0; u32 reg; reg = readl(SNVS_BASE_ADDR + SNVS_LPGPR); flag_set = !!(reg & ANDROID_RECOVERY_BOOT); printf("check_and_clean: reg %x, flag_set %d\n", reg, flag_set); /* clean it in case looping infinite here.... */ if (flag_set) { reg &= ~ANDROID_RECOVERY_BOOT; writel(reg, SNVS_BASE_ADDR + SNVS_LPGPR); } return flag_set; } #endif /*CONFIG_ANDROID_RECOVERY*/ #define ANDROID_FASTBOOT_BOOT (1 << 8) /* * check if the recovery bit is set by kernel, it can be set by kernel * issue a command '# reboot fastboot' */ int fastboot_check_and_clean_flag(void) { int flag_set = 0; u32 reg; reg = readl(SNVS_BASE_ADDR + SNVS_LPGPR); flag_set = !!(reg & ANDROID_FASTBOOT_BOOT); /* clean it in case looping infinite here.... */ if (flag_set) { reg &= ~ANDROID_FASTBOOT_BOOT; writel(reg, SNVS_BASE_ADDR + SNVS_LPGPR); } return flag_set; } void fastboot_enable_flag(void) { setbits_le32(SNVS_BASE_ADDR + SNVS_LPGPR, ANDROID_FASTBOOT_BOOT); } #endif /*CONFIG_FSL_FASTBOOT*/