summaryrefslogtreecommitdiff
path: root/drivers/net/igb/e1000_82575.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/igb/e1000_82575.c')
-rw-r--r--drivers/net/igb/e1000_82575.c3215
1 files changed, 2360 insertions, 855 deletions
diff --git a/drivers/net/igb/e1000_82575.c b/drivers/net/igb/e1000_82575.c
index ad3bf1792d7c..6130005fd4f6 100644
--- a/drivers/net/igb/e1000_82575.c
+++ b/drivers/net/igb/e1000_82575.c
@@ -1,7 +1,7 @@
/*******************************************************************************
Intel(R) Gigabit Ethernet Linux driver
- Copyright(c) 2007-2011 Intel Corporation.
+ Copyright(c) 2007-2013 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
@@ -25,85 +25,123 @@
*******************************************************************************/
-/* e1000_82575
- * e1000_82576
+/*
+ * 82575EB Gigabit Network Connection
+ * 82575EB Gigabit Backplane Connection
+ * 82575GB Gigabit Network Connection
+ * 82576 Gigabit Network Connection
+ * 82576 Quad Port Gigabit Mezzanine Adapter
+ * 82580 Gigabit Network Connection
+ * I350 Gigabit Network Connection
*/
-#include <linux/types.h>
-#include <linux/if_ether.h>
-
-#include "e1000_mac.h"
-#include "e1000_82575.h"
+#include "e1000_api.h"
#include "e1000_i210.h"
-static s32 igb_get_invariants_82575(struct e1000_hw *);
-static s32 igb_acquire_phy_82575(struct e1000_hw *);
-static void igb_release_phy_82575(struct e1000_hw *);
-static s32 igb_acquire_nvm_82575(struct e1000_hw *);
-static void igb_release_nvm_82575(struct e1000_hw *);
-static s32 igb_check_for_link_82575(struct e1000_hw *);
-static s32 igb_get_cfg_done_82575(struct e1000_hw *);
-static s32 igb_init_hw_82575(struct e1000_hw *);
-static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
-static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
-static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
-static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
-static s32 igb_reset_hw_82575(struct e1000_hw *);
-static s32 igb_reset_hw_82580(struct e1000_hw *);
-static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
-static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
-static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
-static s32 igb_setup_copper_link_82575(struct e1000_hw *);
-static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
-static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
-static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
-static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
-static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
- u16 *);
-static s32 igb_get_phy_id_82575(struct e1000_hw *);
-static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
-static bool igb_sgmii_active_82575(struct e1000_hw *);
-static s32 igb_reset_init_script_82575(struct e1000_hw *);
-static s32 igb_read_mac_addr_82575(struct e1000_hw *);
-static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
-static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
-static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
-static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
-static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw,
- u16 offset);
-static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
- u16 offset);
-static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
-static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
-static const u16 e1000_82580_rxpbs_table[] =
- { 36, 72, 144, 1, 2, 4, 8, 16,
- 35, 70, 140 };
+static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
+static void e1000_release_phy_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
+static void e1000_release_nvm_82575(struct e1000_hw *hw);
+static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
+static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw);
+static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+static s32 e1000_init_hw_82575(struct e1000_hw *hw);
+static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
+ u32 offset, u16 *data);
+static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
+ u32 offset, u16 data);
+static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
+static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
+static s32 e1000_get_media_type_82575(struct e1000_hw *hw);
+static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
+static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
+static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
+ u32 offset, u16 data);
+static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
+static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
+static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
+static void e1000_config_collision_dist_82575(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
+static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
+static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
+static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
+static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
+static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
+ u16 offset);
+static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
+ u16 offset);
+static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
+static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
+static void e1000_clear_vfta_i350(struct e1000_hw *hw);
+
+static void e1000_i2c_start(struct e1000_hw *hw);
+static void e1000_i2c_stop(struct e1000_hw *hw);
+static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
+static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
+static s32 e1000_get_i2c_ack(struct e1000_hw *hw);
+static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
+static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
+static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
+static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
+static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
+static bool e1000_get_i2c_data(u32 *i2cctl);
+
+static const u16 e1000_82580_rxpbs_table[] = {
+ 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
#define E1000_82580_RXPBS_TABLE_SIZE \
(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
+
/**
- * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
+ * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
* @hw: pointer to the HW structure
*
* Called to determine if the I2C pins are being used for I2C or as an
* external MDIO interface since the two options are mutually exclusive.
**/
-static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
+static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
{
u32 reg = 0;
bool ext_mdio = false;
+ DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
+
switch (hw->mac.type) {
case e1000_82575:
case e1000_82576:
- reg = rd32(E1000_MDIC);
+ reg = E1000_READ_REG(hw, E1000_MDIC);
ext_mdio = !!(reg & E1000_MDIC_DEST);
break;
case e1000_82580:
case e1000_i350:
+ case e1000_i354:
case e1000_i210:
case e1000_i211:
- reg = rd32(E1000_MDICNFG);
+ reg = E1000_READ_REG(hw, E1000_MDICNFG);
ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
break;
default:
@@ -112,367 +150,399 @@ static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
return ext_mdio;
}
-static s32 igb_get_invariants_82575(struct e1000_hw *hw)
+/**
+ * e1000_init_phy_params_82575 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
- u32 eecd;
- s32 ret_val;
- u16 size;
- u32 ctrl_ext = 0;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_ext;
- switch (hw->device_id) {
- case E1000_DEV_ID_82575EB_COPPER:
- case E1000_DEV_ID_82575EB_FIBER_SERDES:
- case E1000_DEV_ID_82575GB_QUAD_COPPER:
- mac->type = e1000_82575;
- break;
- case E1000_DEV_ID_82576:
- case E1000_DEV_ID_82576_NS:
- case E1000_DEV_ID_82576_NS_SERDES:
- case E1000_DEV_ID_82576_FIBER:
- case E1000_DEV_ID_82576_SERDES:
- case E1000_DEV_ID_82576_QUAD_COPPER:
- case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
- case E1000_DEV_ID_82576_SERDES_QUAD:
- mac->type = e1000_82576;
- break;
- case E1000_DEV_ID_82580_COPPER:
- case E1000_DEV_ID_82580_FIBER:
- case E1000_DEV_ID_82580_QUAD_FIBER:
- case E1000_DEV_ID_82580_SERDES:
- case E1000_DEV_ID_82580_SGMII:
- case E1000_DEV_ID_82580_COPPER_DUAL:
- case E1000_DEV_ID_DH89XXCC_SGMII:
- case E1000_DEV_ID_DH89XXCC_SERDES:
- case E1000_DEV_ID_DH89XXCC_BACKPLANE:
- case E1000_DEV_ID_DH89XXCC_SFP:
- mac->type = e1000_82580;
- break;
- case E1000_DEV_ID_I350_COPPER:
- case E1000_DEV_ID_I350_FIBER:
- case E1000_DEV_ID_I350_SERDES:
- case E1000_DEV_ID_I350_SGMII:
- mac->type = e1000_i350;
- break;
- case E1000_DEV_ID_I210_COPPER:
- case E1000_DEV_ID_I210_COPPER_OEM1:
- case E1000_DEV_ID_I210_COPPER_IT:
- case E1000_DEV_ID_I210_FIBER:
- case E1000_DEV_ID_I210_SERDES:
- case E1000_DEV_ID_I210_SGMII:
- mac->type = e1000_i210;
- break;
- case E1000_DEV_ID_I211_COPPER:
- mac->type = e1000_i211;
- break;
- default:
- return -E1000_ERR_MAC_INIT;
- break;
+ DEBUGFUNC("e1000_init_phy_params_82575");
+
+ phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
+ phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
}
- /* Set media type */
- /*
- * The 82575 uses bits 22:23 for link mode. The mode can be changed
- * based on the EEPROM. We cannot rely upon device ID. There
- * is no distinguishable difference between fiber and internal
- * SerDes mode on the 82575. There can be an external PHY attached
- * on the SGMII interface. For this, we'll set sgmii_active to true.
- */
- phy->media_type = e1000_media_type_copper;
- dev_spec->sgmii_active = false;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82575;
- ctrl_ext = rd32(E1000_CTRL_EXT);
- switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
- case E1000_CTRL_EXT_LINK_MODE_SGMII:
- dev_spec->sgmii_active = true;
- break;
- case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
- case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
- hw->phy.media_type = e1000_media_type_internal_serdes;
- break;
- default:
- break;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+
+ phy->ops.acquire = e1000_acquire_phy_82575;
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
+ phy->ops.release = e1000_release_phy_82575;
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+
+ if (e1000_sgmii_active_82575(hw)) {
+ phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ } else {
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ ctrl_ext &= ~E1000_CTRL_I2C_ENA;
}
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- switch (mac->type) {
- case e1000_82576:
- mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ e1000_reset_mdicnfg_82580(hw);
+
+ if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
+ phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
+ phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
+ } else {
+ switch (hw->mac.type) {
+ case e1000_82580:
+ case e1000_i350:
+ case e1000_i354:
+ phy->ops.read_reg = e1000_read_phy_reg_82580;
+ phy->ops.write_reg = e1000_write_phy_reg_82580;
+ break;
+ case e1000_i210:
+ case e1000_i211:
+ phy->ops.read_reg = e1000_read_phy_reg_gs40g;
+ phy->ops.write_reg = e1000_write_phy_reg_gs40g;
+ break;
+ default:
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ }
+ }
+
+ /* Set phy->phy_addr and phy->id. */
+ ret_val = e1000_get_phy_id_82575(hw);
+
+ /* Verify phy id and set remaining function pointers */
+ switch (phy->id) {
+ case M88E1543_E_PHY_ID:
+ case M88E1512_E_PHY_ID:
+ case I347AT4_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ phy->type = e1000_phy_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ if (phy->id == I347AT4_E_PHY_ID ||
+ phy->id == M88E1112_E_PHY_ID ||
+ phy->id == M88E1340M_E_PHY_ID)
+ phy->ops.get_cable_length =
+ e1000_get_cable_length_m88_gen2;
+ else if (phy->id == M88E1543_E_PHY_ID ||
+ phy->id == M88E1512_E_PHY_ID)
+ phy->ops.get_cable_length =
+ e1000_get_cable_length_m88_gen2;
+ else
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ /* Check if this PHY is confgured for media swap. */
+ if (phy->id == M88E1112_E_PHY_ID) {
+ u16 data;
+
+ ret_val = phy->ops.write_reg(hw,
+ E1000_M88E1112_PAGE_ADDR,
+ 2);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw,
+ E1000_M88E1112_MAC_CTRL_1,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
+ E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
+ if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
+ data == E1000_M88E1112_AUTO_COPPER_BASEX)
+ hw->mac.ops.check_for_link =
+ e1000_check_for_link_media_swap;
+ }
+ if (phy->id == M88E1512_E_PHY_ID) {
+ ret_val = e1000_initialize_M88E1512_phy(hw);
+ if (ret_val)
+ goto out;
+ }
break;
- case e1000_82580:
- mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
+ case IGP03E1000_E_PHY_ID:
+ case IGP04E1000_E_PHY_ID:
+ phy->type = e1000_phy_igp_3;
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
break;
- case e1000_i350:
- case e1000_i210:
- case e1000_i211:
- mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
+ case I82580_I_PHY_ID:
+ case I350_I_PHY_ID:
+ phy->type = e1000_phy_82580;
+ phy->ops.check_polarity = e1000_check_polarity_82577;
+ phy->ops.force_speed_duplex =
+ e1000_phy_force_speed_duplex_82577;
+ phy->ops.get_cable_length = e1000_get_cable_length_82577;
+ phy->ops.get_info = e1000_get_phy_info_82577;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
break;
- default:
- mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
+ case I210_I_PHY_ID:
+ phy->type = e1000_phy_i210;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
}
- /* reset */
- if (mac->type >= e1000_82580)
- mac->ops.reset_hw = igb_reset_hw_82580;
- else
- mac->ops.reset_hw = igb_reset_hw_82575;
- if (mac->type >= e1000_i210) {
- mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
- mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
- } else {
- mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
- mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
- }
+out:
+ return ret_val;
+}
- /* Set if part includes ASF firmware */
- mac->asf_firmware_present = true;
- /* Set if manageability features are enabled. */
- mac->arc_subsystem_valid =
- (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
- ? true : false;
- /* enable EEE on i350 parts and later parts */
- if (mac->type >= e1000_i350)
- dev_spec->eee_disable = false;
- else
- dev_spec->eee_disable = true;
- /* physical interface link setup */
- mac->ops.setup_physical_interface =
- (hw->phy.media_type == e1000_media_type_copper)
- ? igb_setup_copper_link_82575
- : igb_setup_serdes_link_82575;
+/**
+ * e1000_init_nvm_params_82575 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82575");
- /* NVM initialization */
- eecd = rd32(E1000_EECD);
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT);
-
/*
* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
+ /* Just in case size is out of range, cap it to the largest
+ * EEPROM size supported
+ */
+ if (size > 15)
+ size = 15;
+
nvm->word_size = 1 << size;
if (hw->mac.type < e1000_i210) {
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+
switch (nvm->override) {
case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
+ nvm->page_size = 32;
nvm->address_bits = 16;
break;
case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
+ nvm->page_size = 8;
nvm->address_bits = 8;
break;
default:
- nvm->page_size = eecd
- & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd
- & E1000_EECD_ADDR_BITS ? 16 : 8;
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
+ 16 : 8;
break;
}
if (nvm->word_size == (1 << 15))
nvm->page_size = 128;
nvm->type = e1000_nvm_eeprom_spi;
- } else
+ } else {
nvm->type = e1000_nvm_flash_hw;
-
- /*
- * Check for invalid size
- */
- if ((hw->mac.type == e1000_82576) && (size > 15)) {
- printk("igb: The NVM size is not valid, "
- "defaulting to 32K.\n");
- size = 15;
}
- /* NVM Function Pointers */
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_82575;
+ nvm->ops.release = e1000_release_nvm_82575;
+ if (nvm->word_size < (1 << 15))
+ nvm->ops.read = e1000_read_nvm_eerd;
+ else
+ nvm->ops.read = e1000_read_nvm_spi;
+
+ nvm->ops.write = e1000_write_nvm_spi;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_82575;
+
+ /* override generic family function pointers for specific descendants */
switch (hw->mac.type) {
case e1000_82580:
- nvm->ops.validate = igb_validate_nvm_checksum_82580;
- nvm->ops.update = igb_update_nvm_checksum_82580;
- nvm->ops.acquire = igb_acquire_nvm_82575;
- nvm->ops.release = igb_release_nvm_82575;
- if (nvm->word_size < (1 << 15))
- nvm->ops.read = igb_read_nvm_eerd;
- else
- nvm->ops.read = igb_read_nvm_spi;
- nvm->ops.write = igb_write_nvm_spi;
+ nvm->ops.validate = e1000_validate_nvm_checksum_82580;
+ nvm->ops.update = e1000_update_nvm_checksum_82580;
break;
case e1000_i350:
- nvm->ops.validate = igb_validate_nvm_checksum_i350;
- nvm->ops.update = igb_update_nvm_checksum_i350;
- nvm->ops.acquire = igb_acquire_nvm_82575;
- nvm->ops.release = igb_release_nvm_82575;
- if (nvm->word_size < (1 << 15))
- nvm->ops.read = igb_read_nvm_eerd;
- else
- nvm->ops.read = igb_read_nvm_spi;
- nvm->ops.write = igb_write_nvm_spi;
- break;
- case e1000_i210:
- nvm->ops.validate = igb_validate_nvm_checksum_i210;
- nvm->ops.update = igb_update_nvm_checksum_i210;
- nvm->ops.acquire = igb_acquire_nvm_i210;
- nvm->ops.release = igb_release_nvm_i210;
- nvm->ops.read = igb_read_nvm_srrd_i210;
- nvm->ops.valid_led_default = igb_valid_led_default_i210;
- break;
- case e1000_i211:
- nvm->ops.acquire = igb_acquire_nvm_i210;
- nvm->ops.release = igb_release_nvm_i210;
- nvm->ops.read = igb_read_nvm_i211;
- nvm->ops.valid_led_default = igb_valid_led_default_i210;
- nvm->ops.validate = NULL;
- nvm->ops.update = NULL;
- nvm->ops.write = NULL;
+ case e1000_i354:
+ nvm->ops.validate = e1000_validate_nvm_checksum_i350;
+ nvm->ops.update = e1000_update_nvm_checksum_i350;
break;
default:
- nvm->ops.validate = igb_validate_nvm_checksum;
- nvm->ops.update = igb_update_nvm_checksum;
- nvm->ops.acquire = igb_acquire_nvm_82575;
- nvm->ops.release = igb_release_nvm_82575;
- if (nvm->word_size < (1 << 15))
- nvm->ops.read = igb_read_nvm_eerd;
- else
- nvm->ops.read = igb_read_nvm_spi;
- nvm->ops.write = igb_write_nvm_spi;
break;
}
- /* if part supports SR-IOV then initialize mailbox parameters */
- switch (mac->type) {
- case e1000_82576:
- case e1000_i350:
- igb_init_mbx_params_pf(hw);
- break;
- default:
- break;
- }
+ return E1000_SUCCESS;
+}
- /* setup PHY parameters */
- if (phy->media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- return 0;
- }
+/**
+ * e1000_init_mac_params_82575 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
+ DEBUGFUNC("e1000_init_mac_params_82575");
- ctrl_ext = rd32(E1000_CTRL_EXT);
+ /* Derives media type */
+ e1000_get_media_type_82575(hw);
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set uta register count */
+ mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
+ if (mac->type == e1000_82576)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
+ if (mac->type == e1000_82580)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
+ if (mac->type == e1000_i350 || mac->type == e1000_i354)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
- /* PHY function pointers */
- if (igb_sgmii_active_82575(hw)) {
- phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
- ctrl_ext |= E1000_CTRL_I2C_ENA;
- } else {
- phy->ops.reset = igb_phy_hw_reset;
- ctrl_ext &= ~E1000_CTRL_I2C_ENA;
- }
+ /* Enable EEE default settings for EEE supported devices */
+ if (mac->type >= e1000_i350)
+ dev_spec->eee_disable = false;
- wr32(E1000_CTRL_EXT, ctrl_ext);
- igb_reset_mdicnfg_82580(hw);
+ /* Allow a single clear of the SW semaphore on I210 and newer */
+ if (mac->type >= e1000_i210)
+ dev_spec->clear_semaphore_once = true;
- if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
- phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
- phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
- } else if ((hw->mac.type == e1000_82580)
- || (hw->mac.type == e1000_i350)) {
- phy->ops.read_reg = igb_read_phy_reg_82580;
- phy->ops.write_reg = igb_write_phy_reg_82580;
- } else if (hw->phy.type >= e1000_phy_i210) {
- phy->ops.read_reg = igb_read_phy_reg_gs40g;
- phy->ops.write_reg = igb_write_phy_reg_gs40g;
- } else {
- phy->ops.read_reg = igb_read_phy_reg_igp;
- phy->ops.write_reg = igb_write_phy_reg_igp;
- }
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = true;
+ /* FWSM register */
+ mac->has_fwsm = true;
+ /* ARC supported; valid only if manageability features are enabled. */
+ mac->arc_subsystem_valid =
+ !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
- /* set lan id */
- hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
- E1000_STATUS_FUNC_SHIFT;
+ /* Function pointers */
- /* Set phy->phy_addr and phy->id. */
- ret_val = igb_get_phy_id_82575(hw);
- if (ret_val)
- return ret_val;
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ if (mac->type >= e1000_82580)
+ mac->ops.reset_hw = e1000_reset_hw_82580;
+ else
+ mac->ops.reset_hw = e1000_reset_hw_82575;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82575;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_generic;
+ /* physical interface link setup */
+ mac->ops.setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
+ /* physical interface shutdown */
+ mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
+ /* physical interface power up */
+ mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_link_82575;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
+ /* configure collision distance */
+ mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_i350;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_i350;
+ } else {
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ }
+ if (hw->mac.type >= e1000_82580)
+ mac->ops.validate_mdi_setting =
+ e1000_validate_mdi_setting_crossover_generic;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* blink LED */
+ mac->ops.blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
+ /* get thermal sensor data */
+ mac->ops.get_thermal_sensor_data =
+ e1000_get_thermal_sensor_data_generic;
+ mac->ops.init_thermal_sensor_thresh =
+ e1000_init_thermal_sensor_thresh_generic;
+ /* acquire SW_FW sync */
+ mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
+ mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
+ if (mac->type >= e1000_i210) {
+ mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
+ mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
+ }
- /* Verify phy id and set remaining function pointers */
- switch (phy->id) {
- case I347AT4_E_PHY_ID:
- case M88E1112_E_PHY_ID:
- case M88E1111_I_PHY_ID:
- phy->type = e1000_phy_m88;
- phy->ops.get_phy_info = igb_get_phy_info_m88;
+ /* set lan id for port to determine which phy lock to use */
+ hw->mac.ops.set_lan_id(hw);
- if (phy->id == I347AT4_E_PHY_ID ||
- phy->id == M88E1112_E_PHY_ID)
- phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
- else
- phy->ops.get_cable_length = igb_get_cable_length_m88;
+ return E1000_SUCCESS;
+}
- if (phy->id == I210_I_PHY_ID) {
- phy->ops.get_cable_length =
- igb_get_cable_length_m88_gen2;
- phy->ops.set_d0_lplu_state =
- igb_set_d0_lplu_state_82580;
- phy->ops.set_d3_lplu_state =
- igb_set_d3_lplu_state_82580;
- }
- phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
- break;
- case IGP03E1000_E_PHY_ID:
- phy->type = e1000_phy_igp_3;
- phy->ops.get_phy_info = igb_get_phy_info_igp;
- phy->ops.get_cable_length = igb_get_cable_length_igp_2;
- phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
- phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
- phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
- break;
- case I82580_I_PHY_ID:
- case I350_I_PHY_ID:
- phy->type = e1000_phy_82580;
- phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
- phy->ops.get_cable_length = igb_get_cable_length_82580;
- phy->ops.get_phy_info = igb_get_phy_info_82580;
- phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
- phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
- break;
- case I210_I_PHY_ID:
- phy->type = e1000_phy_i210;
- phy->ops.get_phy_info = igb_get_phy_info_m88;
- phy->ops.check_polarity = igb_check_polarity_m88;
- phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
- phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
- phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
- phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
- break;
- default:
- return -E1000_ERR_PHY;
- }
+/**
+ * e1000_init_function_pointers_82575 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82575");
- return 0;
+ hw->mac.ops.init_params = e1000_init_mac_params_82575;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
+ hw->phy.ops.init_params = e1000_init_phy_params_82575;
+ hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
}
/**
- * igb_acquire_phy_82575 - Acquire rights to access PHY
+ * e1000_acquire_phy_82575 - Acquire rights to access PHY
* @hw: pointer to the HW structure
*
- * Acquire access rights to the correct PHY. This is a
- * function pointer entry point called by the api module.
+ * Acquire access rights to the correct PHY.
**/
-static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
+static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
{
u16 mask = E1000_SWFW_PHY0_SM;
+ DEBUGFUNC("e1000_acquire_phy_82575");
+
if (hw->bus.func == E1000_FUNC_1)
mask = E1000_SWFW_PHY1_SM;
else if (hw->bus.func == E1000_FUNC_2)
@@ -484,16 +554,17 @@ static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
}
/**
- * igb_release_phy_82575 - Release rights to access PHY
+ * e1000_release_phy_82575 - Release rights to access PHY
* @hw: pointer to the HW structure
*
- * A wrapper to release access rights to the correct PHY. This is a
- * function pointer entry point called by the api module.
+ * A wrapper to release access rights to the correct PHY.
**/
-static void igb_release_phy_82575(struct e1000_hw *hw)
+static void e1000_release_phy_82575(struct e1000_hw *hw)
{
u16 mask = E1000_SWFW_PHY0_SM;
+ DEBUGFUNC("e1000_release_phy_82575");
+
if (hw->bus.func == E1000_FUNC_1)
mask = E1000_SWFW_PHY1_SM;
else if (hw->bus.func == E1000_FUNC_2)
@@ -505,7 +576,7 @@ static void igb_release_phy_82575(struct e1000_hw *hw)
}
/**
- * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
+ * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
@@ -513,13 +584,15 @@ static void igb_release_phy_82575(struct e1000_hw *hw)
* Reads the PHY register at offset using the serial gigabit media independent
* interface and stores the retrieved information in data.
**/
-static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
u16 *data)
{
s32 ret_val = -E1000_ERR_PARAM;
+ DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
+
if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
- hw_dbg("PHY Address %u is out of range\n", offset);
+ DEBUGOUT1("PHY Address %u is out of range\n", offset);
goto out;
}
@@ -527,7 +600,7 @@ static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
if (ret_val)
goto out;
- ret_val = igb_read_phy_reg_i2c(hw, offset, data);
+ ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
hw->phy.ops.release(hw);
@@ -536,7 +609,7 @@ out:
}
/**
- * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
+ * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
@@ -544,14 +617,15 @@ out:
* Writes the data to PHY register at the offset using the serial gigabit
* media independent interface.
**/
-static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
u16 data)
{
s32 ret_val = -E1000_ERR_PARAM;
+ DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
- hw_dbg("PHY Address %d is out of range\n", offset);
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
goto out;
}
@@ -559,7 +633,7 @@ static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
if (ret_val)
goto out;
- ret_val = igb_write_phy_reg_i2c(hw, offset, data);
+ ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
hw->phy.ops.release(hw);
@@ -568,20 +642,26 @@ out:
}
/**
- * igb_get_phy_id_82575 - Retrieve PHY addr and id
+ * e1000_get_phy_id_82575 - Retrieve PHY addr and id
* @hw: pointer to the HW structure
*
* Retrieves the PHY address and ID for both PHY's which do and do not use
* sgmi interface.
**/
-static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
+static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
u16 phy_id;
u32 ctrl_ext;
u32 mdic;
+ DEBUGFUNC("e1000_get_phy_id_82575");
+
+ /* some i354 devices need an extra read for phy id */
+ if (hw->mac.type == e1000_i354)
+ e1000_get_phy_id(hw);
+
/*
* For SGMII PHYs, we try the list of possible addresses until
* we find one that works. For non-SGMII PHYs
@@ -589,25 +669,26 @@ static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
* work. The result of this function should mean phy->phy_addr
* and phy->id are set correctly.
*/
- if (!(igb_sgmii_active_82575(hw))) {
+ if (!e1000_sgmii_active_82575(hw)) {
phy->addr = 1;
- ret_val = igb_get_phy_id(hw);
+ ret_val = e1000_get_phy_id(hw);
goto out;
}
- if (igb_sgmii_uses_mdio_82575(hw)) {
+ if (e1000_sgmii_uses_mdio_82575(hw)) {
switch (hw->mac.type) {
case e1000_82575:
case e1000_82576:
- mdic = rd32(E1000_MDIC);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
mdic &= E1000_MDIC_PHY_MASK;
phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
break;
case e1000_82580:
case e1000_i350:
+ case e1000_i354:
case e1000_i210:
case e1000_i211:
- mdic = rd32(E1000_MDICNFG);
+ mdic = E1000_READ_REG(hw, E1000_MDICNFG);
mdic &= E1000_MDICNFG_PHY_MASK;
phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
break;
@@ -616,25 +697,26 @@ static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
goto out;
break;
}
- ret_val = igb_get_phy_id(hw);
+ ret_val = e1000_get_phy_id(hw);
goto out;
}
/* Power on sgmii phy if it is disabled */
- ctrl_ext = rd32(E1000_CTRL_EXT);
- wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
- wrfl();
- msleep(300);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(300);
/*
* The address field in the I2CCMD register is 3 bits and 0 is invalid.
* Therefore, we need to test 1-7
*/
for (phy->addr = 1; phy->addr < 8; phy->addr++) {
- ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
- if (ret_val == 0) {
- hw_dbg("Vendor ID 0x%08X read at address %u\n",
- phy_id, phy->addr);
+ ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
+ if (ret_val == E1000_SUCCESS) {
+ DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
+ phy_id, phy->addr);
/*
* At the time of this writing, The M88 part is
* the only supported SGMII PHY product.
@@ -642,7 +724,8 @@ static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
if (phy_id == M88_VENDOR)
break;
} else {
- hw_dbg("PHY address %u was unreadable\n", phy->addr);
+ DEBUGOUT1("PHY address %u was unreadable\n",
+ phy->addr);
}
}
@@ -650,34 +733,39 @@ static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
if (phy->addr == 8) {
phy->addr = 0;
ret_val = -E1000_ERR_PHY;
- goto out;
} else {
- ret_val = igb_get_phy_id(hw);
+ ret_val = e1000_get_phy_id(hw);
}
/* restore previous sfp cage power state */
- wr32(E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
out:
return ret_val;
}
/**
- * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
+ * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
* @hw: pointer to the HW structure
*
* Resets the PHY using the serial gigabit media independent interface.
**/
-static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
+static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
{
- s32 ret_val;
+ s32 ret_val = E1000_SUCCESS;
+ struct e1000_phy_info *phy = &hw->phy;
+
+ DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
/*
* This isn't a true "hard" reset, but is the only reset
* available to us at this time.
*/
- hw_dbg("Soft resetting SGMII attached PHY...\n");
+ DEBUGOUT("Soft resetting SGMII attached PHY...\n");
+
+ if (!(hw->phy.ops.write_reg))
+ goto out;
/*
* SFP documentation requires the following to configure the SPF module
@@ -687,14 +775,18 @@ static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
if (ret_val)
goto out;
- ret_val = igb_phy_sw_reset(hw);
+ ret_val = hw->phy.ops.commit(hw);
+ if (ret_val)
+ goto out;
+ if (phy->id == M88E1512_E_PHY_ID)
+ ret_val = e1000_initialize_M88E1512_phy(hw);
out:
return ret_val;
}
/**
- * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
+ * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
@@ -706,12 +798,17 @@ out:
* This is a function pointer entry point only called by
* PHY setup routines.
**/
-static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
+static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
+ s32 ret_val = E1000_SUCCESS;
u16 data;
+ DEBUGFUNC("e1000_set_d0_lplu_state_82575");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
goto out;
@@ -719,22 +816,22 @@ static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
if (active) {
data |= IGP02E1000_PM_D0_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
+ data);
if (ret_val)
goto out;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ &data);
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
+ data);
if (ret_val)
goto out;
} else {
data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
+ data);
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
@@ -743,24 +840,28 @@ static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG, &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
goto out;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG, data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
goto out;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG, &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
goto out;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG, data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
goto out;
}
@@ -771,7 +872,7 @@ out:
}
/**
- * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
+ * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
@@ -783,13 +884,15 @@ out:
* This is a function pointer entry point only called by
* PHY setup routines.
**/
-static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
+static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = 0;
- u16 data;
+ s32 ret_val = E1000_SUCCESS;
+ u32 data;
- data = rd32(E1000_82580_PHY_POWER_MGMT);
+ DEBUGFUNC("e1000_set_d0_lplu_state_82580");
+
+ data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
if (active) {
data |= E1000_82580_PM_D0_LPLU;
@@ -808,14 +911,15 @@ static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
if (phy->smart_speed == e1000_smart_speed_on)
data |= E1000_82580_PM_SPD;
else if (phy->smart_speed == e1000_smart_speed_off)
- data &= ~E1000_82580_PM_SPD; }
+ data &= ~E1000_82580_PM_SPD;
+ }
- wr32(E1000_82580_PHY_POWER_MGMT, data);
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
return ret_val;
}
/**
- * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
+ * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
@@ -828,13 +932,15 @@ static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
* During driver activity, SmartSpeed should be enabled so performance is
* maintained.
**/
-s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
+s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = 0;
- u16 data;
+ s32 ret_val = E1000_SUCCESS;
+ u32 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_82580");
- data = rd32(E1000_82580_PHY_POWER_MGMT);
+ data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
if (!active) {
data &= ~E1000_82580_PM_D3_LPLU;
@@ -856,12 +962,12 @@ s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
data &= ~E1000_82580_PM_SPD;
}
- wr32(E1000_82580_PHY_POWER_MGMT, data);
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
return ret_val;
}
/**
- * igb_acquire_nvm_82575 - Request for access to EEPROM
+ * e1000_acquire_nvm_82575 - Request for access to EEPROM
* @hw: pointer to the HW structure
*
* Acquire the necessary semaphores for exclusive access to the EEPROM.
@@ -869,59 +975,90 @@ s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -E1000_ERR_NVM (-1).
**/
-static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
+static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
{
s32 ret_val;
- ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
+ DEBUGFUNC("e1000_acquire_nvm_82575");
+
+ ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
if (ret_val)
goto out;
- ret_val = igb_acquire_nvm(hw);
+ /*
+ * Check if there is some access
+ * error this access may hook on
+ */
+ if (hw->mac.type == e1000_i350) {
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
+ E1000_EECD_TIMEOUT)) {
+ /* Clear all access error flags */
+ E1000_WRITE_REG(hw, E1000_EECD, eecd |
+ E1000_EECD_ERROR_CLR);
+ DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
+ }
+ }
+ if (hw->mac.type == e1000_82580) {
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & E1000_EECD_BLOCKED) {
+ /* Clear access error flag */
+ E1000_WRITE_REG(hw, E1000_EECD, eecd |
+ E1000_EECD_BLOCKED);
+ DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
+ }
+ }
+
+ ret_val = e1000_acquire_nvm_generic(hw);
if (ret_val)
- hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
out:
return ret_val;
}
/**
- * igb_release_nvm_82575 - Release exclusive access to EEPROM
+ * e1000_release_nvm_82575 - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit,
* then release the semaphores acquired.
**/
-static void igb_release_nvm_82575(struct e1000_hw *hw)
+static void e1000_release_nvm_82575(struct e1000_hw *hw)
{
- igb_release_nvm(hw);
- hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
+ DEBUGFUNC("e1000_release_nvm_82575");
+
+ e1000_release_nvm_generic(hw);
+
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
}
/**
- * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
+ * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
* will also specify which port we're acquiring the lock for.
**/
-static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
u32 swfw_sync;
u32 swmask = mask;
u32 fwmask = mask << 16;
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+ DEBUGFUNC("e1000_acquire_swfw_sync_82575");
+
while (i < timeout) {
- if (igb_get_hw_semaphore(hw)) {
+ if (e1000_get_hw_semaphore_generic(hw)) {
ret_val = -E1000_ERR_SWFW_SYNC;
goto out;
}
- swfw_sync = rd32(E1000_SW_FW_SYNC);
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
@@ -929,146 +1066,244 @@ static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
* Firmware currently using resource (fwmask)
* or other software thread using resource (swmask)
*/
- igb_put_hw_semaphore(hw);
- mdelay(5);
+ e1000_put_hw_semaphore_generic(hw);
+ msec_delay_irq(5);
i++;
}
if (i == timeout) {
- hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
ret_val = -E1000_ERR_SWFW_SYNC;
goto out;
}
swfw_sync |= swmask;
- wr32(E1000_SW_FW_SYNC, swfw_sync);
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
- igb_put_hw_semaphore(hw);
+ e1000_put_hw_semaphore_generic(hw);
out:
return ret_val;
}
/**
- * igb_release_swfw_sync_82575 - Release SW/FW semaphore
+ * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
* will also specify which port we're releasing the lock for.
**/
-static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
u32 swfw_sync;
- while (igb_get_hw_semaphore(hw) != 0);
- /* Empty */
+ DEBUGFUNC("e1000_release_swfw_sync_82575");
- swfw_sync = rd32(E1000_SW_FW_SYNC);
+ while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
+ ; /* Empty */
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
swfw_sync &= ~mask;
- wr32(E1000_SW_FW_SYNC, swfw_sync);
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
- igb_put_hw_semaphore(hw);
+ e1000_put_hw_semaphore_generic(hw);
}
/**
- * igb_get_cfg_done_82575 - Read config done bit
+ * e1000_get_cfg_done_82575 - Read config done bit
* @hw: pointer to the HW structure
*
* Read the management control register for the config done bit for
* completion status. NOTE: silicon which is EEPROM-less will fail trying
* to read the config done bit, so an error is *ONLY* logged and returns
- * 0. If we were to return with error, EEPROM-less silicon
+ * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
* would not be able to be reset or change link.
**/
-static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
+static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
{
s32 timeout = PHY_CFG_TIMEOUT;
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
u32 mask = E1000_NVM_CFG_DONE_PORT_0;
- if (hw->bus.func == 1)
+ DEBUGFUNC("e1000_get_cfg_done_82575");
+
+ if (hw->bus.func == E1000_FUNC_1)
mask = E1000_NVM_CFG_DONE_PORT_1;
else if (hw->bus.func == E1000_FUNC_2)
mask = E1000_NVM_CFG_DONE_PORT_2;
else if (hw->bus.func == E1000_FUNC_3)
mask = E1000_NVM_CFG_DONE_PORT_3;
-
while (timeout) {
- if (rd32(E1000_EEMNGCTL) & mask)
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
break;
- msleep(1);
+ msec_delay(1);
timeout--;
}
if (!timeout)
- hw_dbg("MNG configuration cycle has not completed.\n");
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
/* If EEPROM is not marked present, init the PHY manually */
- if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
(hw->phy.type == e1000_phy_igp_3))
- igb_phy_init_script_igp3(hw);
+ e1000_phy_init_script_igp3(hw);
return ret_val;
}
/**
- * igb_check_for_link_82575 - Check for link
+ * e1000_get_link_up_info_82575 - Get link speed/duplex info
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * This is a wrapper function, if using the serial gigabit media independent
+ * interface, use PCS to retrieve the link speed and duplex information.
+ * Otherwise, use the generic function to get the link speed and duplex info.
+ **/
+static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper)
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
+ duplex);
+ else
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+ duplex);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_link_82575 - Check for link
* @hw: pointer to the HW structure
*
* If sgmii is enabled, then use the pcs register to determine link, otherwise
* use the generic interface for determining link.
**/
-static s32 igb_check_for_link_82575(struct e1000_hw *hw)
+static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
{
s32 ret_val;
u16 speed, duplex;
+ DEBUGFUNC("e1000_check_for_link_82575");
+
if (hw->phy.media_type != e1000_media_type_copper) {
- ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
- &duplex);
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
+ &duplex);
/*
* Use this flag to determine if link needs to be checked or
- * not. If we have link clear the flag so that we do not
+ * not. If we have link clear the flag so that we do not
* continue to check for link.
*/
hw->mac.get_link_status = !hw->mac.serdes_has_link;
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val)
+ DEBUGOUT("Error configuring flow control\n");
} else {
- ret_val = igb_check_for_copper_link(hw);
+ ret_val = e1000_check_for_copper_link_generic(hw);
}
return ret_val;
}
/**
- * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
+ * e1000_check_for_link_media_swap - Check which M88E1112 interface linked
+ * @hw: pointer to the HW structure
+ *
+ * Poll the M88E1112 interfaces to see which interface achieved link.
+ */
+static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ u8 port = 0;
+
+ DEBUGFUNC("e1000_check_for_link_media_swap");
+
+ /* Check the copper medium. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ if (data & E1000_M88E1112_STATUS_LINK)
+ port = E1000_MEDIA_PORT_COPPER;
+
+ /* Check the other medium. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ /* reset page to 0 */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
+ if (ret_val)
+ return ret_val;
+
+ if (data & E1000_M88E1112_STATUS_LINK)
+ port = E1000_MEDIA_PORT_OTHER;
+
+ /* Determine if a swap needs to happen. */
+ if (port && (hw->dev_spec._82575.media_port != port)) {
+ hw->dev_spec._82575.media_port = port;
+ hw->dev_spec._82575.media_changed = true;
+ } else {
+ ret_val = e1000_check_for_link_82575(hw);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
* @hw: pointer to the HW structure
**/
-void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
+static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
{
u32 reg;
+ DEBUGFUNC("e1000_power_up_serdes_link_82575");
if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !igb_sgmii_active_82575(hw))
+ !e1000_sgmii_active_82575(hw))
return;
/* Enable PCS to turn on link */
- reg = rd32(E1000_PCS_CFG0);
+ reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
reg |= E1000_PCS_CFG_PCS_EN;
- wr32(E1000_PCS_CFG0, reg);
+ E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
/* Power up the laser */
- reg = rd32(E1000_CTRL_EXT);
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
reg &= ~E1000_CTRL_EXT_SDP3_DATA;
- wr32(E1000_CTRL_EXT, reg);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
/* flush the write to verify completion */
- wrfl();
- msleep(1);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
}
/**
- * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
+ * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
@@ -1076,186 +1311,206 @@ void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
* Using the physical coding sub-layer (PCS), retrieve the current speed and
* duplex, then store the values in the pointers provided.
**/
-static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
+static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex)
{
struct e1000_mac_info *mac = &hw->mac;
u32 pcs;
+ u32 status;
- /* Set up defaults for the return values of this function */
- mac->serdes_has_link = false;
- *speed = 0;
- *duplex = 0;
+ DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
/*
* Read the PCS Status register for link state. For non-copper mode,
* the status register is not accurate. The PCS status register is
* used instead.
*/
- pcs = rd32(E1000_PCS_LSTAT);
+ pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
/*
- * The link up bit determines when link is up on autoneg. The sync ok
- * gets set once both sides sync up and agree upon link. Stable link
- * can be determined by checking for both link up and link sync ok
+ * The link up bit determines when link is up on autoneg.
*/
- if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
+ if (pcs & E1000_PCS_LSTS_LINK_OK) {
mac->serdes_has_link = true;
/* Detect and store PCS speed */
- if (pcs & E1000_PCS_LSTS_SPEED_1000) {
+ if (pcs & E1000_PCS_LSTS_SPEED_1000)
*speed = SPEED_1000;
- } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
+ else if (pcs & E1000_PCS_LSTS_SPEED_100)
*speed = SPEED_100;
- } else {
+ else
*speed = SPEED_10;
- }
/* Detect and store PCS duplex */
- if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
+ if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
*duplex = FULL_DUPLEX;
- } else {
+ else
*duplex = HALF_DUPLEX;
+
+ /* Check if it is an I354 2.5Gb backplane connection. */
+ if (mac->type == e1000_i354) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if ((status & E1000_STATUS_2P5_SKU) &&
+ !(status & E1000_STATUS_2P5_SKU_OVER)) {
+ *speed = SPEED_2500;
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("2500 Mbs, ");
+ DEBUGOUT("Full Duplex\n");
+ }
}
+
+ } else {
+ mac->serdes_has_link = false;
+ *speed = 0;
+ *duplex = 0;
}
- return 0;
+ return E1000_SUCCESS;
}
/**
- * igb_shutdown_serdes_link_82575 - Remove link during power down
+ * e1000_shutdown_serdes_link_82575 - Remove link during power down
* @hw: pointer to the HW structure
*
- * In the case of fiber serdes, shut down optics and PCS on driver unload
+ * In the case of serdes shut down sfp and PCS on driver unload
* when management pass thru is not enabled.
**/
-void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
+void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
{
u32 reg;
- if (hw->phy.media_type != e1000_media_type_internal_serdes &&
- igb_sgmii_active_82575(hw))
+ DEBUGFUNC("e1000_shutdown_serdes_link_82575");
+
+ if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+ !e1000_sgmii_active_82575(hw))
return;
- if (!igb_enable_mng_pass_thru(hw)) {
+ if (!e1000_enable_mng_pass_thru(hw)) {
/* Disable PCS to turn off link */
- reg = rd32(E1000_PCS_CFG0);
+ reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
reg &= ~E1000_PCS_CFG_PCS_EN;
- wr32(E1000_PCS_CFG0, reg);
+ E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
/* shutdown the laser */
- reg = rd32(E1000_CTRL_EXT);
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
reg |= E1000_CTRL_EXT_SDP3_DATA;
- wr32(E1000_CTRL_EXT, reg);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
/* flush the write to verify completion */
- wrfl();
- msleep(1);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
}
+
+ return;
}
/**
- * igb_reset_hw_82575 - Reset hardware
+ * e1000_reset_hw_82575 - Reset hardware
* @hw: pointer to the HW structure
*
- * This resets the hardware into a known state. This is a
- * function pointer entry point called by the api module.
+ * This resets the hardware into a known state.
**/
-static s32 igb_reset_hw_82575(struct e1000_hw *hw)
+static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
{
- u32 ctrl, icr;
+ u32 ctrl;
s32 ret_val;
+ DEBUGFUNC("e1000_reset_hw_82575");
+
/*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
- ret_val = igb_disable_pcie_master(hw);
+ ret_val = e1000_disable_pcie_master_generic(hw);
if (ret_val)
- hw_dbg("PCI-E Master disable polling has failed.\n");
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
/* set the completion timeout for interface */
- ret_val = igb_set_pcie_completion_timeout(hw);
- if (ret_val) {
- hw_dbg("PCI-E Set completion timeout has failed.\n");
- }
+ ret_val = e1000_set_pcie_completion_timeout(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Set completion timeout has failed.\n");
- hw_dbg("Masking off all interrupts\n");
- wr32(E1000_IMC, 0xffffffff);
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- wr32(E1000_RCTL, 0);
- wr32(E1000_TCTL, E1000_TCTL_PSP);
- wrfl();
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
- msleep(10);
+ msec_delay(10);
- ctrl = rd32(E1000_CTRL);
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
- hw_dbg("Issuing a global reset to MAC\n");
- wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
- ret_val = igb_get_auto_rd_done(hw);
+ ret_val = e1000_get_auto_rd_done_generic(hw);
if (ret_val) {
/*
* When auto config read does not complete, do not
* return with an error. This can happen in situations
* where there is no eeprom and prevents getting link.
*/
- hw_dbg("Auto Read Done did not complete\n");
+ DEBUGOUT("Auto Read Done did not complete\n");
}
/* If EEPROM is not present, run manual init scripts */
- if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
- igb_reset_init_script_82575(hw);
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
+ e1000_reset_init_script_82575(hw);
/* Clear any pending interrupt events. */
- wr32(E1000_IMC, 0xffffffff);
- icr = rd32(E1000_ICR);
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
/* Install any alternate MAC address into RAR0 */
- ret_val = igb_check_alt_mac_addr(hw);
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
return ret_val;
}
/**
- * igb_init_hw_82575 - Initialize hardware
+ * e1000_init_hw_82575 - Initialize hardware
* @hw: pointer to the HW structure
*
* This inits the hardware readying it for operation.
**/
-static s32 igb_init_hw_82575(struct e1000_hw *hw)
+static s32 e1000_init_hw_82575(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
u16 i, rar_count = mac->rar_entry_count;
+ DEBUGFUNC("e1000_init_hw_82575");
+
/* Initialize identification LED */
- ret_val = igb_id_led_init(hw);
+ ret_val = mac->ops.id_led_init(hw);
if (ret_val) {
- hw_dbg("Error initializing identification LED\n");
+ DEBUGOUT("Error initializing identification LED\n");
/* This is not fatal and we should not stop init due to this */
}
/* Disabling VLAN filtering */
- hw_dbg("Initializing the IEEE VLAN\n");
- igb_clear_vfta(hw);
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ mac->ops.clear_vfta(hw);
/* Setup the receive address */
- igb_init_rx_addrs(hw, rar_count);
+ e1000_init_rx_addrs_generic(hw, rar_count);
/* Zero out the Multicast HASH table */
- hw_dbg("Zeroing the MTA\n");
+ DEBUGOUT("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
- array_wr32(E1000_MTA, i, 0);
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
/* Zero out the Unicast HASH table */
- hw_dbg("Zeroing the UTA\n");
+ DEBUGOUT("Zeroing the UTA\n");
for (i = 0; i < mac->uta_reg_count; i++)
- array_wr32(E1000_UTA, i, 0);
+ E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
/* Setup link and flow control */
- ret_val = igb_setup_link(hw);
+ ret_val = mac->ops.setup_link(hw);
+
+ /* Set the default MTU size */
+ hw->dev_spec._82575.mtu = 1500;
/*
* Clear all of the statistics registers (clear on read). It is
@@ -1263,56 +1518,82 @@ static s32 igb_init_hw_82575(struct e1000_hw *hw)
* because the symbol error count will increment wildly if there
* is no link.
*/
- igb_clear_hw_cntrs_82575(hw);
+ e1000_clear_hw_cntrs_82575(hw);
+
return ret_val;
}
/**
- * igb_setup_copper_link_82575 - Configure copper link settings
+ * e1000_setup_copper_link_82575 - Configure copper link settings
* @hw: pointer to the HW structure
*
* Configures the link for auto-neg or forced speed and duplex. Then we check
* for link, once link is established calls to configure collision distance
* and flow control are called.
**/
-static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
+static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
{
u32 ctrl;
- s32 ret_val;
+ s32 ret_val;
+ u32 phpm_reg;
+
+ DEBUGFUNC("e1000_setup_copper_link_82575");
- ctrl = rd32(E1000_CTRL);
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- wr32(E1000_CTRL, ctrl);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Clear Go Link Disconnect bit on supported devices */
+ switch (hw->mac.type) {
+ case e1000_82580:
+ case e1000_i350:
+ case e1000_i210:
+ case e1000_i211:
+ phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+ phpm_reg &= ~E1000_82580_PM_GO_LINKD;
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
+ break;
+ default:
+ break;
+ }
- ret_val = igb_setup_serdes_link_82575(hw);
+ ret_val = e1000_setup_serdes_link_82575(hw);
if (ret_val)
goto out;
- if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
+ if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
/* allow time for SFP cage time to power up phy */
- msleep(300);
+ msec_delay(300);
ret_val = hw->phy.ops.reset(hw);
if (ret_val) {
- hw_dbg("Error resetting the PHY.\n");
+ DEBUGOUT("Error resetting the PHY.\n");
goto out;
}
}
switch (hw->phy.type) {
case e1000_phy_i210:
case e1000_phy_m88:
- if (hw->phy.id == I347AT4_E_PHY_ID ||
- hw->phy.id == M88E1112_E_PHY_ID)
- ret_val = igb_copper_link_setup_m88_gen2(hw);
- else
- ret_val = igb_copper_link_setup_m88(hw);
+ switch (hw->phy.id) {
+ case I347AT4_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ case M88E1543_E_PHY_ID:
+ case M88E1512_E_PHY_ID:
+ case I210_I_PHY_ID:
+ ret_val = e1000_copper_link_setup_m88_gen2(hw);
+ break;
+ default:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ break;
+ }
break;
case e1000_phy_igp_3:
- ret_val = igb_copper_link_setup_igp(hw);
+ ret_val = e1000_copper_link_setup_igp(hw);
break;
case e1000_phy_82580:
- ret_val = igb_copper_link_setup_82580(hw);
+ ret_val = e1000_copper_link_setup_82577(hw);
break;
default:
ret_val = -E1000_ERR_PHY;
@@ -1322,13 +1603,13 @@ static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
if (ret_val)
goto out;
- ret_val = igb_setup_copper_link(hw);
+ ret_val = e1000_setup_copper_link_generic(hw);
out:
return ret_val;
}
/**
- * igb_setup_serdes_link_82575 - Setup link for serdes
+ * e1000_setup_serdes_link_82575 - Setup link for serdes
* @hw: pointer to the HW structure
*
* Configure the physical coding sub-layer (PCS) link. The PCS link is
@@ -1336,45 +1617,40 @@ out:
* interface (sgmii), or serdes fiber is being used. Configures the link
* for auto-negotiation or forces speed/duplex.
**/
-static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
+static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
{
- u32 ctrl_ext, ctrl_reg, reg;
+ u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
bool pcs_autoneg;
s32 ret_val = E1000_SUCCESS;
u16 data;
+ DEBUGFUNC("e1000_setup_serdes_link_82575");
+
if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !igb_sgmii_active_82575(hw))
+ !e1000_sgmii_active_82575(hw))
return ret_val;
-
/*
* On the 82575, SerDes loopback mode persists until it is
* explicitly turned off or a power cycle is performed. A read to
* the register does not indicate its status. Therefore, we ensure
* loopback mode is disabled during initialization.
*/
- wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
/* power on the sfp cage if present */
- ctrl_ext = rd32(E1000_CTRL_EXT);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
- wr32(E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- ctrl_reg = rd32(E1000_CTRL);
+ ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
ctrl_reg |= E1000_CTRL_SLU;
- if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
- /* set both sw defined pins */
+ /* set both sw defined pins on 82575/82576*/
+ if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
- /* Set switch control to serdes energy detect */
- reg = rd32(E1000_CONNSW);
- reg |= E1000_CONNSW_ENRGSRC;
- wr32(E1000_CONNSW, reg);
- }
-
- reg = rd32(E1000_PCS_LCTL);
+ reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
/* default pcs_autoneg to the same setting as mac autoneg */
pcs_autoneg = hw->mac.autoneg;
@@ -1389,12 +1665,13 @@ static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
/* disable PCS autoneg and support parallel detect only */
pcs_autoneg = false;
+ /* fall through to default case */
default:
if (hw->mac.type == e1000_82575 ||
hw->mac.type == e1000_82576) {
ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
if (ret_val) {
- printk(KERN_DEBUG "NVM Read Error\n\n");
+ DEBUGOUT("NVM Read Error\n");
return ret_val;
}
@@ -1408,14 +1685,14 @@ static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
* link either autoneg or be forced to 1000/Full
*/
ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
- E1000_CTRL_FD | E1000_CTRL_FRCDPX;
+ E1000_CTRL_FD | E1000_CTRL_FRCDPX;
/* set speed of 1000/Full if speed/duplex is forced */
reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
break;
}
- wr32(E1000_CTRL, ctrl_reg);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
/*
* New SerDes mode allows for forcing speed or autonegotiating speed
@@ -1424,186 +1701,427 @@ static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
* However, both are supported by the hardware and some drivers/tools.
*/
reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
- E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
-
- /*
- * We force flow control to prevent the CTRL register values from being
- * overwritten by the autonegotiated flow control values
- */
- reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+ E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
if (pcs_autoneg) {
/* Set PCS register for autoneg */
reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
- hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
+
+ /* Disable force flow control for autoneg */
+ reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
+
+ /* Configure flow control advertisement for autoneg */
+ anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
+ anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
+
+ switch (hw->fc.requested_mode) {
+ case e1000_fc_full:
+ case e1000_fc_rx_pause:
+ anadv_reg |= E1000_TXCW_ASM_DIR;
+ anadv_reg |= E1000_TXCW_PAUSE;
+ break;
+ case e1000_fc_tx_pause:
+ anadv_reg |= E1000_TXCW_ASM_DIR;
+ break;
+ default:
+ break;
+ }
+
+ E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
+
+ DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
} else {
/* Set PCS register for forced link */
- reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
+ reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
+
+ /* Force flow control for forced link */
+ reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+
+ DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
+ }
+
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+ if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
+ e1000_force_mac_fc_generic(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_media_type_82575 - derives current media type.
+ * @hw: pointer to the HW structure
+ *
+ * The media type is chosen reflecting few settings.
+ * The following are taken into account:
+ * - link mode set in the current port Init Control Word #3
+ * - current link mode settings in CSR register
+ * - MDIO vs. I2C PHY control interface chosen
+ * - SFP module media type
+ **/
+static s32 e1000_get_media_type_82575(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_ext = 0;
+ u32 link_mode = 0;
+
+ /* Set internal phy as default */
+ dev_spec->sgmii_active = false;
+ dev_spec->module_plugged = false;
+
+ /* Get CSR setting */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+
+ /* extract link mode setting */
+ link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
+
+ switch (link_mode) {
+ case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_GMII:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_SGMII:
+ /* Get phy control interface type set (MDIO vs. I2C)*/
+ if (e1000_sgmii_uses_mdio_82575(hw)) {
+ hw->phy.media_type = e1000_media_type_copper;
+ dev_spec->sgmii_active = true;
+ break;
+ }
+ /* fall through for I2C based SGMII */
+ case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
+ /* read media type from SFP EEPROM */
+ ret_val = e1000_set_sfp_media_type_82575(hw);
+ if ((ret_val != E1000_SUCCESS) ||
+ (hw->phy.media_type == e1000_media_type_unknown)) {
+ /*
+ * If media type was not identified then return media
+ * type defined by the CTRL_EXT settings.
+ */
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+
+ if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
+ hw->phy.media_type = e1000_media_type_copper;
+ dev_spec->sgmii_active = true;
+ }
+
+ break;
+ }
- hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
+ /* do not change link mode for 100BaseFX */
+ if (dev_spec->eth_flags.e100_base_fx)
+ break;
+
+ /* change current link mode setting */
+ ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
+
+ if (hw->phy.media_type == e1000_media_type_copper)
+ ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
+ else
+ ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
+
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ break;
}
- wr32(E1000_PCS_LCTL, reg);
+ return ret_val;
+}
- if (!igb_sgmii_active_82575(hw))
- igb_force_mac_fc(hw);
+/**
+ * e1000_set_sfp_media_type_82575 - derives SFP module media type.
+ * @hw: pointer to the HW structure
+ *
+ * The media type is chosen based on SFP module.
+ * compatibility flags retrieved from SFP ID EEPROM.
+ **/
+static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_ERR_CONFIG;
+ u32 ctrl_ext = 0;
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
+ u8 tranceiver_type = 0;
+ s32 timeout = 3;
+
+ /* Turn I2C interface ON and power on sfp cage */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
+
+ E1000_WRITE_FLUSH(hw);
+
+ /* Read SFP module data */
+ while (timeout) {
+ ret_val = e1000_read_sfp_data_byte(hw,
+ E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
+ &tranceiver_type);
+ if (ret_val == E1000_SUCCESS)
+ break;
+ msec_delay(100);
+ timeout--;
+ }
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+ ret_val = e1000_read_sfp_data_byte(hw,
+ E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
+ (u8 *)eth_flags);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+
+ /* Check if there is some SFP module plugged and powered */
+ if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
+ (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
+ dev_spec->module_plugged = true;
+ if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ } else if (eth_flags->e100_base_fx) {
+ dev_spec->sgmii_active = true;
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ } else if (eth_flags->e1000_base_t) {
+ dev_spec->sgmii_active = true;
+ hw->phy.media_type = e1000_media_type_copper;
+ } else {
+ hw->phy.media_type = e1000_media_type_unknown;
+ DEBUGOUT("PHY module has not been recognized\n");
+ goto out;
+ }
+ } else {
+ hw->phy.media_type = e1000_media_type_unknown;
+ }
+ ret_val = E1000_SUCCESS;
+out:
+ /* Restore I2C interface setting */
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ return ret_val;
+}
+
+/**
+ * e1000_valid_led_default_82575 - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_82575");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
+ switch (hw->phy.media_type) {
+ case e1000_media_type_internal_serdes:
+ *data = ID_LED_DEFAULT_82575_SERDES;
+ break;
+ case e1000_media_type_copper:
+ default:
+ *data = ID_LED_DEFAULT;
+ break;
+ }
+ }
+out:
return ret_val;
}
/**
- * igb_sgmii_active_82575 - Return sgmii state
+ * e1000_sgmii_active_82575 - Return sgmii state
* @hw: pointer to the HW structure
*
* 82575 silicon has a serialized gigabit media independent interface (sgmii)
* which can be enabled for use in the embedded applications. Simply
* return the current state of the sgmii interface.
**/
-static bool igb_sgmii_active_82575(struct e1000_hw *hw)
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
{
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
return dev_spec->sgmii_active;
}
/**
- * igb_reset_init_script_82575 - Inits HW defaults after reset
+ * e1000_reset_init_script_82575 - Inits HW defaults after reset
* @hw: pointer to the HW structure
*
* Inits recommended HW defaults after a reset when there is no EEPROM
* detected. This is only for the 82575.
**/
-static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
+static s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
{
+ DEBUGFUNC("e1000_reset_init_script_82575");
+
if (hw->mac.type == e1000_82575) {
- hw_dbg("Running reset init script for 82575\n");
+ DEBUGOUT("Running reset init script for 82575\n");
/* SerDes configuration via SERDESCTRL */
- igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
- igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
- igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
- igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
/* CCM configuration via CCMCTL register */
- igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
- igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
/* PCIe lanes configuration */
- igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
- igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
- igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
- igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
/* PCIe PLL Configuration */
- igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
- igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
- igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
}
- return 0;
+ return E1000_SUCCESS;
}
/**
- * igb_read_mac_addr_82575 - Read device MAC address
+ * e1000_read_mac_addr_82575 - Read device MAC address
* @hw: pointer to the HW structure
**/
-static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
+static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
{
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_mac_addr_82575");
/*
* If there's an alternate MAC address place it in RAR0
* so that it will override the Si installed default perm
* address.
*/
- ret_val = igb_check_alt_mac_addr(hw);
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
if (ret_val)
goto out;
- ret_val = igb_read_mac_addr(hw);
+ ret_val = e1000_read_mac_addr_generic(hw);
out:
return ret_val;
}
/**
- * igb_power_down_phy_copper_82575 - Remove link during PHY power down
+ * e1000_config_collision_dist_82575 - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+static void e1000_config_collision_dist_82575(struct e1000_hw *hw)
+{
+ u32 tctl_ext;
+
+ DEBUGFUNC("e1000_config_collision_dist_82575");
+
+ tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
+
+ tctl_ext &= ~E1000_TCTL_EXT_COLD;
+ tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, remove the link.
**/
-void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
+static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
{
+ struct e1000_phy_info *phy = &hw->phy;
+
+ if (!(phy->ops.check_reset_block))
+ return;
+
/* If the management interface is not enabled, then power down */
- if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
- igb_power_down_phy_copper(hw);
+ if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
}
/**
- * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
+ * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
* @hw: pointer to the HW structure
*
* Clears the hardware counters by reading the counter registers.
**/
-static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
-{
- igb_clear_hw_cntrs_base(hw);
-
- rd32(E1000_PRC64);
- rd32(E1000_PRC127);
- rd32(E1000_PRC255);
- rd32(E1000_PRC511);
- rd32(E1000_PRC1023);
- rd32(E1000_PRC1522);
- rd32(E1000_PTC64);
- rd32(E1000_PTC127);
- rd32(E1000_PTC255);
- rd32(E1000_PTC511);
- rd32(E1000_PTC1023);
- rd32(E1000_PTC1522);
-
- rd32(E1000_ALGNERRC);
- rd32(E1000_RXERRC);
- rd32(E1000_TNCRS);
- rd32(E1000_CEXTERR);
- rd32(E1000_TSCTC);
- rd32(E1000_TSCTFC);
-
- rd32(E1000_MGTPRC);
- rd32(E1000_MGTPDC);
- rd32(E1000_MGTPTC);
-
- rd32(E1000_IAC);
- rd32(E1000_ICRXOC);
-
- rd32(E1000_ICRXPTC);
- rd32(E1000_ICRXATC);
- rd32(E1000_ICTXPTC);
- rd32(E1000_ICTXATC);
- rd32(E1000_ICTXQEC);
- rd32(E1000_ICTXQMTC);
- rd32(E1000_ICRXDMTC);
-
- rd32(E1000_CBTMPC);
- rd32(E1000_HTDPMC);
- rd32(E1000_CBRMPC);
- rd32(E1000_RPTHC);
- rd32(E1000_HGPTC);
- rd32(E1000_HTCBDPC);
- rd32(E1000_HGORCL);
- rd32(E1000_HGORCH);
- rd32(E1000_HGOTCL);
- rd32(E1000_HGOTCH);
- rd32(E1000_LENERRS);
+static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82575");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+
+ E1000_READ_REG(hw, E1000_IAC);
+ E1000_READ_REG(hw, E1000_ICRXOC);
+
+ E1000_READ_REG(hw, E1000_ICRXPTC);
+ E1000_READ_REG(hw, E1000_ICRXATC);
+ E1000_READ_REG(hw, E1000_ICTXPTC);
+ E1000_READ_REG(hw, E1000_ICTXATC);
+ E1000_READ_REG(hw, E1000_ICTXQEC);
+ E1000_READ_REG(hw, E1000_ICTXQMTC);
+ E1000_READ_REG(hw, E1000_ICRXDMTC);
+
+ E1000_READ_REG(hw, E1000_CBTMPC);
+ E1000_READ_REG(hw, E1000_HTDPMC);
+ E1000_READ_REG(hw, E1000_CBRMPC);
+ E1000_READ_REG(hw, E1000_RPTHC);
+ E1000_READ_REG(hw, E1000_HGPTC);
+ E1000_READ_REG(hw, E1000_HTCBDPC);
+ E1000_READ_REG(hw, E1000_HGORCL);
+ E1000_READ_REG(hw, E1000_HGORCH);
+ E1000_READ_REG(hw, E1000_HGOTCL);
+ E1000_READ_REG(hw, E1000_HGOTCH);
+ E1000_READ_REG(hw, E1000_LENERRS);
/* This register should not be read in copper configurations */
- if (hw->phy.media_type == e1000_media_type_internal_serdes ||
- igb_sgmii_active_82575(hw))
- rd32(E1000_SCVPC);
+ if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
+ e1000_sgmii_active_82575(hw))
+ E1000_READ_REG(hw, E1000_SCVPC);
}
/**
- * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
+ * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
* @hw: pointer to the HW structure
*
* After rx enable if managability is enabled then there is likely some
@@ -1611,72 +2129,73 @@ static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
* function clears the fifos and flushes any packets that came in as rx was
* being enabled.
**/
-void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
+void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
{
u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
int i, ms_wait;
+ DEBUGFUNC("e1000_rx_fifo_workaround_82575");
if (hw->mac.type != e1000_82575 ||
- !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
+ !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
return;
- /* Disable all RX queues */
+ /* Disable all Rx queues */
for (i = 0; i < 4; i++) {
- rxdctl[i] = rd32(E1000_RXDCTL(i));
- wr32(E1000_RXDCTL(i),
- rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
+ rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i),
+ rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
}
/* Poll all queues to verify they have shut down */
for (ms_wait = 0; ms_wait < 10; ms_wait++) {
- msleep(1);
+ msec_delay(1);
rx_enabled = 0;
for (i = 0; i < 4; i++)
- rx_enabled |= rd32(E1000_RXDCTL(i));
+ rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
break;
}
if (ms_wait == 10)
- hw_dbg("Queue disable timed out after 10ms\n");
+ DEBUGOUT("Queue disable timed out after 10ms\n");
/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
* incoming packets are rejected. Set enable and wait 2ms so that
* any packet that was coming in as RCTL.EN was set is flushed
*/
- rfctl = rd32(E1000_RFCTL);
- wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
+ rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
- rlpml = rd32(E1000_RLPML);
- wr32(E1000_RLPML, 0);
+ rlpml = E1000_READ_REG(hw, E1000_RLPML);
+ E1000_WRITE_REG(hw, E1000_RLPML, 0);
- rctl = rd32(E1000_RCTL);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
temp_rctl |= E1000_RCTL_LPE;
- wr32(E1000_RCTL, temp_rctl);
- wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
- wrfl();
- msleep(2);
+ E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
+ E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(2);
- /* Enable RX queues that were previously enabled and restore our
+ /* Enable Rx queues that were previously enabled and restore our
* previous state
*/
for (i = 0; i < 4; i++)
- wr32(E1000_RXDCTL(i), rxdctl[i]);
- wr32(E1000_RCTL, rctl);
- wrfl();
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ E1000_WRITE_FLUSH(hw);
- wr32(E1000_RLPML, rlpml);
- wr32(E1000_RFCTL, rfctl);
+ E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
/* Flush receive errors generated by workaround */
- rd32(E1000_ROC);
- rd32(E1000_RNBC);
- rd32(E1000_MPC);
+ E1000_READ_REG(hw, E1000_ROC);
+ E1000_READ_REG(hw, E1000_RNBC);
+ E1000_READ_REG(hw, E1000_MPC);
}
/**
- * igb_set_pcie_completion_timeout - set pci-e completion timeout
+ * e1000_set_pcie_completion_timeout - set pci-e completion timeout
* @hw: pointer to the HW structure
*
* The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
@@ -1685,10 +2204,10 @@ void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
* increase the value to either 10ms to 200ms for capability version 1 config,
* or 16ms to 55ms for version 2.
**/
-static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
+static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
{
- u32 gcr = rd32(E1000_GCR);
- s32 ret_val = 0;
+ u32 gcr = E1000_READ_REG(hw, E1000_GCR);
+ s32 ret_val = E1000_SUCCESS;
u16 pcie_devctl2;
/* only take action if timeout value is defaulted to 0 */
@@ -1709,96 +2228,120 @@ static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
* directly in order to set the completion timeout value for
* 16ms to 55ms
*/
- ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
- &pcie_devctl2);
+ ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
+ &pcie_devctl2);
if (ret_val)
goto out;
pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
- ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
- &pcie_devctl2);
+ ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
+ &pcie_devctl2);
out:
/* disable completion timeout resend */
gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
- wr32(E1000_GCR, gcr);
+ E1000_WRITE_REG(hw, E1000_GCR, gcr);
return ret_val;
}
/**
- * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
+ * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
* @hw: pointer to the hardware struct
* @enable: state to enter, either enabled or disabled
* @pf: Physical Function pool - do not set anti-spoofing for the PF
*
* enables/disables L2 switch anti-spoofing functionality.
**/
-void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
+void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
{
- u32 dtxswc;
+ u32 reg_val, reg_offset;
switch (hw->mac.type) {
case e1000_82576:
+ reg_offset = E1000_DTXSWC;
+ break;
case e1000_i350:
- dtxswc = rd32(E1000_DTXSWC);
- if (enable) {
- dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
- E1000_DTXSWC_VLAN_SPOOF_MASK);
- /* The PF can spoof - it has to in order to
- * support emulation mode NICs */
- dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
- } else {
- dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
- E1000_DTXSWC_VLAN_SPOOF_MASK);
- }
- wr32(E1000_DTXSWC, dtxswc);
+ case e1000_i354:
+ reg_offset = E1000_TXSWC;
break;
default:
- break;
+ return;
}
+
+ reg_val = E1000_READ_REG(hw, reg_offset);
+ if (enable) {
+ reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ /* The PF can spoof - it has to in order to
+ * support emulation mode NICs
+ */
+ reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
+ } else {
+ reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ }
+ E1000_WRITE_REG(hw, reg_offset, reg_val);
}
/**
- * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
+ * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
* @hw: pointer to the hardware struct
* @enable: state to enter, either enabled or disabled
*
* enables/disables L2 switch loopback functionality.
**/
-void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
+void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
{
- u32 dtxswc = rd32(E1000_DTXSWC);
+ u32 dtxswc;
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
+ if (enable)
+ dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ else
+ dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
+ break;
+ case e1000_i350:
+ case e1000_i354:
+ dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
+ if (enable)
+ dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ else
+ dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
+ break;
+ default:
+ /* Currently no other hardware supports loopback */
+ break;
+ }
- if (enable)
- dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- else
- dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- wr32(E1000_DTXSWC, dtxswc);
}
/**
- * igb_vmdq_set_replication_pf - enable or disable vmdq replication
+ * e1000_vmdq_set_replication_pf - enable or disable vmdq replication
* @hw: pointer to the hardware struct
* @enable: state to enter, either enabled or disabled
*
* enables/disables replication of packets across multiple pools.
**/
-void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
+void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
{
- u32 vt_ctl = rd32(E1000_VT_CTL);
+ u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
if (enable)
vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
else
vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
- wr32(E1000_VT_CTL, vt_ctl);
+ E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
}
/**
- * igb_read_phy_reg_82580 - Read 82580 MDI control register
+ * e1000_read_phy_reg_82580 - Read 82580 MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
@@ -1806,16 +2349,17 @@ void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
* Reads the MDI control register in the PHY at offset and stores the
* information read to data.
**/
-static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
+static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
+ DEBUGFUNC("e1000_read_phy_reg_82580");
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
- ret_val = igb_read_phy_reg_mdic(hw, offset, data);
+ ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
hw->phy.ops.release(hw);
@@ -1824,23 +2368,24 @@ out:
}
/**
- * igb_write_phy_reg_82580 - Write 82580 MDI control register
+ * e1000_write_phy_reg_82580 - Write 82580 MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write to register at offset
*
* Writes data to MDI control register in the PHY at offset.
**/
-static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
+static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
+ DEBUGFUNC("e1000_write_phy_reg_82580");
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
- ret_val = igb_write_phy_reg_mdic(hw, offset, data);
+ ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
hw->phy.ops.release(hw);
@@ -1849,124 +2394,127 @@ out:
}
/**
- * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
+ * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
* @hw: pointer to the HW structure
*
* This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
* the values found in the EEPROM. This addresses an issue in which these
* bits are not restored from EEPROM after reset.
**/
-static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
+static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
{
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
u32 mdicnfg;
u16 nvm_data = 0;
+ DEBUGFUNC("e1000_reset_mdicnfg_82580");
+
if (hw->mac.type != e1000_82580)
goto out;
- if (!igb_sgmii_active_82575(hw))
+ if (!e1000_sgmii_active_82575(hw))
goto out;
ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
&nvm_data);
if (ret_val) {
- hw_dbg("NVM Read Error\n");
+ DEBUGOUT("NVM Read Error\n");
goto out;
}
- mdicnfg = rd32(E1000_MDICNFG);
+ mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
if (nvm_data & NVM_WORD24_EXT_MDIO)
mdicnfg |= E1000_MDICNFG_EXT_MDIO;
if (nvm_data & NVM_WORD24_COM_MDIO)
mdicnfg |= E1000_MDICNFG_COM_MDIO;
- wr32(E1000_MDICNFG, mdicnfg);
+ E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
out:
return ret_val;
}
/**
- * igb_reset_hw_82580 - Reset hardware
+ * e1000_reset_hw_82580 - Reset hardware
* @hw: pointer to the HW structure
*
* This resets function or entire device (all ports, etc.)
* to a known state.
**/
-static s32 igb_reset_hw_82580(struct e1000_hw *hw)
+static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
{
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
/* BH SW mailbox bit in SW_FW_SYNC */
u16 swmbsw_mask = E1000_SW_SYNCH_MB;
- u32 ctrl, icr;
+ u32 ctrl;
bool global_device_reset = hw->dev_spec._82575.global_device_reset;
+ DEBUGFUNC("e1000_reset_hw_82580");
hw->dev_spec._82575.global_device_reset = false;
+ /* 82580 does not reliably do global_device_reset due to hw errata */
+ if (hw->mac.type == e1000_82580)
+ global_device_reset = false;
+
/* Get current control state. */
- ctrl = rd32(E1000_CTRL);
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
/*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
- ret_val = igb_disable_pcie_master(hw);
+ ret_val = e1000_disable_pcie_master_generic(hw);
if (ret_val)
- hw_dbg("PCI-E Master disable polling has failed.\n");
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
- hw_dbg("Masking off all interrupts\n");
- wr32(E1000_IMC, 0xffffffff);
- wr32(E1000_RCTL, 0);
- wr32(E1000_TCTL, E1000_TCTL_PSP);
- wrfl();
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
- msleep(10);
+ msec_delay(10);
/* Determine whether or not a global dev reset is requested */
- if (global_device_reset &&
- hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
+ if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
+ swmbsw_mask))
global_device_reset = false;
- if (global_device_reset &&
- !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
+ if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STAT_DEV_RST_SET))
ctrl |= E1000_CTRL_DEV_RST;
else
ctrl |= E1000_CTRL_RST;
- wr32(E1000_CTRL, ctrl);
- wrfl();
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
/* Add delay to insure DEV_RST has time to complete */
if (global_device_reset)
- msleep(5);
+ msec_delay(5);
- ret_val = igb_get_auto_rd_done(hw);
+ ret_val = e1000_get_auto_rd_done_generic(hw);
if (ret_val) {
/*
* When auto config read does not complete, do not
* return with an error. This can happen in situations
* where there is no eeprom and prevents getting link.
*/
- hw_dbg("Auto Read Done did not complete\n");
+ DEBUGOUT("Auto Read Done did not complete\n");
}
- /* If EEPROM is not present, run manual init scripts */
- if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
- igb_reset_init_script_82575(hw);
-
/* clear global device reset status bit */
- wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
+ E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
/* Clear any pending interrupt events. */
- wr32(E1000_IMC, 0xffffffff);
- icr = rd32(E1000_ICR);
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_READ_REG(hw, E1000_ICR);
- ret_val = igb_reset_mdicnfg_82580(hw);
+ ret_val = e1000_reset_mdicnfg_82580(hw);
if (ret_val)
- hw_dbg("Could not reset MDICNFG based on EEPROM\n");
+ DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
/* Install any alternate MAC address into RAR0 */
- ret_val = igb_check_alt_mac_addr(hw);
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
/* Release semaphore */
if (global_device_reset)
@@ -1976,7 +2524,7 @@ static s32 igb_reset_hw_82580(struct e1000_hw *hw)
}
/**
- * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
+ * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
* @data: data received by reading RXPBS register
*
* The 82580 uses a table based approach for packet buffer allocation sizes.
@@ -1985,7 +2533,7 @@ static s32 igb_reset_hw_82580(struct e1000_hw *hw)
* 0x0 36 72 144 1 2 4 8 16
* 0x8 35 70 140 rsv rsv rsv rsv rsv
*/
-u16 igb_rxpbs_adjust_82580(u32 data)
+u16 e1000_rxpbs_adjust_82580(u32 data)
{
u16 ret_val = 0;
@@ -1996,7 +2544,7 @@ u16 igb_rxpbs_adjust_82580(u32 data)
}
/**
- * igb_validate_nvm_checksum_with_offset - Validate EEPROM
+ * e1000_validate_nvm_checksum_with_offset - Validate EEPROM
* checksum
* @hw: pointer to the HW structure
* @offset: offset in words of the checksum protected region
@@ -2004,23 +2552,25 @@ u16 igb_rxpbs_adjust_82580(u32 data)
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
**/
-s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
+s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
{
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
u16 checksum = 0;
u16 i, nvm_data;
+ DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
+
for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
- hw_dbg("NVM Read Error\n");
+ DEBUGOUT("NVM Read Error\n");
goto out;
}
checksum += nvm_data;
}
if (checksum != (u16) NVM_SUM) {
- hw_dbg("NVM Checksum Invalid\n");
+ DEBUGOUT("NVM Checksum Invalid\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
@@ -2030,7 +2580,7 @@ out:
}
/**
- * igb_update_nvm_checksum_with_offset - Update EEPROM
+ * e1000_update_nvm_checksum_with_offset - Update EEPROM
* checksum
* @hw: pointer to the HW structure
* @offset: offset in words of the checksum protected region
@@ -2039,62 +2589,66 @@ out:
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM.
**/
-s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
+s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
+ DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
+
for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
- hw_dbg("NVM Read Error while updating checksum.\n");
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
goto out;
}
checksum += nvm_data;
}
checksum = (u16) NVM_SUM - checksum;
ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
- &checksum);
+ &checksum);
if (ret_val)
- hw_dbg("NVM Write Error while updating checksum.\n");
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
out:
return ret_val;
}
/**
- * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
+ * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM section checksum by reading/adding each word of
* the EEPROM and then verifies that the sum of the EEPROM is
* equal to 0xBABA.
**/
-static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
+static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
{
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
u16 eeprom_regions_count = 1;
u16 j, nvm_data;
u16 nvm_offset;
+ DEBUGFUNC("e1000_validate_nvm_checksum_82580");
+
ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
if (ret_val) {
- hw_dbg("NVM Read Error\n");
+ DEBUGOUT("NVM Read Error\n");
goto out;
}
if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
- /* if checksums compatibility bit is set validate checksums
+ /* if chekcsums compatibility bit is set validate checksums
* for all 4 ports. */
eeprom_regions_count = 4;
}
for (j = 0; j < eeprom_regions_count; j++) {
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = igb_validate_nvm_checksum_with_offset(hw,
- nvm_offset);
- if (ret_val != 0)
+ ret_val = e1000_validate_nvm_checksum_with_offset(hw,
+ nvm_offset);
+ if (ret_val != E1000_SUCCESS)
goto out;
}
@@ -2103,41 +2657,41 @@ out:
}
/**
- * igb_update_nvm_checksum_82580 - Update EEPROM checksum
+ * e1000_update_nvm_checksum_82580 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM section checksums for all 4 ports by reading/adding
* each word of the EEPROM up to the checksum. Then calculates the EEPROM
* checksum and writes the value to the EEPROM.
**/
-static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
+static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
{
s32 ret_val;
u16 j, nvm_data;
u16 nvm_offset;
+ DEBUGFUNC("e1000_update_nvm_checksum_82580");
+
ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
if (ret_val) {
- hw_dbg("NVM Read Error while updating checksum"
- " compatibility bit.\n");
+ DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
goto out;
}
- if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
+ if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
/* set compatibility bit to validate checksums appropriately */
nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
- &nvm_data);
+ &nvm_data);
if (ret_val) {
- hw_dbg("NVM Write Error while updating checksum"
- " compatibility bit.\n");
+ DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
goto out;
}
}
for (j = 0; j < 4; j++) {
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
+ ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
if (ret_val)
goto out;
}
@@ -2147,24 +2701,26 @@ out:
}
/**
- * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
+ * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM section checksum by reading/adding each word of
* the EEPROM and then verifies that the sum of the EEPROM is
* equal to 0xBABA.
**/
-static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
+static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
{
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
u16 j;
u16 nvm_offset;
+ DEBUGFUNC("e1000_validate_nvm_checksum_i350");
+
for (j = 0; j < 4; j++) {
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = igb_validate_nvm_checksum_with_offset(hw,
- nvm_offset);
- if (ret_val != 0)
+ ret_val = e1000_validate_nvm_checksum_with_offset(hw,
+ nvm_offset);
+ if (ret_val != E1000_SUCCESS)
goto out;
}
@@ -2173,23 +2729,25 @@ out:
}
/**
- * igb_update_nvm_checksum_i350 - Update EEPROM checksum
+ * e1000_update_nvm_checksum_i350 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM section checksums for all 4 ports by reading/adding
* each word of the EEPROM up to the checksum. Then calculates the EEPROM
* checksum and writes the value to the EEPROM.
**/
-static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
+static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
{
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
u16 j;
u16 nvm_offset;
+ DEBUGFUNC("e1000_update_nvm_checksum_i350");
+
for (j = 0; j < 4; j++) {
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
- if (ret_val != 0)
+ ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
+ if (ret_val != E1000_SUCCESS)
goto out;
}
@@ -2198,71 +2756,1018 @@ out:
}
/**
- * igb_set_eee_i350 - Enable/disable EEE support
+ * __e1000_access_emi_reg - Read/write EMI register
+ * @hw: pointer to the HW structure
+ * @addr: EMI address to program
+ * @data: pointer to value to read/write from/to the EMI address
+ * @read: boolean flag to indicate read or write
+ **/
+static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
+ u16 *data, bool read)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("__e1000_access_emi_reg");
+
+ ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
+ if (ret_val)
+ return ret_val;
+
+ if (read)
+ ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
+ else
+ ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_emi_reg - Read Extended Management Interface register
+ * @hw: pointer to the HW structure
+ * @addr: EMI address to program
+ * @data: value to be read from the EMI address
+ **/
+s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
+{
+ DEBUGFUNC("e1000_read_emi_reg");
+
+ return __e1000_access_emi_reg(hw, addr, data, true);
+}
+
+/**
+ * e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initialize Marverl 1512 to work correctly with Avoton.
+ **/
+s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_initialize_M88E1512_phy");
+
+ /* Check if this is correct PHY. */
+ if (phy->id != M88E1512_E_PHY_ID)
+ goto out;
+
+ /* Switch to PHY page 0xFF. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
+ if (ret_val)
+ goto out;
+
+ /* Switch to PHY page 0xFB. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
+ if (ret_val)
+ goto out;
+
+ /* Switch to PHY page 0x12. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
+ if (ret_val)
+ goto out;
+
+ /* Change mode to SGMII-to-Copper */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
+ if (ret_val)
+ goto out;
+
+ /* Return the PHY to page 0. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ return ret_val;
+ }
+
+ msec_delay(1000);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_eee_i350 - Enable/disable EEE support
* @hw: pointer to the HW structure
*
* Enable/disable EEE based on setting in dev_spec structure.
*
**/
-s32 igb_set_eee_i350(struct e1000_hw *hw)
+s32 e1000_set_eee_i350(struct e1000_hw *hw)
{
- s32 ret_val = 0;
- u32 ipcnfg, eeer, ctrl_ext;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ipcnfg, eeer;
+
+ DEBUGFUNC("e1000_set_eee_i350");
- ctrl_ext = rd32(E1000_CTRL_EXT);
- if ((hw->mac.type != e1000_i350) ||
- (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
+ if ((hw->mac.type < e1000_i350) ||
+ (hw->phy.media_type != e1000_media_type_copper))
goto out;
- ipcnfg = rd32(E1000_IPCNFG);
- eeer = rd32(E1000_EEER);
+ ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
+ eeer = E1000_READ_REG(hw, E1000_EEER);
/* enable or disable per user setting */
if (!(hw->dev_spec._82575.eee_disable)) {
- ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
- E1000_IPCNFG_EEE_100M_AN);
- eeer |= (E1000_EEER_TX_LPI_EN |
- E1000_EEER_RX_LPI_EN |
- E1000_EEER_LPI_FC);
+ u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
+ ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
+ eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
+ E1000_EEER_LPI_FC);
+
+ /* This bit should not be set in normal operation. */
+ if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
+ DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
} else {
- ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
- E1000_IPCNFG_EEE_100M_AN);
- eeer &= ~(E1000_EEER_TX_LPI_EN |
- E1000_EEER_RX_LPI_EN |
- E1000_EEER_LPI_FC);
- }
- wr32(E1000_IPCNFG, ipcnfg);
- wr32(E1000_EEER, eeer);
+ ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
+ eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
+ E1000_EEER_LPI_FC);
+ }
+ E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
+ E1000_WRITE_REG(hw, E1000_EEER, eeer);
+ E1000_READ_REG(hw, E1000_IPCNFG);
+ E1000_READ_REG(hw, E1000_EEER);
out:
return ret_val;
}
-static struct e1000_mac_operations e1000_mac_ops_82575 = {
- .init_hw = igb_init_hw_82575,
- .check_for_link = igb_check_for_link_82575,
- .rar_set = igb_rar_set,
- .read_mac_addr = igb_read_mac_addr_82575,
- .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
-};
+/**
+ * e1000_set_eee_i354 - Enable/disable EEE support
+ * @hw: pointer to the HW structure
+ *
+ * Enable/disable EEE legacy mode based on setting in dev_spec structure.
+ *
+ **/
+s32 e1000_set_eee_i354(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data;
-static struct e1000_phy_operations e1000_phy_ops_82575 = {
- .acquire = igb_acquire_phy_82575,
- .get_cfg_done = igb_get_cfg_done_82575,
- .release = igb_release_phy_82575,
-};
+ DEBUGFUNC("e1000_set_eee_i354");
-static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
- .acquire = igb_acquire_nvm_82575,
- .read = igb_read_nvm_eerd,
- .release = igb_release_nvm_82575,
- .write = igb_write_nvm_spi,
-};
+ if ((hw->phy.media_type != e1000_media_type_copper) ||
+ ((phy->id != M88E1543_E_PHY_ID) &&
+ (phy->id != M88E1512_E_PHY_ID)))
+ goto out;
+
+ if (!hw->dev_spec._82575.eee_disable) {
+ /* Switch to PHY page 18. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
+ phy_data);
+ if (ret_val)
+ goto out;
+
+ /* Return the PHY to page 0. */
+ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
+ if (ret_val)
+ goto out;
+
+ /* Turn on EEE advertisement. */
+ ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+ E1000_EEE_ADV_DEV_I354,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= E1000_EEE_ADV_100_SUPPORTED |
+ E1000_EEE_ADV_1000_SUPPORTED;
+ ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+ E1000_EEE_ADV_DEV_I354,
+ phy_data);
+ } else {
+ /* Turn off EEE advertisement. */
+ ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+ E1000_EEE_ADV_DEV_I354,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
+ E1000_EEE_ADV_1000_SUPPORTED);
+ ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+ E1000_EEE_ADV_DEV_I354,
+ phy_data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_eee_status_i354 - Get EEE status
+ * @hw: pointer to the HW structure
+ * @status: EEE status
+ *
+ * Get EEE status by guessing based on whether Tx or Rx LPI indications have
+ * been received.
+ **/
+s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_get_eee_status_i354");
+
+ /* Check if EEE is supported on this device. */
+ if ((hw->phy.media_type != e1000_media_type_copper) ||
+ ((phy->id != M88E1543_E_PHY_ID) &&
+ (phy->id != M88E1512_E_PHY_ID)))
+ goto out;
+
+ ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
+ E1000_PCS_STATUS_DEV_I354,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
+ E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
+
+out:
+ return ret_val;
+}
+
+/* Due to a hw errata, if the host tries to configure the VFTA register
+ * while performing queries from the BMC or DMA, then the VFTA in some
+ * cases won't be written.
+ */
+
+/**
+ * e1000_clear_vfta_i350 - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ **/
+void e1000_clear_vfta_i350(struct e1000_hw *hw)
+{
+ u32 offset;
+ int i;
+
+ DEBUGFUNC("e1000_clear_vfta_350");
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ for (i = 0; i < 10; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_write_vfta_i350 - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: register offset in VLAN filter table
+ * @value: register value written to VLAN filter table
+ *
+ * Writes value at the given offset in the register array which stores
+ * the VLAN filter table.
+ **/
+void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ int i;
+
+ DEBUGFUNC("e1000_write_vfta_350");
+
+ for (i = 0; i < 10; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+
+ E1000_WRITE_FLUSH(hw);
+}
+
+
+/**
+ * e1000_set_i2c_bb - Enable I2C bit-bang
+ * @hw: pointer to the HW structure
+ *
+ * Enable I2C bit-bang interface
+ *
+ **/
+s32 e1000_set_i2c_bb(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_ext, i2cparams;
+
+ DEBUGFUNC("e1000_set_i2c_bb");
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ i2cparams |= E1000_I2CBB_EN;
+ i2cparams |= E1000_I2C_DATA_OE_N;
+ i2cparams |= E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
+ E1000_WRITE_FLUSH(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
+ * @hw: pointer to hardware structure
+ * @byte_offset: byte offset to read
+ * @dev_addr: device address
+ * @data: value read
+ *
+ * Performs byte read operation over I2C interface at
+ * a specified device address.
+ **/
+s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 *data)
+{
+ s32 status = E1000_SUCCESS;
+ u32 max_retry = 10;
+ u32 retry = 1;
+ u16 swfw_mask = 0;
+
+ bool nack = true;
+
+ DEBUGFUNC("e1000_read_i2c_byte_generic");
+
+ swfw_mask = E1000_SWFW_PHY0_SM;
+
+ do {
+ if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
+ != E1000_SUCCESS) {
+ status = E1000_ERR_SWFW_SYNC;
+ goto read_byte_out;
+ }
+
+ e1000_i2c_start(hw);
+
+ /* Device Address and write indication */
+ status = e1000_clock_out_i2c_byte(hw, dev_addr);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_byte(hw, byte_offset);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ e1000_i2c_start(hw);
+
+ /* Device Address and read indication */
+ status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_in_i2c_byte(hw, data);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_bit(hw, nack);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ e1000_i2c_stop(hw);
+ break;
+
+fail:
+ hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+ msec_delay(100);
+ e1000_i2c_bus_clear(hw);
+ retry++;
+ if (retry < max_retry)
+ DEBUGOUT("I2C byte read error - Retrying.\n");
+ else
+ DEBUGOUT("I2C byte read error.\n");
+
+ } while (retry < max_retry);
+
+ hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+
+read_byte_out:
+
+ return status;
+}
+
+/**
+ * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
+ * @hw: pointer to hardware structure
+ * @byte_offset: byte offset to write
+ * @dev_addr: device address
+ * @data: value to write
+ *
+ * Performs byte write operation over I2C interface at
+ * a specified device address.
+ **/
+s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 data)
+{
+ s32 status = E1000_SUCCESS;
+ u32 max_retry = 1;
+ u32 retry = 0;
+ u16 swfw_mask = 0;
+
+ DEBUGFUNC("e1000_write_i2c_byte_generic");
+
+ swfw_mask = E1000_SWFW_PHY0_SM;
+
+ if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
+ status = E1000_ERR_SWFW_SYNC;
+ goto write_byte_out;
+ }
+
+ do {
+ e1000_i2c_start(hw);
+
+ status = e1000_clock_out_i2c_byte(hw, dev_addr);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_byte(hw, byte_offset);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_byte(hw, data);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ e1000_i2c_stop(hw);
+ break;
-const struct e1000_info e1000_82575_info = {
- .get_invariants = igb_get_invariants_82575,
- .mac_ops = &e1000_mac_ops_82575,
- .phy_ops = &e1000_phy_ops_82575,
- .nvm_ops = &e1000_nvm_ops_82575,
+fail:
+ e1000_i2c_bus_clear(hw);
+ retry++;
+ if (retry < max_retry)
+ DEBUGOUT("I2C byte write error - Retrying.\n");
+ else
+ DEBUGOUT("I2C byte write error.\n");
+ } while (retry < max_retry);
+
+ hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+
+write_byte_out:
+
+ return status;
+}
+
+/**
+ * e1000_i2c_start - Sets I2C start condition
+ * @hw: pointer to hardware structure
+ *
+ * Sets I2C start condition (High -> Low on SDA while SCL is High)
+ **/
+static void e1000_i2c_start(struct e1000_hw *hw)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_i2c_start");
+
+ /* Start condition must begin with data and clock high */
+ e1000_set_i2c_data(hw, &i2cctl, 1);
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Setup time for start condition (4.7us) */
+ usec_delay(E1000_I2C_T_SU_STA);
+
+ e1000_set_i2c_data(hw, &i2cctl, 0);
+
+ /* Hold time for start condition (4us) */
+ usec_delay(E1000_I2C_T_HD_STA);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us */
+ usec_delay(E1000_I2C_T_LOW);
+
+}
+
+/**
+ * e1000_i2c_stop - Sets I2C stop condition
+ * @hw: pointer to hardware structure
+ *
+ * Sets I2C stop condition (Low -> High on SDA while SCL is High)
+ **/
+static void e1000_i2c_stop(struct e1000_hw *hw)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_i2c_stop");
+
+ /* Stop condition must begin with data low and clock high */
+ e1000_set_i2c_data(hw, &i2cctl, 0);
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Setup time for stop condition (4us) */
+ usec_delay(E1000_I2C_T_SU_STO);
+
+ e1000_set_i2c_data(hw, &i2cctl, 1);
+
+ /* bus free time between stop and start (4.7us)*/
+ usec_delay(E1000_I2C_T_BUF);
+}
+
+/**
+ * e1000_clock_in_i2c_byte - Clocks in one byte via I2C
+ * @hw: pointer to hardware structure
+ * @data: data byte to clock in
+ *
+ * Clocks in one byte data via I2C data/clock
+ **/
+static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
+{
+ s32 i;
+ bool bit = 0;
+
+ DEBUGFUNC("e1000_clock_in_i2c_byte");
+
+ *data = 0;
+ for (i = 7; i >= 0; i--) {
+ e1000_clock_in_i2c_bit(hw, &bit);
+ *data |= bit << i;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clock_out_i2c_byte - Clocks out one byte via I2C
+ * @hw: pointer to hardware structure
+ * @data: data byte clocked out
+ *
+ * Clocks out one byte data via I2C data/clock
+ **/
+static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
+{
+ s32 status = E1000_SUCCESS;
+ s32 i;
+ u32 i2cctl;
+ bool bit = 0;
+
+ DEBUGFUNC("e1000_clock_out_i2c_byte");
+
+ for (i = 7; i >= 0; i--) {
+ bit = (data >> i) & 0x1;
+ status = e1000_clock_out_i2c_bit(hw, bit);
+
+ if (status != E1000_SUCCESS)
+ break;
+ }
+
+ /* Release SDA line (set high) */
+ i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ i2cctl |= E1000_I2C_DATA_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ return status;
+}
+
+/**
+ * e1000_get_i2c_ack - Polls for I2C ACK
+ * @hw: pointer to hardware structure
+ *
+ * Clocks in/out one bit via I2C data/clock
+ **/
+static s32 e1000_get_i2c_ack(struct e1000_hw *hw)
+{
+ s32 status = E1000_SUCCESS;
+ u32 i = 0;
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ u32 timeout = 10;
+ bool ack = true;
+
+ DEBUGFUNC("e1000_get_i2c_ack");
+
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Minimum high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ /* Wait until SCL returns high */
+ for (i = 0; i < timeout; i++) {
+ usec_delay(1);
+ i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ if (i2cctl & E1000_I2C_CLK_IN)
+ break;
+ }
+ if (!(i2cctl & E1000_I2C_CLK_IN))
+ return E1000_ERR_I2C;
+
+ ack = e1000_get_i2c_data(&i2cctl);
+ if (ack) {
+ DEBUGOUT("I2C ack was not received.\n");
+ status = E1000_ERR_I2C;
+ }
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us */
+ usec_delay(E1000_I2C_T_LOW);
+
+ return status;
+}
+
+/**
+ * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
+ * @hw: pointer to hardware structure
+ * @data: read data value
+ *
+ * Clocks in one bit via I2C data/clock
+ **/
+static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_clock_in_i2c_bit");
+
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Minimum high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ *data = e1000_get_i2c_data(&i2cctl);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us */
+ usec_delay(E1000_I2C_T_LOW);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
+ * @hw: pointer to hardware structure
+ * @data: data value to write
+ *
+ * Clocks out one bit via I2C data/clock
+ **/
+static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
+{
+ s32 status;
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_clock_out_i2c_bit");
+
+ status = e1000_set_i2c_data(hw, &i2cctl, data);
+ if (status == E1000_SUCCESS) {
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Minimum high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us.
+ * This also takes care of the data hold time.
+ */
+ usec_delay(E1000_I2C_T_LOW);
+ } else {
+ status = E1000_ERR_I2C;
+ DEBUGOUT1("I2C data was not set to %X\n", data);
+ }
+
+ return status;
+}
+/**
+ * e1000_raise_i2c_clk - Raises the I2C SCL clock
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ *
+ * Raises the I2C clock line '0'->'1'
+ **/
+static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
+{
+ DEBUGFUNC("e1000_raise_i2c_clk");
+
+ *i2cctl |= E1000_I2C_CLK_OUT;
+ *i2cctl &= ~E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* SCL rise time (1000ns) */
+ usec_delay(E1000_I2C_T_RISE);
+}
+
+/**
+ * e1000_lower_i2c_clk - Lowers the I2C SCL clock
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ *
+ * Lowers the I2C clock line '1'->'0'
+ **/
+static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
+{
+
+ DEBUGFUNC("e1000_lower_i2c_clk");
+
+ *i2cctl &= ~E1000_I2C_CLK_OUT;
+ *i2cctl &= ~E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* SCL fall time (300ns) */
+ usec_delay(E1000_I2C_T_FALL);
+}
+
+/**
+ * e1000_set_i2c_data - Sets the I2C data bit
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ * @data: I2C data value (0 or 1) to set
+ *
+ * Sets the I2C data bit
+ **/
+static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
+{
+ s32 status = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_set_i2c_data");
+
+ if (data)
+ *i2cctl |= E1000_I2C_DATA_OUT;
+ else
+ *i2cctl &= ~E1000_I2C_DATA_OUT;
+
+ *i2cctl &= ~E1000_I2C_DATA_OE_N;
+ *i2cctl |= E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
+ usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
+
+ *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ if (data != e1000_get_i2c_data(i2cctl)) {
+ status = E1000_ERR_I2C;
+ DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
+ }
+
+ return status;
+}
+
+/**
+ * e1000_get_i2c_data - Reads the I2C SDA data bit
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ *
+ * Returns the I2C data bit value
+ **/
+static bool e1000_get_i2c_data(u32 *i2cctl)
+{
+ bool data;
+
+ DEBUGFUNC("e1000_get_i2c_data");
+
+ if (*i2cctl & E1000_I2C_DATA_IN)
+ data = 1;
+ else
+ data = 0;
+
+ return data;
+}
+
+/**
+ * e1000_i2c_bus_clear - Clears the I2C bus
+ * @hw: pointer to hardware structure
+ *
+ * Clears the I2C bus by sending nine clock pulses.
+ * Used when data line is stuck low.
+ **/
+void e1000_i2c_bus_clear(struct e1000_hw *hw)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ u32 i;
+
+ DEBUGFUNC("e1000_i2c_bus_clear");
+
+ e1000_i2c_start(hw);
+
+ e1000_set_i2c_data(hw, &i2cctl, 1);
+
+ for (i = 0; i < 9; i++) {
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Min high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Min low period of clock is 4.7us*/
+ usec_delay(E1000_I2C_T_LOW);
+ }
+
+ e1000_i2c_start(hw);
+
+ /* Put the i2c bus back to default state */
+ e1000_i2c_stop(hw);
+}
+
+static const u8 e1000_emc_temp_data[4] = {
+ E1000_EMC_INTERNAL_DATA,
+ E1000_EMC_DIODE1_DATA,
+ E1000_EMC_DIODE2_DATA,
+ E1000_EMC_DIODE3_DATA
+};
+static const u8 e1000_emc_therm_limit[4] = {
+ E1000_EMC_INTERNAL_THERM_LIMIT,
+ E1000_EMC_DIODE1_THERM_LIMIT,
+ E1000_EMC_DIODE2_THERM_LIMIT,
+ E1000_EMC_DIODE3_THERM_LIMIT
};
+/**
+ * e1000_get_thermal_sensor_data_generic - Gathers thermal sensor data
+ * @hw: pointer to hardware structure
+ *
+ * Updates the temperatures in mac.thermal_sensor_data
+ **/
+s32 e1000_get_thermal_sensor_data_generic(struct e1000_hw *hw)
+{
+ s32 status = E1000_SUCCESS;
+ u16 ets_offset;
+ u16 ets_cfg;
+ u16 ets_sensor;
+ u8 num_sensors;
+ u8 sensor_index;
+ u8 sensor_location;
+ u8 i;
+ struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
+
+ DEBUGFUNC("e1000_get_thermal_sensor_data_generic");
+
+ if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
+ return E1000_NOT_IMPLEMENTED;
+
+ data->sensor[0].temp = (E1000_READ_REG(hw, E1000_THMJT) & 0xFF);
+
+ /* Return the internal sensor only if ETS is unsupported */
+ e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset);
+ if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
+ return status;
+
+ e1000_read_nvm(hw, ets_offset, 1, &ets_cfg);
+ if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
+ != NVM_ETS_TYPE_EMC)
+ return E1000_NOT_IMPLEMENTED;
+
+ num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
+ if (num_sensors > E1000_MAX_SENSORS)
+ num_sensors = E1000_MAX_SENSORS;
+
+ for (i = 1; i < num_sensors; i++) {
+ e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor);
+ sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
+ NVM_ETS_DATA_INDEX_SHIFT);
+ sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
+ NVM_ETS_DATA_LOC_SHIFT);
+
+ if (sensor_location != 0)
+ hw->phy.ops.read_i2c_byte(hw,
+ e1000_emc_temp_data[sensor_index],
+ E1000_I2C_THERMAL_SENSOR_ADDR,
+ &data->sensor[i].temp);
+ }
+ return status;
+}
+
+/**
+ * e1000_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
+ * @hw: pointer to hardware structure
+ *
+ * Sets the thermal sensor thresholds according to the NVM map
+ * and save off the threshold and location values into mac.thermal_sensor_data
+ **/
+s32 e1000_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
+{
+ s32 status = E1000_SUCCESS;
+ u16 ets_offset;
+ u16 ets_cfg;
+ u16 ets_sensor;
+ u8 low_thresh_delta;
+ u8 num_sensors;
+ u8 sensor_index;
+ u8 sensor_location;
+ u8 therm_limit;
+ u8 i;
+ struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
+
+ DEBUGFUNC("e1000_init_thermal_sensor_thresh_generic");
+
+ if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
+ return E1000_NOT_IMPLEMENTED;
+
+ memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
+
+ data->sensor[0].location = 0x1;
+ data->sensor[0].caution_thresh =
+ (E1000_READ_REG(hw, E1000_THHIGHTC) & 0xFF);
+ data->sensor[0].max_op_thresh =
+ (E1000_READ_REG(hw, E1000_THLOWTC) & 0xFF);
+
+ /* Return the internal sensor only if ETS is unsupported */
+ e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset);
+ if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
+ return status;
+
+ e1000_read_nvm(hw, ets_offset, 1, &ets_cfg);
+ if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
+ != NVM_ETS_TYPE_EMC)
+ return E1000_NOT_IMPLEMENTED;
+
+ low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
+ NVM_ETS_LTHRES_DELTA_SHIFT);
+ num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
+
+ for (i = 1; i <= num_sensors; i++) {
+ e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor);
+ sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
+ NVM_ETS_DATA_INDEX_SHIFT);
+ sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
+ NVM_ETS_DATA_LOC_SHIFT);
+ therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
+
+ hw->phy.ops.write_i2c_byte(hw,
+ e1000_emc_therm_limit[sensor_index],
+ E1000_I2C_THERMAL_SENSOR_ADDR,
+ therm_limit);
+
+ if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
+ data->sensor[i].location = sensor_location;
+ data->sensor[i].caution_thresh = therm_limit;
+ data->sensor[i].max_op_thresh = therm_limit -
+ low_thresh_delta;
+ }
+ }
+ return status;
+}