summaryrefslogtreecommitdiff
path: root/drivers/mxc/security/mxc_scc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mxc/security/mxc_scc.c')
-rw-r--r--drivers/mxc/security/mxc_scc.c2386
1 files changed, 2386 insertions, 0 deletions
diff --git a/drivers/mxc/security/mxc_scc.c b/drivers/mxc/security/mxc_scc.c
new file mode 100644
index 000000000000..20d54bfb5362
--- /dev/null
+++ b/drivers/mxc/security/mxc_scc.c
@@ -0,0 +1,2386 @@
+/*
+ * Copyright (C) 2004-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+/*!
+ * @file mxc_scc.c
+ *
+ * This is the driver code for the Security Controller (SCC). It has no device
+ * driver interface, so no user programs may access it. Its interaction with
+ * the Linux kernel is from calls to #scc_init() when the driver is loaded, and
+ * #scc_cleanup() should the driver be unloaded. The driver uses locking and
+ * (task-sleep/task-wakeup) functions of the kernel. It also registers itself
+ * to handle the interrupt line(s) from the SCC.
+ *
+ * Other drivers in the kernel may use the remaining API functions to get at
+ * the services of the SCC. The main service provided is the Secure Memory,
+ * which allows encoding and decoding of secrets with a per-chip secret key.
+ *
+ * The SCC is single-threaded, and so is this module. When the scc_crypt()
+ * routine is called, it will lock out other accesses to the function. If
+ * another task is already in the module, the subsequent caller will spin on a
+ * lock waiting for the other access to finish.
+ *
+ * Note that long crypto operations could cause a task to spin for a while,
+ * preventing other kernel work (other than interrupt processing) to get done.
+ *
+ * The external (kernel module) interface is through the following functions:
+ * @li scc_get_configuration()
+ * @li scc_crypt()
+ * @li scc_zeroize_memories()
+ * @li scc_monitor_security_failure()
+ * @li scc_stop_monitoring_security_failure()
+ * @li scc_set_sw_alarm()
+ * @li scc_read_register()
+ * @li scc_write_register()
+ *
+ * All other functions are internal to the driver.
+ *
+ * @ingroup MXCSCC
+*/
+#include "sahara2/include/fsl_platform.h"
+#include "sahara2/include/portable_os.h"
+#include "mxc_scc_internals.h"
+
+#include <linux/delay.h>
+
+#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18))
+
+#include <linux/device.h>
+#include <mach/clock.h>
+#include <linux/device.h>
+
+#else
+#include <linux/platform_device.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+
+#endif
+
+/*!
+ * This is the set of errors which signal that access to the SCM RAM has
+ * failed or will fail.
+ */
+#define SCM_ACCESS_ERRORS \
+ (SCM_ERR_USER_ACCESS | SCM_ERR_ILLEGAL_ADDRESS | \
+ SCM_ERR_ILLEGAL_MASTER | SCM_ERR_CACHEABLE_ACCESS | \
+ SCM_ERR_UNALIGNED_ACCESS | SCM_ERR_BYTE_ACCESS | \
+ SCM_ERR_INTERNAL_ERROR | SCM_ERR_SMN_BLOCKING_ACCESS | \
+ SCM_ERR_CIPHERING | SCM_ERR_ZEROIZING | SCM_ERR_BUSY)
+/******************************************************************************
+ *
+ * Global / Static Variables
+ *
+ *****************************************************************************/
+
+/*!
+ * This is type void* so that a) it cannot directly be dereferenced,
+ * and b) pointer arithmetic on it will function in a 'normal way' for
+ * the offsets in scc_defines.h
+ *
+ * scc_base is the location in the iomap where the SCC's registers
+ * (and memory) start.
+ *
+ * The referenced data is declared volatile so that the compiler will
+ * not make any assumptions about the value of registers in the SCC,
+ * and thus will always reload the register into CPU memory before
+ * using it (i.e. wherever it is referenced in the driver).
+ *
+ * This value should only be referenced by the #SCC_READ_REGISTER and
+ * #SCC_WRITE_REGISTER macros and their ilk. All dereferences must be
+ * 32 bits wide.
+ */
+static volatile void *scc_base;
+
+/*! Array to hold function pointers registered by
+ #scc_monitor_security_failure() and processed by
+ #scc_perform_callbacks() */
+static void (*scc_callbacks[SCC_CALLBACK_SIZE]) (void);
+
+/*! Structure returned by #scc_get_configuration() */
+static scc_config_t scc_configuration = {
+ .driver_major_version = SCC_DRIVER_MAJOR_VERSION_1,
+ .driver_minor_version = SCC_DRIVER_MINOR_VERSION_8,
+ .scm_version = -1,
+ .smn_version = -1,
+ .block_size_bytes = -1,
+ .black_ram_size_blocks = -1,
+ .red_ram_size_blocks = -1
+};
+
+/*! Key Control Information. Integrity is controlled by use of
+ #scc_crypto_lock. */
+static struct scc_key_slot scc_key_info[SCC_KEY_SLOTS];
+
+/*! Internal flag to know whether SCC is in Failed state (and thus many
+ * registers are unavailable). Once it goes failed, it never leaves it. */
+static volatile enum scc_status scc_availability = SCC_STATUS_INITIAL;
+
+/*! Flag to say whether interrupt handler has been registered for
+ * SMN interrupt */
+static int smn_irq_set = 0;
+
+/*! Flag to say whether interrupt handler has been registered for
+ * SCM interrupt */
+static int scm_irq_set = 0;
+
+/*! This lock protects the #scc_callbacks list as well as the @c
+ * callbacks_performed flag in #scc_perform_callbacks. Since the data this
+ * protects may be read or written from either interrupt or base level, all
+ * operations should use the irqsave/irqrestore or similar to make sure that
+ * interrupts are inhibited when locking from base level.
+ */
+static spinlock_t scc_callbacks_lock = SPIN_LOCK_UNLOCKED;
+
+/*!
+ * Ownership of this lock prevents conflicts on the crypto operation in the SCC
+ * and the integrity of the #scc_key_info.
+ */
+static spinlock_t scc_crypto_lock = SPIN_LOCK_UNLOCKED;
+
+/*! Calculated once for quick reference to size of the unreserved space in one
+ * RAM in SCM.
+ */
+static uint32_t scc_memory_size_bytes;
+
+/*! Calculated once for quick reference to size of SCM address space */
+static uint32_t scm_highest_memory_address;
+
+#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,18))
+#ifndef SCC_CLOCK_NOT_GATED
+/*! Pointer to SCC's clock information. Initialized during scc_init(). */
+static struct clk *scc_clk = NULL;
+#endif
+#endif
+
+/*! The lookup table for an 8-bit value. Calculated once
+ * by #scc_init_ccitt_crc().
+ */
+static uint16_t scc_crc_lookup_table[256];
+
+/*! Fixed padding for appending to plaintext to fill out a block */
+static uint8_t scc_block_padding[8] =
+ { SCC_DRIVER_PAD_CHAR, 0, 0, 0, 0, 0, 0, 0 };
+
+/******************************************************************************
+ *
+ * Function Implementations - Externally Accessible
+ *
+ *****************************************************************************/
+
+/*****************************************************************************/
+/* fn scc_init() */
+/*****************************************************************************/
+/*!
+ * Initialize the driver at boot time or module load time.
+ *
+ * Register with the kernel as the interrupt handler for the SCC interrupt
+ * line(s).
+ *
+ * Map the SCC's register space into the driver's memory space.
+ *
+ * Query the SCC for its configuration and status. Save the configuration in
+ * #scc_configuration and save the status in #scc_availability. Called by the
+ * kernel.
+ *
+ * Do any locking/wait queue initialization which may be necessary.
+ *
+ * The availability fuse may be checked, depending on platform.
+ */
+static int scc_init(void)
+{
+ uint32_t smn_status;
+ int i;
+ int return_value = -EIO; /* assume error */
+ if (scc_availability == SCC_STATUS_INITIAL) {
+
+ /* Set this until we get an initial reading */
+ scc_availability = SCC_STATUS_CHECKING;
+
+ /* Initialize the constant for the CRC function */
+ scc_init_ccitt_crc();
+
+ /* initialize the callback table */
+ for (i = 0; i < SCC_CALLBACK_SIZE; i++) {
+ scc_callbacks[i] = 0;
+ }
+
+ /* Initialize key slots */
+ for (i = 0; i < SCC_KEY_SLOTS; i++) {
+ scc_key_info[i].offset = i * SCC_KEY_SLOT_SIZE;
+ scc_key_info[i].status = 0; /* unassigned */
+ }
+
+ /* Enable the SCC clock on platforms where it is gated */
+#ifndef SCC_CLOCK_NOT_GATED
+
+#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18))
+ mxc_clks_enable(SCC_CLK);
+#else
+
+ scc_clk = clk_get(NULL, "scc_clk");
+ if (scc_clk != ERR_PTR(ENOENT)) {
+ clk_enable(scc_clk);
+ }
+#endif /* LINUX_VERSION_CODE */
+
+#endif /* SCC_CLOCK_NOT_GATED */
+ /* See whether there is an SCC available */
+ if (0 && !SCC_ENABLED()) {
+ os_printk(KERN_ERR
+ "SCC: Fuse for SCC is set to disabled. Exiting.\n");
+ } else {
+ /* Map the SCC (SCM and SMN) memory on the internal bus into
+ kernel address space */
+ scc_base = (void *)IO_ADDRESS(SCC_BASE);
+
+ /* If that worked, we can try to use the SCC */
+ if (scc_base == NULL) {
+ os_printk(KERN_ERR
+ "SCC: Register mapping failed. Exiting.\n");
+ } else {
+ /* Get SCM into 'clean' condition w/interrupts cleared &
+ disabled */
+ SCC_WRITE_REGISTER(SCM_INTERRUPT_CTRL,
+ SCM_INTERRUPT_CTRL_CLEAR_INTERRUPT
+ |
+ SCM_INTERRUPT_CTRL_MASK_INTERRUPTS);
+
+ /* Clear error status register (any write will do it) */
+ SCC_WRITE_REGISTER(SCM_ERROR_STATUS, 0);
+
+ /*
+ * There is an SCC. Determine its current state. Side effect
+ * is to populate scc_config and scc_availability
+ */
+ smn_status = scc_grab_config_values();
+
+ /* Try to set up interrupt handler(s) */
+ if (scc_availability == SCC_STATUS_OK) {
+ if (setup_interrupt_handling() != 0) {
+ unsigned condition;
+ /*!
+ * The error could be only that the SCM interrupt was
+ * not set up. This interrupt is always masked, so
+ * that is not an issue.
+ *
+ * The SMN's interrupt may be shared on that line, it
+ * may be separate, or it may not be wired. Do what
+ * is necessary to check its status.
+ *
+ * Although the driver is coded for possibility of not
+ * having SMN interrupt, the fact that there is one
+ * means it should be available and used.
+ */
+#ifdef USE_SMN_INTERRUPT
+ condition = !smn_irq_set; /* Separate. Check SMN binding */
+#elif !defined(NO_SMN_INTERRUPT)
+ condition = !scm_irq_set; /* Shared. Check SCM binding */
+#else
+ condition = FALSE; /* SMN not wired at all. Ignore. */
+#endif
+ /* setup was not able to set up SMN interrupt */
+ scc_availability =
+ SCC_STATUS_UNIMPLEMENTED;
+ } /* interrupt handling returned non-zero */
+ } /* availability is OK */
+ if (scc_availability == SCC_STATUS_OK) {
+ /* Get SMN into 'clean' condition w/interrupts cleared &
+ enabled */
+ SCC_WRITE_REGISTER(SMN_COMMAND,
+ SMN_COMMAND_CLEAR_INTERRUPT
+ |
+ SMN_COMMAND_ENABLE_INTERRUPT);
+ }
+ /* availability is still OK */
+ } /* if scc_base != NULL */
+
+ } /* if SCC_ENABLED() */
+
+ /*
+ * If status is SCC_STATUS_UNIMPLEMENTED or is still
+ * SCC_STATUS_CHECKING, could be leaving here with the driver partially
+ * initialized. In either case, cleanup (which will mark the SCC as
+ * UNIMPLEMENTED).
+ */
+ if (scc_availability == SCC_STATUS_CHECKING ||
+ scc_availability == SCC_STATUS_UNIMPLEMENTED) {
+ scc_cleanup();
+ } else {
+ return_value = 0; /* All is well */
+ }
+ }
+ /* ! STATUS_INITIAL */
+ pr_debug("SCC: Driver Status is %s\n",
+ (scc_availability == SCC_STATUS_INITIAL) ? "INITIAL" :
+ (scc_availability == SCC_STATUS_CHECKING) ? "CHECKING" :
+ (scc_availability ==
+ SCC_STATUS_UNIMPLEMENTED) ? "UNIMPLEMENTED"
+ : (scc_availability ==
+ SCC_STATUS_OK) ? "OK" : (scc_availability ==
+ SCC_STATUS_FAILED) ? "FAILED" :
+ "UNKNOWN");
+
+ return return_value;
+} /* scc_init */
+
+/*****************************************************************************/
+/* fn scc_cleanup() */
+/*****************************************************************************/
+/*!
+ * Perform cleanup before driver/module is unloaded by setting the machine
+ * state close to what it was when the driver was loaded. This function is
+ * called when the kernel is shutting down or when this driver is being
+ * unloaded.
+ *
+ * A driver like this should probably never be unloaded, especially if there
+ * are other module relying upon the callback feature for monitoring the SCC
+ * status.
+ *
+ * In any case, cleanup the callback table (by clearing out all of the
+ * pointers). Deregister the interrupt handler(s). Unmap SCC registers.
+ *
+ */
+static void scc_cleanup(void)
+{
+ int i;
+
+ /* Mark the driver / SCC as unusable. */
+ scc_availability = SCC_STATUS_UNIMPLEMENTED;
+
+ /* Clear out callback table */
+ for (i = 0; i < SCC_CALLBACK_SIZE; i++) {
+ scc_callbacks[i] = 0;
+ }
+
+ /* If SCC has been mapped in, clean it up and unmap it */
+ if (scc_base) {
+ /* For the SCM, disable interrupts, zeroize RAMs. Interrupt
+ * status will appear because zeroize will complete. */
+ SCC_WRITE_REGISTER(SCM_INTERRUPT_CTRL,
+ SCM_INTERRUPT_CTRL_MASK_INTERRUPTS |
+ SCM_INTERRUPT_CTRL_ZEROIZE_MEMORY);
+
+ /* For the SMN, clear and disable interrupts */
+ SCC_WRITE_REGISTER(SMN_COMMAND, SMN_COMMAND_CLEAR_INTERRUPT);
+
+ /* remove virtual mapping */
+ iounmap((void *)scc_base);
+ }
+
+ /* Now that interrupts cannot occur, disassociate driver from the interrupt
+ * lines.
+ */
+
+ /* Deregister SCM interrupt handler */
+ if (scm_irq_set) {
+ os_deregister_interrupt(INT_SCC_SCM);
+ }
+
+ /* Deregister SMN interrupt handler */
+ if (smn_irq_set) {
+#ifdef USE_SMN_INTERRUPT
+ os_deregister_interrupt(INT_SCC_SMN);
+#endif
+ }
+ pr_debug("SCC driver cleaned up.\n");
+
+} /* scc_cleanup */
+
+/*****************************************************************************/
+/* fn scc_get_configuration() */
+/*****************************************************************************/
+scc_config_t *scc_get_configuration(void)
+{
+ /*
+ * If some other driver calls scc before the kernel does, make sure that
+ * this driver's initialization is performed.
+ */
+ if (scc_availability == SCC_STATUS_INITIAL) {
+ scc_init();
+ }
+
+ /*!
+ * If there is no SCC, yet the driver exists, the value -1 will be in
+ * the #scc_config_t fields for other than the driver versions.
+ */
+ return &scc_configuration;
+} /* scc_get_configuration */
+
+/*****************************************************************************/
+/* fn scc_zeroize_memories() */
+/*****************************************************************************/
+scc_return_t scc_zeroize_memories(void)
+{
+ scc_return_t return_status = SCC_RET_FAIL;
+ uint32_t status;
+
+ if (scc_availability == SCC_STATUS_INITIAL) {
+ scc_init();
+ }
+
+ if (scc_availability == SCC_STATUS_OK) {
+ unsigned long irq_flags; /* for IRQ save/restore */
+
+ /* Lock access to crypto memory of the SCC */
+ spin_lock_irqsave(&scc_crypto_lock, irq_flags);
+
+ /* Start the Zeroize by setting a bit in the SCM_INTERRUPT_CTRL
+ * register */
+ SCC_WRITE_REGISTER(SCM_INTERRUPT_CTRL,
+ SCM_INTERRUPT_CTRL_MASK_INTERRUPTS
+ | SCM_INTERRUPT_CTRL_ZEROIZE_MEMORY);
+
+ scc_wait_completion();
+
+ /* Get any error info */
+ status = SCC_READ_REGISTER(SCM_ERROR_STATUS);
+
+ /* unlock the SCC */
+ spin_unlock_irqrestore(&scc_crypto_lock, irq_flags);
+
+ if (!(status & SCM_ERR_ZEROIZE_FAILED)) {
+ return_status = SCC_RET_OK;
+ } else {
+ pr_debug
+ ("SCC: Zeroize failed. SCM Error Status is 0x%08x\n",
+ status);
+ }
+
+ /* Clear out any status. */
+ SCC_WRITE_REGISTER(SCM_INTERRUPT_CTRL,
+ SCM_INTERRUPT_CTRL_CLEAR_INTERRUPT
+ | SCM_INTERRUPT_CTRL_MASK_INTERRUPTS);
+
+ /* and any error status */
+ SCC_WRITE_REGISTER(SCM_ERROR_STATUS, 0);
+ }
+
+ return return_status;
+} /* scc_zeroize_memories */
+
+/*****************************************************************************/
+/* fn scc_crypt() */
+/*****************************************************************************/
+scc_return_t
+scc_crypt(unsigned long count_in_bytes, const uint8_t * data_in,
+ const uint8_t * init_vector,
+ scc_enc_dec_t direction, scc_crypto_mode_t crypto_mode,
+ scc_verify_t check_mode, uint8_t * data_out,
+ unsigned long *count_out_bytes)
+
+{
+ scc_return_t return_code = SCC_RET_FAIL;
+
+ if (scc_availability == SCC_STATUS_INITIAL) {
+ scc_init();
+ }
+
+ (void)scc_update_state(); /* in case no interrupt line from SMN */
+
+ /* make initial error checks */
+ if (scc_availability != SCC_STATUS_OK
+ || count_in_bytes == 0
+ || data_in == 0
+ || data_out == 0
+ || (crypto_mode != SCC_CBC_MODE && crypto_mode != SCC_ECB_MODE)
+ || (crypto_mode == SCC_CBC_MODE && init_vector == NULL)
+ || (direction != SCC_ENCRYPT && direction != SCC_DECRYPT)
+ || (check_mode == SCC_VERIFY_MODE_NONE &&
+ count_in_bytes % SCC_BLOCK_SIZE_BYTES() != 0)
+ || (direction == SCC_DECRYPT &&
+ count_in_bytes % SCC_BLOCK_SIZE_BYTES() != 0)
+ || (check_mode != SCC_VERIFY_MODE_NONE &&
+ check_mode != SCC_VERIFY_MODE_CCITT_CRC)) {
+ pr_debug
+ ("SCC: scc_crypt() count_in_bytes_ok = %d; data_in_ok = %d;"
+ " data_out_ok = %d; iv_ok = %d\n", !(count_in_bytes == 0),
+ !(data_in == 0), !(data_out == 0),
+ !(crypto_mode == SCC_CBC_MODE && init_vector == NULL));
+ pr_debug("SCC: scc_crypt() mode_ok=%d; direction_ok=%d;"
+ " size_ok=%d, check_mode_ok=%d\n",
+ !(crypto_mode != SCC_CBC_MODE
+ && crypto_mode != SCC_ECB_MODE),
+ !(direction != SCC_ENCRYPT
+ && direction != SCC_DECRYPT),
+ !((check_mode == SCC_VERIFY_MODE_NONE
+ && count_in_bytes % SCC_BLOCK_SIZE_BYTES() != 0)
+ || (direction == SCC_DECRYPT
+ && count_in_bytes % SCC_BLOCK_SIZE_BYTES() !=
+ 0)), !(check_mode != SCC_VERIFY_MODE_NONE
+ && check_mode !=
+ SCC_VERIFY_MODE_CCITT_CRC));
+ pr_debug("SCC: scc_crypt() detected bad argument\n");
+ } else {
+ /* Start settings for write to SCM_CONTROL register */
+ uint32_t scc_control = SCM_CONTROL_START_CIPHER;
+ unsigned long irq_flags; /* for IRQ save/restore */
+
+ /* Lock access to crypto memory of the SCC */
+ spin_lock_irqsave(&scc_crypto_lock, irq_flags);
+
+ /* Special needs for CBC Mode */
+ if (crypto_mode == SCC_CBC_MODE) {
+ scc_control |= SCM_CBC_MODE; /* change default of ECB */
+ /* Put in Initial Context. Vector registers are contiguous */
+ copy_to_scc(init_vector, SCM_INIT_VECTOR_0,
+ SCC_BLOCK_SIZE_BYTES(), NULL);
+ }
+
+ /* Fill the RED_START register */
+ SCC_WRITE_REGISTER(SCM_RED_START,
+ SCM_NON_RESERVED_OFFSET /
+ SCC_BLOCK_SIZE_BYTES());
+
+ /* Fill the BLACK_START register */
+ SCC_WRITE_REGISTER(SCM_BLACK_START,
+ SCM_NON_RESERVED_OFFSET /
+ SCC_BLOCK_SIZE_BYTES());
+
+ if (direction == SCC_ENCRYPT) {
+ /* Check for sufficient space in data_out */
+ if (check_mode == SCC_VERIFY_MODE_NONE) {
+ if (*count_out_bytes < count_in_bytes) {
+ return_code =
+ SCC_RET_INSUFFICIENT_SPACE;
+ }
+ } else { /* SCC_VERIFY_MODE_CCITT_CRC */
+ /* Calculate extra bytes needed for crc (2) and block
+ padding */
+ int padding_needed =
+ CRC_SIZE_BYTES + SCC_BLOCK_SIZE_BYTES() -
+ ((count_in_bytes + CRC_SIZE_BYTES)
+ % SCC_BLOCK_SIZE_BYTES());
+
+ /* Verify space is available */
+ if (*count_out_bytes <
+ count_in_bytes + padding_needed) {
+ return_code =
+ SCC_RET_INSUFFICIENT_SPACE;
+ }
+ }
+ /* If did not detect space error, do the encryption */
+ if (return_code != SCC_RET_INSUFFICIENT_SPACE) {
+ return_code =
+ scc_encrypt(count_in_bytes, data_in,
+ scc_control, data_out,
+ check_mode ==
+ SCC_VERIFY_MODE_CCITT_CRC,
+ count_out_bytes);
+ }
+
+ }
+ /* direction == SCC_ENCRYPT */
+ else { /* SCC_DECRYPT */
+ /* Check for sufficient space in data_out */
+ if (check_mode == SCC_VERIFY_MODE_NONE) {
+ if (*count_out_bytes < count_in_bytes) {
+ return_code =
+ SCC_RET_INSUFFICIENT_SPACE;
+ }
+ } else { /* SCC_VERIFY_MODE_CCITT_CRC */
+ /* Do initial check. Assume last block (of padding) and CRC
+ * will get stripped. After decipher is done and padding is
+ * removed, will know exact value.
+ */
+ int possible_size =
+ (int)count_in_bytes - CRC_SIZE_BYTES -
+ SCC_BLOCK_SIZE_BYTES();
+ if ((int)*count_out_bytes < possible_size) {
+ pr_debug
+ ("SCC: insufficient decrypt space %ld/%d.\n",
+ *count_out_bytes, possible_size);
+ return_code =
+ SCC_RET_INSUFFICIENT_SPACE;
+ }
+ }
+
+ /* If did not detect space error, do the decryption */
+ if (return_code != SCC_RET_INSUFFICIENT_SPACE) {
+ return_code =
+ scc_decrypt(count_in_bytes, data_in,
+ scc_control, data_out,
+ check_mode ==
+ SCC_VERIFY_MODE_CCITT_CRC,
+ count_out_bytes);
+ }
+
+ } /* SCC_DECRYPT */
+
+ /* unlock the SCC */
+ spin_unlock_irqrestore(&scc_crypto_lock, irq_flags);
+
+ } /* else no initial error */
+
+ return return_code;
+} /* scc_crypt */
+
+/*****************************************************************************/
+/* fn scc_set_sw_alarm() */
+/*****************************************************************************/
+void scc_set_sw_alarm(void)
+{
+
+ if (scc_availability == SCC_STATUS_INITIAL) {
+ scc_init();
+ }
+
+ /* Update scc_availability based on current SMN status. This might
+ * perform callbacks.
+ */
+ (void)scc_update_state();
+
+ /* if everything is OK, make it fail */
+ if (scc_availability == SCC_STATUS_OK) {
+
+ /* sound the alarm (and disable SMN interrupts */
+ SCC_WRITE_REGISTER(SMN_COMMAND, SMN_COMMAND_SET_SOFTWARE_ALARM);
+
+ scc_availability = SCC_STATUS_FAILED; /* Remember what we've done */
+
+ /* In case SMN interrupt is not available, tell the world */
+ scc_perform_callbacks();
+ }
+
+ return;
+} /* scc_set_sw_alarm */
+
+/*****************************************************************************/
+/* fn scc_monitor_security_failure() */
+/*****************************************************************************/
+scc_return_t scc_monitor_security_failure(void callback_func(void))
+{
+ int i;
+ unsigned long irq_flags; /* for IRQ save/restore */
+ scc_return_t return_status = SCC_RET_TOO_MANY_FUNCTIONS;
+ int function_stored = FALSE;
+
+ if (scc_availability == SCC_STATUS_INITIAL) {
+ scc_init();
+ }
+
+ /* Acquire lock of callbacks table. Could be spin_lock_irq() if this
+ * routine were just called from base (not interrupt) level
+ */
+ spin_lock_irqsave(&scc_callbacks_lock, irq_flags);
+
+ /* Search through table looking for empty slot */
+ for (i = 0; i < SCC_CALLBACK_SIZE; i++) {
+ if (scc_callbacks[i] == callback_func) {
+ if (function_stored) {
+ /* Saved duplicate earlier. Clear this later one. */
+ scc_callbacks[i] = NULL;
+ }
+ /* Exactly one copy is now stored */
+ return_status = SCC_RET_OK;
+ break;
+ } else if (scc_callbacks[i] == NULL && !function_stored) {
+ /* Found open slot. Save it and remember */
+ scc_callbacks[i] = callback_func;
+ return_status = SCC_RET_OK;
+ function_stored = TRUE;
+ }
+ }
+
+ /* Free the lock */
+ spin_unlock_irqrestore(&scc_callbacks_lock, irq_flags);
+
+ return return_status;
+} /* scc_monitor_security_failure */
+
+/*****************************************************************************/
+/* fn scc_stop_monitoring_security_failure() */
+/*****************************************************************************/
+void scc_stop_monitoring_security_failure(void callback_func(void))
+{
+ unsigned long irq_flags; /* for IRQ save/restore */
+ int i;
+
+ if (scc_availability == SCC_STATUS_INITIAL) {
+ scc_init();
+ }
+
+ /* Acquire lock of callbacks table. Could be spin_lock_irq() if this
+ * routine were just called from base (not interrupt) level
+ */
+ spin_lock_irqsave(&scc_callbacks_lock, irq_flags);
+
+ /* Search every entry of the table for this function */
+ for (i = 0; i < SCC_CALLBACK_SIZE; i++) {
+ if (scc_callbacks[i] == callback_func) {
+ scc_callbacks[i] = NULL; /* found instance - clear it out */
+ break;
+ }
+ }
+
+ /* Free the lock */
+ spin_unlock_irqrestore(&scc_callbacks_lock, irq_flags);
+
+ return;
+} /* scc_stop_monitoring_security_failure */
+
+/*****************************************************************************/
+/* fn scc_read_register() */
+/*****************************************************************************/
+scc_return_t scc_read_register(int register_offset, uint32_t * value)
+{
+ scc_return_t return_status = SCC_RET_FAIL;
+ uint32_t smn_status;
+ uint32_t scm_status;
+
+ if (scc_availability == SCC_STATUS_INITIAL) {
+ scc_init();
+ }
+
+ /* First layer of protection -- completely unaccessible SCC */
+ if (scc_availability != SCC_STATUS_UNIMPLEMENTED) {
+
+ /* Second layer -- that offset is valid */
+ if (register_offset != SMN_BITBANK_DECREMENT && /* write only! */
+ check_register_offset(register_offset) == SCC_RET_OK) {
+
+ /* Get current status / update local state */
+ smn_status = scc_update_state();
+ scm_status = SCC_READ_REGISTER(SCM_STATUS);
+
+ /*
+ * Third layer - verify that the register being requested is
+ * available in the current state of the SCC.
+ */
+ if ((return_status =
+ check_register_accessible(register_offset,
+ smn_status,
+ scm_status)) ==
+ SCC_RET_OK) {
+ *value = SCC_READ_REGISTER(register_offset);
+ }
+ }
+ }
+
+ return return_status;
+} /* scc_read_register */
+
+/*****************************************************************************/
+/* fn scc_write_register() */
+/*****************************************************************************/
+scc_return_t scc_write_register(int register_offset, uint32_t value)
+{
+ scc_return_t return_status = SCC_RET_FAIL;
+ uint32_t smn_status;
+ uint32_t scm_status;
+
+ if (scc_availability == SCC_STATUS_INITIAL) {
+ scc_init();
+ }
+
+ /* First layer of protection -- completely unaccessible SCC */
+ if (scc_availability != SCC_STATUS_UNIMPLEMENTED) {
+
+ /* Second layer -- that offset is valid */
+ if (!(register_offset == SCM_STATUS || /* These registers are */
+ register_offset == SCM_CONFIGURATION || /* Read Only */
+ register_offset == SMN_BIT_COUNT ||
+ register_offset == SMN_TIMER) &&
+ check_register_offset(register_offset) == SCC_RET_OK) {
+
+ /* Get current status / update local state */
+ smn_status = scc_update_state();
+ scm_status = SCC_READ_REGISTER(SCM_STATUS);
+
+ /*
+ * Third layer - verify that the register being requested is
+ * available in the current state of the SCC.
+ */
+ if (check_register_accessible
+ (register_offset, smn_status, scm_status) == 0) {
+ SCC_WRITE_REGISTER(register_offset, value);
+ return_status = SCC_RET_OK;
+ }
+ }
+ }
+
+ return return_status;
+} /* scc_write_register() */
+
+/******************************************************************************
+ *
+ * Function Implementations - Internal
+ *
+ *****************************************************************************/
+
+/*****************************************************************************/
+/* fn scc_irq() */
+/*****************************************************************************/
+/*!
+ * This is the interrupt handler for the SCC.
+ *
+ * This function checks the SMN Status register to see whether it
+ * generated the interrupt, then it checks the SCM Status register to
+ * see whether it needs attention.
+ *
+ * If an SMN Interrupt is active, then the SCC state set to failure, and
+ * #scc_perform_callbacks() is invoked to notify any interested parties.
+ *
+ * The SCM Interrupt should be masked, as this driver uses polling to determine
+ * when the SCM has completed a crypto or zeroing operation. Therefore, if the
+ * interrupt is active, the driver will just clear the interrupt and (re)mask.
+ *
+ */
+OS_DEV_ISR(scc_irq)
+{
+ uint32_t smn_status;
+ uint32_t scm_status;
+ int handled = 0; /* assume interrupt isn't from SMN */
+#if defined(USE_SMN_INTERRUPT)
+ int smn_irq = INT_SCC_SMN; /* SMN interrupt is on a line by itself */
+#elif defined (NO_SMN_INTERRUPT)
+ int smn_irq = -1; /* not wired to CPU at all */
+#else
+ int smn_irq = INT_SCC_SCM; /* SMN interrupt shares a line with SCM */
+#endif
+
+ /* Update current state... This will perform callbacks... */
+ smn_status = scc_update_state();
+
+ /* SMN is on its own interrupt line. Verify the IRQ was triggered
+ * before clearing the interrupt and marking it handled. */
+ if ((os_dev_get_irq() == smn_irq) &&
+ (smn_status & SMN_STATUS_SMN_STATUS_IRQ)) {
+ SCC_WRITE_REGISTER(SMN_COMMAND, SMN_COMMAND_CLEAR_INTERRUPT);
+ handled++; /* tell kernel that interrupt was handled */
+ }
+
+ /* Check on the health of the SCM */
+ scm_status = SCC_READ_REGISTER(SCM_STATUS);
+
+ /* The driver masks interrupts, so this should never happen. */
+ if (os_dev_get_irq() == INT_SCC_SCM) {
+ /* but if it does, try to prevent it in the future */
+ SCC_WRITE_REGISTER(SCM_INTERRUPT_CTRL,
+ SCM_INTERRUPT_CTRL_CLEAR_INTERRUPT
+ | SCM_INTERRUPT_CTRL_MASK_INTERRUPTS);
+ handled++;
+ }
+
+ /* Any non-zero value of handled lets kernel know we got something */
+ return IRQ_RETVAL(handled);
+}
+
+/*****************************************************************************/
+/* fn scc_perform_callbacks() */
+/*****************************************************************************/
+/*! Perform callbacks registered by #scc_monitor_security_failure().
+ *
+ * Make sure callbacks only happen once... Since there may be some reason why
+ * the interrupt isn't generated, this routine could be called from base(task)
+ * level.
+ *
+ * One at a time, go through #scc_callbacks[] and call any non-null pointers.
+ */
+static void scc_perform_callbacks(void)
+{
+ static int callbacks_performed = 0;
+ unsigned long irq_flags; /* for IRQ save/restore */
+ int i;
+
+ /* Acquire lock of callbacks table and callbacks_performed flag */
+ spin_lock_irqsave(&scc_callbacks_lock, irq_flags);
+
+ if (!callbacks_performed) {
+ callbacks_performed = 1;
+
+ /* Loop over all of the entries in the table */
+ for (i = 0; i < SCC_CALLBACK_SIZE; i++) {
+ /* If not null, ... */
+ if (scc_callbacks[i]) {
+ scc_callbacks[i] (); /* invoke the callback routine */
+ }
+ }
+ }
+
+ spin_unlock_irqrestore(&scc_callbacks_lock, irq_flags);
+
+ return;
+}
+
+/*****************************************************************************/
+/* fn copy_to_scc() */
+/*****************************************************************************/
+/*!
+ * Move data from possibly unaligned source and realign for SCC, possibly
+ * while calculating CRC.
+ *
+ * Multiple calls can be made to this routine (without intervening calls to
+ * #copy_from_scc(), as long as the sum total of bytes copied is a multiple of
+ * four (SCC native word size).
+ *
+ * @param[in] from Location in memory
+ * @param[out] to Location in SCC
+ * @param[in] count_bytes Number of bytes to copy
+ * @param[in,out] crc Pointer to CRC. Initial value must be
+ * #CRC_CCITT_START if this is the start of
+ * message. Output is the resulting (maybe
+ * partial) CRC. If NULL, no crc is calculated.
+ *
+ * @return Zero - success. Non-zero - SCM status bits defining failure.
+ */
+static uint32_t
+copy_to_scc(const uint8_t * from, uint32_t to, unsigned long count_bytes,
+ uint16_t * crc)
+{
+ int i;
+ uint32_t scm_word;
+ uint16_t current_crc = 0; /* local copy for fast access */
+ uint32_t status;
+
+ pr_debug("SCC: copying %ld bytes to 0x%0x.\n", count_bytes, to);
+
+ status = SCC_READ_REGISTER(SCM_ERROR_STATUS) & SCM_ACCESS_ERRORS;
+ if (status != 0) {
+ pr_debug
+ ("SCC copy_to_scc(): Error status detected (before copy):"
+ " %08x\n", status);
+ /* clear out errors left behind by somebody else */
+ SCC_WRITE_REGISTER(SCM_ERROR_STATUS, status);
+ }
+
+ if (crc) {
+ current_crc = *crc;
+ }
+
+ /* Initialize value being built for SCM. If we are starting 'clean',
+ * set it to zero. Otherwise pick up partial value which had been saved
+ * earlier. */
+ if (SCC_BYTE_OFFSET(to) == 0) {
+ scm_word = 0;
+ } else {
+ scm_word = SCC_READ_REGISTER(SCC_WORD_PTR(to)); /* recover */
+ }
+
+ /* Now build up SCM words and write them out when each is full */
+ for (i = 0; i < count_bytes; i++) {
+ uint8_t byte = *from++; /* value from plaintext */
+
+#if defined(__BIG_ENDIAN) || defined(FSL_HAVE_DRYICE)
+ scm_word = (scm_word << 8) | byte; /* add byte to SCM word */
+#else
+ scm_word = (byte << 24) | (scm_word >> 8);
+#endif
+ /* now calculate CCITT CRC */
+ if (crc) {
+ CALC_CRC(byte, current_crc);
+ }
+
+ to++; /* bump location in SCM */
+
+ /* check for full word */
+ if (SCC_BYTE_OFFSET(to) == 0) {
+ SCC_WRITE_REGISTER((uint32_t) (to - 4), scm_word); /* write it out */
+ }
+ }
+
+ /* If at partial word after previous loop, save it in SCM memory for
+ next time. */
+ if (SCC_BYTE_OFFSET(to) != 0) {
+ SCC_WRITE_REGISTER(SCC_WORD_PTR(to), scm_word); /* save */
+ }
+
+ /* Copy CRC back */
+ if (crc) {
+ *crc = current_crc;
+ }
+
+ status = SCC_READ_REGISTER(SCM_ERROR_STATUS) & SCM_ACCESS_ERRORS;
+ if (status != 0) {
+ pr_debug("SCC copy_to_scc(): Error status detected: %08x\n",
+ status);
+ /* Clear any/all bits. */
+ SCC_WRITE_REGISTER(SCM_ERROR_STATUS, status);
+ }
+ return status;
+}
+
+/*****************************************************************************/
+/* fn copy_from_scc() */
+/*****************************************************************************/
+/*!
+ * Move data from aligned 32-bit source and place in (possibly unaligned)
+ * target, and maybe calculate CRC at the same time.
+ *
+ * Multiple calls can be made to this routine (without intervening calls to
+ * #copy_to_scc(), as long as the sum total of bytes copied is be a multiple
+ * of four.
+ *
+ * @param[in] from Location in SCC
+ * @param[out] to Location in memory
+ * @param[in] count_bytes Number of bytes to copy
+ * @param[in,out] crc Pointer to CRC. Initial value must be
+ * #CRC_CCITT_START if this is the start of
+ * message. Output is the resulting (maybe
+ * partial) CRC. If NULL, crc is not calculated.
+ *
+ * @return Zero - success. Non-zero - SCM status bits defining failure.
+ */
+static uint32_t
+copy_from_scc(const uint32_t from, uint8_t * to, unsigned long count_bytes,
+ uint16_t * crc)
+{
+ uint32_t running_from = from;
+ uint32_t scm_word;
+ uint16_t current_crc = 0; /* local copy for fast access */
+ uint32_t status;
+ pr_debug("SCC: copying %ld bytes from 0x%x.\n", count_bytes, from);
+ status = SCC_READ_REGISTER(SCM_ERROR_STATUS) & SCM_ACCESS_ERRORS;
+ if (status != 0) {
+ pr_debug
+ ("SCC copy_from_scc(): Error status detected (before copy):"
+ " %08x\n", status);
+ /* clear out errors left behind by somebody else */
+ SCC_WRITE_REGISTER(SCM_ERROR_STATUS, status);
+ }
+
+ if (crc) {
+ current_crc = *crc;
+ }
+
+ /* Read word which is sitting in SCM memory. Ignore byte offset */
+ scm_word = SCC_READ_REGISTER(SCC_WORD_PTR(running_from));
+
+ /* If necessary, move the 'first' byte into place */
+ if (SCC_BYTE_OFFSET(running_from) != 0) {
+#if defined(__BIG_ENDIAN) || defined(FSL_HAVE_DRYICE)
+ scm_word <<= 8 * SCC_BYTE_OFFSET(running_from);
+#else
+ scm_word >>= 8 * SCC_BYTE_OFFSET(running_from);
+#endif
+ }
+
+ /* Now build up SCM words and write them out when each is full */
+ while (count_bytes--) {
+ uint8_t byte; /* value from plaintext */
+
+#if defined(__BIG_ENDIAN) || defined(FSL_HAVE_DRYICE)
+ byte = (scm_word & 0xff000000) >> 24; /* pull byte out of SCM word */
+ scm_word <<= 8; /* shift over to remove the just-pulled byte */
+#else
+ byte = (scm_word & 0xff);
+ scm_word >>= 8; /* shift over to remove the just-pulled byte */
+#endif
+ *to++ = byte; /* send byte to memory */
+
+ /* now calculate CRC */
+ if (crc) {
+ CALC_CRC(byte, current_crc);
+ }
+
+ running_from++;
+ /* check for empty word */
+ if (count_bytes && SCC_BYTE_OFFSET(running_from) == 0) {
+ /* read one in */
+ scm_word = SCC_READ_REGISTER((uint32_t) running_from);
+ }
+ }
+
+ if (crc) {
+ *crc = current_crc;
+ }
+
+ status = SCC_READ_REGISTER(SCM_ERROR_STATUS) & SCM_ACCESS_ERRORS;
+ if (status != 0) {
+ pr_debug("SCC copy_from_scc(): Error status detected: %08x\n",
+ status);
+ /* Clear any/all bits. */
+ SCC_WRITE_REGISTER(SCM_ERROR_STATUS, status);
+ }
+
+ return status;
+}
+
+/*****************************************************************************/
+/* fn scc_strip_padding() */
+/*****************************************************************************/
+/*!
+ * Remove padding from plaintext. Search backwards for #SCC_DRIVER_PAD_CHAR,
+ * verifying that each byte passed over is zero (0). Maximum number of bytes
+ * to examine is 8.
+ *
+ * @param[in] from Pointer to byte after end of message
+ * @param[out] count_bytes_stripped Number of padding bytes removed by this
+ * function.
+ *
+ * @return #SCC_RET_OK if all goes, well, #SCC_RET_FAIL if padding was
+ * not present.
+*/
+static scc_return_t
+scc_strip_padding(uint8_t * from, unsigned *count_bytes_stripped)
+{
+ int i = SCC_BLOCK_SIZE_BYTES();
+ scc_return_t return_code = SCC_RET_VERIFICATION_FAILED;
+
+ /*
+ * Search backwards looking for the magic marker. If it isn't found,
+ * make sure that a 0 byte is there in its place. Stop after the maximum
+ * amount of padding (8 bytes) has been searched);
+ */
+ while (i-- > 0) {
+ if (*--from == SCC_DRIVER_PAD_CHAR) {
+ *count_bytes_stripped = SCC_BLOCK_SIZE_BYTES() - i;
+ return_code = SCC_RET_OK;
+ break;
+ } else if (*from != 0) { /* if not marker, check for 0 */
+ pr_debug("SCC: Found non-zero interim pad: 0x%x\n",
+ *from);
+ break;
+ }
+ }
+
+ return return_code;
+}
+
+/*****************************************************************************/
+/* fn scc_update_state() */
+/*****************************************************************************/
+/*!
+ * Make certain SCC is still running.
+ *
+ * Side effect is to update #scc_availability and, if the state goes to failed,
+ * run #scc_perform_callbacks().
+ *
+ * (If #SCC_BRINGUP is defined, bring SCC to secure state if it is found to be
+ * in health check state)
+ *
+ * @return Current value of #SMN_STATUS register.
+ */
+static uint32_t scc_update_state(void)
+{
+ uint32_t smn_status_register = SMN_STATE_FAIL;
+ int smn_state;
+
+ /* if FAIL or UNIMPLEMENTED, don't bother */
+ if (scc_availability == SCC_STATUS_CHECKING ||
+ scc_availability == SCC_STATUS_OK) {
+
+ smn_status_register = SCC_READ_REGISTER(SMN_STATUS);
+ smn_state = smn_status_register & SMN_STATUS_STATE_MASK;
+
+#ifdef SCC_BRINGUP
+ /* If in Health Check while booting, try to 'bringup' to Secure mode */
+ if (scc_availability == SCC_STATUS_CHECKING &&
+ smn_state == SMN_STATE_HEALTH_CHECK) {
+ /* Code up a simple algorithm for the ASC */
+ SCC_WRITE_REGISTER(SMN_SEQUENCE_START, 0xaaaa);
+ SCC_WRITE_REGISTER(SMN_SEQUENCE_END, 0x5555);
+ SCC_WRITE_REGISTER(SMN_SEQUENCE_CHECK, 0x5555);
+ /* State should be SECURE now */
+ smn_status_register = SCC_READ_REGISTER(SMN_STATUS);
+ smn_state = smn_status_register & SMN_STATUS_STATE_MASK;
+ }
+#endif
+
+ /*
+ * State should be SECURE or NON_SECURE for operation of the part. If
+ * FAIL, mark failed (i.e. limited access to registers). Any other
+ * state, mark unimplemented, as the SCC is unuseable.
+ */
+ if (smn_state == SMN_STATE_SECURE
+ || smn_state == SMN_STATE_NON_SECURE) {
+ /* Healthy */
+ scc_availability = SCC_STATUS_OK;
+ } else if (smn_state == SMN_STATE_FAIL) {
+ scc_availability = SCC_STATUS_FAILED; /* uh oh - unhealthy */
+ scc_perform_callbacks();
+ os_printk(KERN_ERR "SCC: SCC went into FAILED mode\n");
+ } else {
+ /* START, ZEROIZE RAM, HEALTH CHECK, or unknown */
+ scc_availability = SCC_STATUS_UNIMPLEMENTED; /* unuseable */
+ os_printk(KERN_ERR "SCC: SCC declared UNIMPLEMENTED\n");
+ }
+ }
+ /* if availability is initial or ok */
+ return smn_status_register;
+}
+
+/*****************************************************************************/
+/* fn scc_init_ccitt_crc() */
+/*****************************************************************************/
+/*!
+ * Populate the partial CRC lookup table.
+ *
+ * @return none
+ *
+ */
+static void scc_init_ccitt_crc(void)
+{
+ int dividend; /* index for lookup table */
+ uint16_t remainder; /* partial value for a given dividend */
+ int bit; /* index into bits of a byte */
+
+ /*
+ * Compute the remainder of each possible dividend.
+ */
+ for (dividend = 0; dividend < 256; ++dividend) {
+ /*
+ * Start with the dividend followed by zeros.
+ */
+ remainder = dividend << (8);
+
+ /*
+ * Perform modulo-2 division, a bit at a time.
+ */
+ for (bit = 8; bit > 0; --bit) {
+ /*
+ * Try to divide the current data bit.
+ */
+ if (remainder & 0x8000) {
+ remainder = (remainder << 1) ^ CRC_POLYNOMIAL;
+ } else {
+ remainder = (remainder << 1);
+ }
+ }
+
+ /*
+ * Store the result into the table.
+ */
+ scc_crc_lookup_table[dividend] = remainder;
+ }
+
+} /* scc_init_ccitt_crc() */
+
+/*****************************************************************************/
+/* fn grab_config_values() */
+/*****************************************************************************/
+/*!
+ * grab_config_values() will read the SCM Configuration and SMN Status
+ * registers and store away version and size information for later use.
+ *
+ * @return The current value of the SMN Status register.
+ */
+static uint32_t scc_grab_config_values(void)
+{
+ uint32_t config_register;
+ uint32_t smn_status_register = SMN_STATE_FAIL;
+
+ if (scc_availability != SCC_STATUS_UNIMPLEMENTED) {
+ /* access the SCC - these are 'safe' registers */
+ config_register = SCC_READ_REGISTER(SCM_CONFIGURATION);
+ pr_debug("SCC Driver: SCM config is 0x%08x\n", config_register);
+
+ /* Get SMN status and update scc_availability */
+ smn_status_register = scc_update_state();
+ pr_debug("SCC Driver: SMN status is 0x%08x\n",
+ smn_status_register);
+
+ /* save sizes and versions information for later use */
+ scc_configuration.block_size_bytes = (config_register &
+ SCM_CFG_BLOCK_SIZE_MASK)
+ >> SCM_CFG_BLOCK_SIZE_SHIFT;
+
+ scc_configuration.red_ram_size_blocks = (config_register &
+ SCM_CFG_RED_SIZE_MASK)
+ >> SCM_CFG_RED_SIZE_SHIFT;
+
+ scc_configuration.black_ram_size_blocks = (config_register &
+ SCM_CFG_BLACK_SIZE_MASK)
+ >> SCM_CFG_BLACK_SIZE_SHIFT;
+
+ scc_configuration.scm_version = (config_register
+ & SCM_CFG_VERSION_ID_MASK)
+ >> SCM_CFG_VERSION_ID_SHIFT;
+
+ scc_configuration.smn_version = (smn_status_register &
+ SMN_STATUS_VERSION_ID_MASK)
+ >> SMN_STATUS_VERSION_ID_SHIFT;
+
+ if (scc_configuration.scm_version != SCM_VERSION_1) {
+ scc_availability = SCC_STATUS_UNIMPLEMENTED; /* Unknown version */
+ }
+
+ scc_memory_size_bytes = (SCC_BLOCK_SIZE_BYTES() *
+ scc_configuration.
+ black_ram_size_blocks)
+ - SCM_NON_RESERVED_OFFSET;
+
+ /* This last is for driver consumption only */
+ scm_highest_memory_address = SCM_BLACK_MEMORY +
+ (SCC_BLOCK_SIZE_BYTES() *
+ scc_configuration.black_ram_size_blocks);
+ }
+
+ return smn_status_register;
+} /* grab_config_values */
+
+/*****************************************************************************/
+/* fn setup_interrupt_handling() */
+/*****************************************************************************/
+/*!
+ * Register the SCM and SMN interrupt handlers.
+ *
+ * Called from #scc_init()
+ *
+ * @return 0 on success
+ */
+static int setup_interrupt_handling(void)
+{
+ int smn_error_code = -1;
+ int scm_error_code = -1;
+
+ /* Disnable SCM interrupts */
+ SCC_WRITE_REGISTER(SCM_INTERRUPT_CTRL,
+ SCM_INTERRUPT_CTRL_CLEAR_INTERRUPT
+ | SCM_INTERRUPT_CTRL_MASK_INTERRUPTS);
+
+#ifdef USE_SMN_INTERRUPT
+ /* Install interrupt service routine for SMN. */
+ smn_error_code = os_register_interrupt(SCC_DRIVER_NAME,
+ INT_SCC_SMN, scc_irq);
+ if (smn_error_code != 0) {
+ os_printk
+ ("SCC Driver: Error installing SMN Interrupt Handler: %d\n",
+ smn_error_code);
+ } else {
+ smn_irq_set = 1; /* remember this for cleanup */
+ /* Enable SMN interrupts */
+ SCC_WRITE_REGISTER(SMN_COMMAND,
+ SMN_COMMAND_CLEAR_INTERRUPT |
+ SMN_COMMAND_ENABLE_INTERRUPT);
+ }
+#else
+ smn_error_code = 0; /* no problems... will handle later */
+#endif
+
+ /*
+ * Install interrupt service routine for SCM (or both together).
+ */
+ scm_error_code = os_register_interrupt(SCC_DRIVER_NAME,
+ INT_SCC_SCM, scc_irq);
+ if (scm_error_code != 0) {
+#ifndef MXC
+ os_printk
+ ("SCC Driver: Error installing SCM Interrupt Handler: %d\n",
+ scm_error_code);
+#else
+ os_printk
+ ("SCC Driver: Error installing SCC Interrupt Handler: %d\n",
+ scm_error_code);
+#endif
+ } else {
+ scm_irq_set = 1; /* remember this for cleanup */
+#if defined(USE_SMN_INTERRUPT) && !defined(NO_SMN_INTERRUPT)
+ /* Enable SMN interrupts */
+ SCC_WRITE_REGISTER(SMN_COMMAND,
+ SMN_COMMAND_CLEAR_INTERRUPT |
+ SMN_COMMAND_ENABLE_INTERRUPT);
+#endif
+ }
+
+ /* Return an error if one was encountered */
+ return scm_error_code ? scm_error_code : smn_error_code;
+} /* setup_interrupt_handling */
+
+/*****************************************************************************/
+/* fn scc_do_crypto() */
+/*****************************************************************************/
+/*! Have the SCM perform the crypto function.
+ *
+ * Set up length register, and the store @c scm_control into control register
+ * to kick off the operation. Wait for completion, gather status, clear
+ * interrupt / status.
+ *
+ * @param byte_count number of bytes to perform in this operation
+ * @param scm_control Bit values to be set in @c SCM_CONTROL register
+ *
+ * @return 0 on success, value of #SCM_ERROR_STATUS on failure
+ */
+static uint32_t scc_do_crypto(int byte_count, uint32_t scm_control)
+{
+ int block_count = byte_count / SCC_BLOCK_SIZE_BYTES();
+ uint32_t crypto_status;
+
+ /* clear any outstanding flags */
+ SCC_WRITE_REGISTER(SCM_INTERRUPT_CTRL,
+ SCM_INTERRUPT_CTRL_CLEAR_INTERRUPT
+ | SCM_INTERRUPT_CTRL_MASK_INTERRUPTS);
+
+ /* In length register, 0 means 1, etc. */
+ SCC_WRITE_REGISTER(SCM_LENGTH, block_count - 1);
+
+ /* set modes and kick off the operation */
+ SCC_WRITE_REGISTER(SCM_CONTROL, scm_control);
+
+ scc_wait_completion();
+
+ /* Mask for done and error bits */
+ crypto_status = SCC_READ_REGISTER(SCM_STATUS)
+ & (SCM_STATUS_CIPHERING_DONE
+ | SCM_STATUS_LENGTH_ERROR | SCM_STATUS_INTERNAL_ERROR);
+
+ /* Only done bit should be on */
+ if (crypto_status != SCM_STATUS_CIPHERING_DONE) {
+ /* Replace with error status instead */
+ crypto_status = SCC_READ_REGISTER(SCM_ERROR_STATUS);
+ pr_debug("SCM Failure: 0x%x\n", crypto_status);
+ if (crypto_status == 0) {
+ /* That came up 0. Turn on arbitrary bit to signal error. */
+ crypto_status = SCM_ERR_INTERNAL_ERROR;
+ }
+ } else {
+ crypto_status = 0;
+ }
+
+ pr_debug("SCC: Done waiting.\n");
+
+ /* Clear out any status. */
+ SCC_WRITE_REGISTER(SCM_INTERRUPT_CTRL,
+ SCM_INTERRUPT_CTRL_CLEAR_INTERRUPT
+ | SCM_INTERRUPT_CTRL_MASK_INTERRUPTS);
+
+ /* And clear any error status */
+ SCC_WRITE_REGISTER(SCM_ERROR_STATUS, 0);
+
+ return crypto_status;
+}
+
+/*****************************************************************************/
+/* fn scc_encrypt() */
+/*****************************************************************************/
+/*!
+ * Perform an encryption on the input. If @c verify_crc is true, a CRC must be
+ * calculated on the plaintext, and appended, with padding, before computing
+ * the ciphertext.
+ *
+ * @param[in] count_in_bytes Count of bytes of plaintext
+ * @param[in] data_in Pointer to the plaintext
+ * @param[in] scm_control Bit values for the SCM_CONTROL register
+ * @param[in,out] data_out Pointer for storing ciphertext
+ * @param[in] add_crc Flag for computing CRC - 0 no, else yes
+ * @param[in,out] count_out_bytes Number of bytes available at @c data_out
+ */
+static scc_return_t
+scc_encrypt(uint32_t count_in_bytes, const uint8_t * data_in,
+ uint32_t scm_control,
+ uint8_t * data_out, int add_crc, unsigned long *count_out_bytes)
+
+{
+ scc_return_t return_code = SCC_RET_FAIL; /* initialised for failure */
+ uint32_t input_bytes_left = count_in_bytes; /* local copy */
+ uint32_t output_bytes_copied = 0; /* running total */
+ uint32_t bytes_to_process; /* multi-purpose byte counter */
+ uint16_t crc = CRC_CCITT_START; /* running CRC value */
+ crc_t *crc_ptr = NULL; /* Reset if CRC required */
+ /* byte address into SCM RAM */
+ uint32_t scm_location = SCM_RED_MEMORY + SCM_NON_RESERVED_OFFSET;
+ /* free RED RAM */
+ uint32_t scm_bytes_remaining = scc_memory_size_bytes;
+ /* CRC+padding holder */
+ uint8_t padding_buffer[PADDING_BUFFER_MAX_BYTES];
+ unsigned padding_byte_count = 0; /* Reset if padding required */
+ uint32_t scm_error_status = 0; /* No known SCM error initially */
+ uint32_t i; /* Counter for clear data loop */
+ uint32_t dirty_bytes; /* Number of bytes of memory used
+ temporarily during encryption,
+ which need to be wiped after
+ completion of the operation. */
+
+ /* Set location of CRC and prepare padding bytes if required */
+ if (add_crc != 0) {
+ crc_ptr = &crc;
+ padding_byte_count = SCC_BLOCK_SIZE_BYTES()
+ - (count_in_bytes +
+ CRC_SIZE_BYTES) % SCC_BLOCK_SIZE_BYTES();
+ memcpy(padding_buffer + CRC_SIZE_BYTES, scc_block_padding,
+ padding_byte_count);
+ }
+
+ /* Process remaining input or padding data */
+ while (input_bytes_left > 0) {
+
+ /* Determine how much work to do this pass */
+ bytes_to_process = (input_bytes_left > scm_bytes_remaining) ?
+ scm_bytes_remaining : input_bytes_left;
+
+ /* Copy plaintext into SCM RAM, calculating CRC if required */
+ copy_to_scc(data_in, scm_location, bytes_to_process, crc_ptr);
+
+ /* Adjust pointers & counters */
+ input_bytes_left -= bytes_to_process;
+ data_in += bytes_to_process;
+ scm_location += bytes_to_process;
+ scm_bytes_remaining -= bytes_to_process;
+
+ /* Add CRC and padding after the last byte is copied if required */
+ if ((input_bytes_left == 0) && (crc_ptr != NULL)) {
+
+ /* Copy CRC into padding buffer MSB first */
+ padding_buffer[0] = (crc >> 8) & 0xFF;
+ padding_buffer[1] = crc & 0xFF;
+
+ /* Reset pointers and counter */
+ data_in = padding_buffer;
+ input_bytes_left = CRC_SIZE_BYTES + padding_byte_count;
+ crc_ptr = NULL; /* CRC no longer required */
+
+ /* Go round loop again to copy CRC and padding to SCM */
+ continue;
+ }
+
+ /* if no input and crc_ptr */
+ /* Now have block-sized plaintext in SCM to encrypt */
+ /* Encrypt plaintext; exit loop on error */
+ bytes_to_process = scm_location -
+ (SCM_RED_MEMORY + SCM_NON_RESERVED_OFFSET);
+
+ if (output_bytes_copied + bytes_to_process > *count_out_bytes) {
+ return_code = SCC_RET_INSUFFICIENT_SPACE;
+ scm_error_status = -1; /* error signal */
+ pr_debug
+ ("SCC: too many ciphertext bytes for space available\n");
+ break;
+ }
+ pr_debug("SCC: Starting encryption. %x for %d bytes (%p/%p)\n",
+ scm_control, bytes_to_process,
+ (void *)SCC_READ_REGISTER(SCM_RED_START),
+ (void *)SCC_READ_REGISTER(SCM_BLACK_START));
+ scm_error_status = scc_do_crypto(bytes_to_process, scm_control);
+ if (scm_error_status != 0) {
+ break;
+ }
+
+ /* Copy out ciphertext */
+ copy_from_scc(SCM_BLACK_MEMORY + SCM_NON_RESERVED_OFFSET,
+ data_out, bytes_to_process, NULL);
+
+ /* Adjust pointers and counters for next loop */
+ output_bytes_copied += bytes_to_process;
+ data_out += bytes_to_process;
+ scm_location = SCM_RED_MEMORY + SCM_NON_RESERVED_OFFSET;
+ scm_bytes_remaining = scc_memory_size_bytes;
+
+ } /* input_bytes_left > 0 */
+ /* Clear all red and black memory used during ephemeral encryption */
+ dirty_bytes = (count_in_bytes > scc_memory_size_bytes) ?
+ scc_memory_size_bytes : count_in_bytes;
+
+ for (i = 0; i < dirty_bytes; i += 4) {
+ SCC_WRITE_REGISTER(SCM_RED_MEMORY + SCM_NON_RESERVED_OFFSET + i,
+ 0);
+ SCC_WRITE_REGISTER(SCM_BLACK_MEMORY + SCM_NON_RESERVED_OFFSET +
+ i, 0);
+ }
+
+ /* If no SCM error, set OK status and save ouput byte count */
+ if (scm_error_status == 0) {
+ return_code = SCC_RET_OK;
+ *count_out_bytes = output_bytes_copied;
+ }
+
+ return return_code;
+} /* scc_encrypt */
+
+/*****************************************************************************/
+/* fn scc_decrypt() */
+/*****************************************************************************/
+/*!
+ * Perform a decryption on the input. If @c verify_crc is true, the last block
+ * (maybe the two last blocks) is special - it should contain a CRC and
+ * padding. These must be stripped and verified.
+ *
+ * @param[in] count_in_bytes Count of bytes of ciphertext
+ * @param[in] data_in Pointer to the ciphertext
+ * @param[in] scm_control Bit values for the SCM_CONTROL register
+ * @param[in,out] data_out Pointer for storing plaintext
+ * @param[in] verify_crc Flag for running CRC - 0 no, else yes
+ * @param[in,out] count_out_bytes Number of bytes available at @c data_out
+
+ */
+static scc_return_t
+scc_decrypt(uint32_t count_in_bytes, const uint8_t * data_in,
+ uint32_t scm_control,
+ uint8_t * data_out, int verify_crc, unsigned long *count_out_bytes)
+{
+ scc_return_t return_code = SCC_RET_FAIL;
+ uint32_t bytes_left = count_in_bytes; /* local copy */
+ uint32_t bytes_copied = 0; /* running total of bytes going to user */
+ uint32_t bytes_to_copy = 0; /* Number in this encryption 'chunk' */
+ uint16_t crc = CRC_CCITT_START; /* running CRC value */
+ /* next target for ctext */
+ uint32_t scm_location = SCM_BLACK_MEMORY + SCM_NON_RESERVED_OFFSET;
+ unsigned padding_byte_count; /* number of bytes of padding stripped */
+ uint8_t last_two_blocks[2 * SCC_BLOCK_SIZE_BYTES()]; /* temp */
+ uint32_t scm_error_status = 0; /* register value */
+ uint32_t i; /* Counter for clear data loop */
+ uint32_t dirty_bytes; /* Number of bytes of memory used
+ temporarily during decryption,
+ which need to be wiped after
+ completion of the operation. */
+
+ scm_control |= SCM_DECRYPT_MODE;
+
+ if (verify_crc) {
+ /* Save last two blocks (if there are at least two) of ciphertext for
+ special treatment. */
+ bytes_left -= SCC_BLOCK_SIZE_BYTES();
+ if (bytes_left >= SCC_BLOCK_SIZE_BYTES()) {
+ bytes_left -= SCC_BLOCK_SIZE_BYTES();
+ }
+ }
+
+ /* Copy ciphertext into SCM BLACK memory */
+ while (bytes_left && scm_error_status == 0) {
+
+ /* Determine how much work to do this pass */
+ if (bytes_left > (scc_memory_size_bytes)) {
+ bytes_to_copy = scc_memory_size_bytes;
+ } else {
+ bytes_to_copy = bytes_left;
+ }
+
+ if (bytes_copied + bytes_to_copy > *count_out_bytes) {
+ scm_error_status = -1;
+ break;
+ }
+ copy_to_scc(data_in, scm_location, bytes_to_copy, NULL);
+ data_in += bytes_to_copy; /* move pointer */
+
+ pr_debug("SCC: Starting decryption of %d bytes.\n",
+ bytes_to_copy);
+
+ /* Do the work, wait for completion */
+ scm_error_status = scc_do_crypto(bytes_to_copy, scm_control);
+
+ copy_from_scc(SCM_RED_MEMORY + SCM_NON_RESERVED_OFFSET,
+ data_out, bytes_to_copy, &crc);
+ bytes_copied += bytes_to_copy;
+ data_out += bytes_to_copy;
+ scm_location = SCM_BLACK_MEMORY + SCM_NON_RESERVED_OFFSET;
+
+ /* Do housekeeping */
+ bytes_left -= bytes_to_copy;
+
+ } /* while bytes_left */
+
+ /* At this point, either the process is finished, or this is verify mode */
+
+ if (scm_error_status == 0) {
+ if (!verify_crc) {
+ *count_out_bytes = bytes_copied;
+ return_code = SCC_RET_OK;
+ } else {
+ /* Verify mode. There are one or two blocks of unprocessed
+ * ciphertext sitting at data_in. They need to be moved to the
+ * SCM, decrypted, searched to remove padding, then the plaintext
+ * copied back to the user (while calculating CRC, of course).
+ */
+
+ /* Calculate ciphertext still left */
+ bytes_to_copy = count_in_bytes - bytes_copied;
+
+ copy_to_scc(data_in, scm_location, bytes_to_copy, NULL);
+ data_in += bytes_to_copy; /* move pointer */
+
+ pr_debug("SCC: Finishing decryption (%d bytes).\n",
+ bytes_to_copy);
+
+ /* Do the work, wait for completion */
+ scm_error_status =
+ scc_do_crypto(bytes_to_copy, scm_control);
+
+ if (scm_error_status == 0) {
+ /* Copy decrypted data back from SCM RED memory */
+ copy_from_scc(SCM_RED_MEMORY +
+ SCM_NON_RESERVED_OFFSET,
+ last_two_blocks, bytes_to_copy,
+ NULL);
+
+ /* (Plaintext) + crc + padding should be in temp buffer */
+ if (scc_strip_padding
+ (last_two_blocks + bytes_to_copy,
+ &padding_byte_count) == SCC_RET_OK) {
+ bytes_to_copy -=
+ padding_byte_count + CRC_SIZE_BYTES;
+
+ /* verify enough space in user buffer */
+ if (bytes_copied + bytes_to_copy <=
+ *count_out_bytes) {
+ int i = 0;
+
+ /* Move out last plaintext and calc CRC */
+ while (i < bytes_to_copy) {
+ CALC_CRC(last_two_blocks
+ [i], crc);
+ *data_out++ =
+ last_two_blocks
+ [i++];
+ bytes_copied++;
+ }
+
+ /* Verify the CRC by running over itself */
+ CALC_CRC(last_two_blocks
+ [bytes_to_copy], crc);
+ CALC_CRC(last_two_blocks
+ [bytes_to_copy + 1],
+ crc);
+ if (crc == 0) {
+ /* Just fine ! */
+ *count_out_bytes =
+ bytes_copied;
+ return_code =
+ SCC_RET_OK;
+ } else {
+ return_code =
+ SCC_RET_VERIFICATION_FAILED;
+ pr_debug
+ ("SCC: CRC values are %04x, %02x%02x\n",
+ crc,
+ last_two_blocks
+ [bytes_to_copy],
+ last_two_blocks
+ [bytes_to_copy +
+ 1]);
+ }
+ } /* if space available */
+ } /* if scc_strip_padding... */
+ else {
+ /* bad padding means bad verification */
+ return_code =
+ SCC_RET_VERIFICATION_FAILED;
+ }
+ }
+ /* scm_error_status == 0 */
+ } /* verify_crc */
+ }
+
+ /* scm_error_status == 0 */
+ /* Clear all red and black memory used during ephemeral decryption */
+ dirty_bytes = (count_in_bytes > scc_memory_size_bytes) ?
+ scc_memory_size_bytes : count_in_bytes;
+
+ for (i = 0; i < dirty_bytes; i += 4) {
+ SCC_WRITE_REGISTER(SCM_RED_MEMORY + SCM_NON_RESERVED_OFFSET + i,
+ 0);
+ SCC_WRITE_REGISTER(SCM_BLACK_MEMORY + SCM_NON_RESERVED_OFFSET +
+ i, 0);
+ }
+ return return_code;
+} /* scc_decrypt */
+
+/*****************************************************************************/
+/* fn scc_alloc_slot() */
+/*****************************************************************************/
+/*!
+ * Allocate a key slot to fit the requested size.
+ *
+ * @param value_size_bytes Size of the key or other secure data
+ * @param owner_id Value to tie owner to slot
+ * @param[out] slot Handle to access or deallocate slot
+ *
+ * @return SCC_RET_OK on success, SCC_RET_INSUFFICIENT_SPACE if not slots of
+ * requested size are available.
+ */
+scc_return_t
+scc_alloc_slot(uint32_t value_size_bytes, uint64_t owner_id, uint32_t * slot)
+{
+ scc_return_t status = SCC_RET_FAIL;
+ unsigned long irq_flags;
+
+ if (scc_availability != SCC_STATUS_OK) {
+ goto out;
+ }
+ /* ACQUIRE LOCK to prevent others from using SCC crypto */
+ spin_lock_irqsave(&scc_crypto_lock, irq_flags);
+
+ pr_debug("SCC: Allocating %d-byte slot for 0x%Lx\n",
+ value_size_bytes, owner_id);
+
+ if ((value_size_bytes != 0) && (value_size_bytes <= SCC_MAX_KEY_SIZE)) {
+ int i;
+
+ for (i = 0; i < SCC_KEY_SLOTS; i++) {
+ if (scc_key_info[i].status == 0) {
+ scc_key_info[i].owner_id = owner_id;
+ scc_key_info[i].length = value_size_bytes;
+ scc_key_info[i].status = 1; /* assigned! */
+ *slot = i;
+ status = SCC_RET_OK;
+ break; /* exit 'for' loop */
+ }
+ }
+
+ if (status != SCC_RET_OK) {
+ status = SCC_RET_INSUFFICIENT_SPACE;
+ } else {
+ pr_debug("SCC: Allocated slot %d (0x%Lx)\n", i,
+ owner_id);
+ }
+ }
+
+ spin_unlock_irqrestore(&scc_crypto_lock, irq_flags);
+
+ out:
+ return status;
+}
+
+/*****************************************************************************/
+/* fn verify_slot_access() */
+/*****************************************************************************/
+inline static scc_return_t
+verify_slot_access(uint64_t owner_id, uint32_t slot, uint32_t access_len)
+{
+ scc_return_t status = SCC_RET_FAIL;
+ if (scc_availability != SCC_STATUS_OK) {
+ goto out;
+ }
+
+ if ((slot < SCC_KEY_SLOTS) && scc_key_info[slot].status
+ && (scc_key_info[slot].owner_id == owner_id)
+ && (access_len <= SCC_KEY_SLOT_SIZE)) {
+ status = SCC_RET_OK;
+ pr_debug("SCC: Verify on slot %d succeeded\n", slot);
+ } else {
+ if (slot >= SCC_KEY_SLOTS) {
+ pr_debug("SCC: Verify on bad slot (%d) failed\n", slot);
+ } else if (scc_key_info[slot].status) {
+ pr_debug("SCC: Verify on slot %d failed (%Lx) \n", slot,
+ owner_id);
+ } else {
+ pr_debug
+ ("SCC: Verify on slot %d failed: not allocated\n",
+ slot);
+ }
+ }
+
+ out:
+ return status;
+}
+
+scc_return_t
+scc_verify_slot_access(uint64_t owner_id, uint32_t slot, uint32_t access_len)
+{
+ return verify_slot_access(owner_id, slot, access_len);
+}
+
+/*****************************************************************************/
+/* fn scc_dealloc_slot() */
+/*****************************************************************************/
+scc_return_t scc_dealloc_slot(uint64_t owner_id, uint32_t slot)
+{
+ scc_return_t status;
+ unsigned long irq_flags;
+ int i;
+
+ /* ACQUIRE LOCK to prevent others from using SCC crypto */
+ spin_lock_irqsave(&scc_crypto_lock, irq_flags);
+
+ status = verify_slot_access(owner_id, slot, 0);
+
+ if (status == SCC_RET_OK) {
+ scc_key_info[slot].owner_id = 0;
+ scc_key_info[slot].status = 0; /* unassign */
+
+ /* clear old info */
+ for (i = 0; i < SCC_KEY_SLOT_SIZE; i += 4) {
+ SCC_WRITE_REGISTER(SCM_RED_MEMORY +
+ scc_key_info[slot].offset + i, 0);
+ SCC_WRITE_REGISTER(SCM_BLACK_MEMORY +
+ scc_key_info[slot].offset + i, 0);
+ }
+ pr_debug("SCC: Deallocated slot %d\n", slot);
+ }
+
+ spin_unlock_irqrestore(&scc_crypto_lock, irq_flags);
+
+ return status;
+}
+
+/*****************************************************************************/
+/* fn scc_load_slot() */
+/*****************************************************************************/
+/*!
+ * Load a value into a slot.
+ *
+ * @param owner_id Value of owner of slot
+ * @param slot Handle of slot
+ * @param key_data Data to load into the slot
+ * @param key_length Length, in bytes, of @c key_data to copy to SCC.
+ *
+ * @return SCC_RET_OK on success. SCC_RET_FAIL will be returned if slot
+ * specified cannot be accessed for any reason, or SCC_RET_INSUFFICIENT_SPACE
+ * if @c key_length exceeds the size of the slot.
+ */
+scc_return_t
+scc_load_slot(uint64_t owner_id, uint32_t slot, const uint8_t * key_data,
+ uint32_t key_length)
+{
+ scc_return_t status;
+ unsigned long irq_flags;
+
+ /* ACQUIRE LOCK to prevent others from using SCC crypto */
+ spin_lock_irqsave(&scc_crypto_lock, irq_flags);
+
+ status = verify_slot_access(owner_id, slot, key_length);
+ if ((status == SCC_RET_OK) && (key_data != NULL)) {
+ status = SCC_RET_FAIL; /* reset expectations */
+
+ if (key_length > SCC_KEY_SLOT_SIZE) {
+ pr_debug
+ ("SCC: scc_load_slot() rejecting key of %d bytes.\n",
+ key_length);
+ status = SCC_RET_INSUFFICIENT_SPACE;
+ } else {
+ if (copy_to_scc(key_data,
+ SCM_RED_MEMORY +
+ scc_key_info[slot].offset, key_length,
+ NULL)) {
+ pr_debug("SCC: RED copy_to_scc() failed for"
+ " scc_load_slot()\n");
+ } else {
+ if ((key_length % 4) != 0) {
+ uint32_t zeros = 0;
+
+ /* zero-pad to get remainder bytes in correct place */
+ copy_to_scc((uint8_t *) & zeros,
+ SCM_RED_MEMORY
+ +
+ scc_key_info[slot].offset +
+ key_length,
+ 4 - (key_length % 4), NULL);
+ }
+ status = SCC_RET_OK;
+ }
+ }
+ }
+
+ spin_unlock_irqrestore(&scc_crypto_lock, irq_flags);
+
+ return status;
+} /* scc_load_slot */
+
+scc_return_t
+scc_read_slot(uint64_t owner_id, uint32_t slot, uint32_t key_length,
+ uint8_t * key_data)
+{
+ scc_return_t status;
+ unsigned long irq_flags;
+
+ /* ACQUIRE LOCK to prevent others from using SCC crypto */
+ spin_lock_irqsave(&scc_crypto_lock, irq_flags);
+
+ status = verify_slot_access(owner_id, slot, key_length);
+ if ((status == SCC_RET_OK) && (key_data != NULL)) {
+ status = SCC_RET_FAIL; /* reset expectations */
+
+ if (key_length > SCC_KEY_SLOT_SIZE) {
+ pr_debug
+ ("SCC: scc_read_slot() rejecting key of %d bytes.\n",
+ key_length);
+ status = SCC_RET_INSUFFICIENT_SPACE;
+ } else {
+ if (copy_from_scc
+ (SCM_RED_MEMORY + scc_key_info[slot].offset,
+ key_data, key_length, NULL)) {
+ pr_debug("SCC: RED copy_from_scc() failed for"
+ " scc_read_slot()\n");
+ } else {
+ status = SCC_RET_OK;
+ }
+ }
+ }
+
+ spin_unlock_irqrestore(&scc_crypto_lock, irq_flags);
+
+ return status;
+} /* scc_read_slot */
+
+/*****************************************************************************/
+/* fn scc_encrypt_slot() */
+/*****************************************************************************/
+/*!
+ * Encrypt the key data stored in a slot.
+ *
+ * @param owner_id Value of owner of slot
+ * @param slot Handle of slot
+ * @param length Length, in bytes, of @c black_data
+ * @param black_data Location to store result of encrypting RED data in slot
+ *
+ * @return SCC_RET_OK on success, SCC_RET_FAIL if slot specified cannot be
+ * accessed for any reason.
+ */
+scc_return_t scc_encrypt_slot(uint64_t owner_id, uint32_t slot,
+ uint32_t length, uint8_t * black_data)
+{
+ unsigned long irq_flags;
+ scc_return_t status;
+ uint32_t crypto_status;
+ uint32_t slot_offset =
+ scc_key_info[slot].offset / SCC_BLOCK_SIZE_BYTES();
+
+ /* ACQUIRE LOCK to prevent others from using crypto or releasing slot */
+ spin_lock_irqsave(&scc_crypto_lock, irq_flags);
+
+ status = verify_slot_access(owner_id, slot, length);
+ if (status == SCC_RET_OK) {
+ SCC_WRITE_REGISTER(SCM_BLACK_START, slot_offset);
+ SCC_WRITE_REGISTER(SCM_RED_START, slot_offset);
+
+ /* Use OwnerID as CBC IV to tie Owner to data */
+ SCC_WRITE_REGISTER(SCM_INIT_VECTOR_0, *(uint32_t *) & owner_id);
+ SCC_WRITE_REGISTER(SCM_INIT_VECTOR_1,
+ *(((uint32_t *) & owner_id) + 1));
+
+ /* Set modes and kick off the encryption */
+ crypto_status = scc_do_crypto(length,
+ SCM_CONTROL_START_CIPHER |
+ SCM_CBC_MODE);
+
+ if (crypto_status != 0) {
+ pr_debug("SCM encrypt red crypto failure: 0x%x\n",
+ crypto_status);
+ } else {
+
+ /* Give blob back to caller */
+ if (!copy_from_scc
+ (SCM_BLACK_MEMORY + scc_key_info[slot].offset,
+ black_data, length, NULL)) {
+ status = SCC_RET_OK;
+ pr_debug("SCC: Encrypted slot %d\n", slot);
+ }
+ }
+ }
+
+ spin_unlock_irqrestore(&scc_crypto_lock, irq_flags);
+
+ return status;
+}
+
+/*****************************************************************************/
+/* fn scc_decrypt_slot() */
+/*****************************************************************************/
+/*!
+ * Decrypt some black data and leave result in the slot.
+ *
+ * @param owner_id Value of owner of slot
+ * @param slot Handle of slot
+ * @param length Length, in bytes, of @c black_data
+ * @param black_data Location of data to dencrypt and store in slot
+ *
+ * @return SCC_RET_OK on success, SCC_RET_FAIL if slot specified cannot be
+ * accessed for any reason.
+ */
+scc_return_t scc_decrypt_slot(uint64_t owner_id, uint32_t slot,
+ uint32_t length, const uint8_t * black_data)
+{
+ unsigned long irq_flags;
+ scc_return_t status;
+ uint32_t crypto_status;
+ uint32_t slot_offset =
+ scc_key_info[slot].offset / SCC_BLOCK_SIZE_BYTES();
+
+ /* ACQUIRE LOCK to prevent others from using crypto or releasing slot */
+ spin_lock_irqsave(&scc_crypto_lock, irq_flags);
+
+ status = verify_slot_access(owner_id, slot, length);
+ if (status == SCC_RET_OK) {
+ status = SCC_RET_FAIL; /* reset expectations */
+
+ /* Place black key in to BLACK RAM and set up the SCC */
+ copy_to_scc(black_data,
+ SCM_BLACK_MEMORY + scc_key_info[slot].offset,
+ length, NULL);
+
+ SCC_WRITE_REGISTER(SCM_BLACK_START, slot_offset);
+ SCC_WRITE_REGISTER(SCM_RED_START, slot_offset);
+
+ /* Use OwnerID as CBC IV to tie Owner to data */
+ SCC_WRITE_REGISTER(SCM_INIT_VECTOR_0, *(uint32_t *) & owner_id);
+ SCC_WRITE_REGISTER(SCM_INIT_VECTOR_1,
+ *(((uint32_t *) & owner_id) + 1));
+
+ /* Set modes and kick off the decryption */
+ crypto_status = scc_do_crypto(length,
+ SCM_CONTROL_START_CIPHER
+ | SCM_CBC_MODE |
+ SCM_DECRYPT_MODE);
+
+ if (crypto_status != 0) {
+ pr_debug("SCM decrypt black crypto failure: 0x%x\n",
+ crypto_status);
+ } else {
+ status = SCC_RET_OK;
+ }
+ }
+
+ spin_unlock_irqrestore(&scc_crypto_lock, irq_flags);
+
+ return status;
+}
+
+/*****************************************************************************/
+/* fn scc_get_slot_info() */
+/*****************************************************************************/
+/*!
+ * Determine address and value length for a give slot.
+ *
+ * @param owner_id Value of owner of slot
+ * @param slot Handle of slot
+ * @param address Location to store kernel address of slot data
+ * @param value_size_bytes Location to store allocated length of data in slot.
+ * May be NULL if value is not needed by caller.
+ * @param slot_size_bytes Location to store max length data in slot
+ * May be NULL if value is not needed by caller.
+ *
+ * @return SCC_RET_OK or error indication
+ */
+scc_return_t
+scc_get_slot_info(uint64_t owner_id, uint32_t slot, uint32_t * address,
+ uint32_t * value_size_bytes, uint32_t * slot_size_bytes)
+{
+ scc_return_t status = verify_slot_access(owner_id, slot, 0);
+
+ if (status == SCC_RET_OK) {
+ *address =
+ SCC_BASE + SCM_RED_MEMORY + scc_key_info[slot].offset;
+ if (value_size_bytes != NULL) {
+ *value_size_bytes = scc_key_info[slot].length;
+ }
+ if (slot_size_bytes != NULL) {
+ *slot_size_bytes = SCC_KEY_SLOT_SIZE;
+ }
+ }
+
+ return status;
+}
+
+/*****************************************************************************/
+/* fn scc_wait_completion() */
+/*****************************************************************************/
+/*!
+ * Poll looking for end-of-cipher indication. Only used
+ * if @c SCC_SCM_SLEEP is not defined.
+ *
+ * @internal
+ *
+ * On a Tahiti, crypto under 230 or so bytes is done after the first loop, all
+ * the way up to five sets of spins for 1024 bytes. (8- and 16-byte functions
+ * are done when we first look. Zeroizing takes one pass around.
+ */
+static void scc_wait_completion(void)
+{
+ int i = 0;
+
+ /* check for completion by polling */
+ while (!is_cipher_done() && (i++ < SCC_CIPHER_MAX_POLL_COUNT)) {
+ udelay(10);
+ }
+ pr_debug("SCC: Polled DONE %d times\n", i);
+} /* scc_wait_completion() */
+
+/*****************************************************************************/
+/* fn is_cipher_done() */
+/*****************************************************************************/
+/*!
+ * This function returns non-zero if SCM Status register indicates
+ * that a cipher has terminated or some other interrupt-generating
+ * condition has occurred.
+ */
+static int is_cipher_done(void)
+{
+ register uint32_t scm_status;
+ register int cipher_done;
+
+ scm_status = SCC_READ_REGISTER(SCM_STATUS);
+
+ /*
+ * Done when 'SCM is currently performing a function' bits are zero
+ */
+ cipher_done = !(scm_status & (SCM_STATUS_ZEROIZING |
+ SCM_STATUS_CIPHERING));
+
+ return cipher_done;
+} /* is_cipher_done() */
+
+/*****************************************************************************/
+/* fn offset_within_smn() */
+/*****************************************************************************/
+/*!
+ * Check that the offset is with the bounds of the SMN register set.
+ *
+ * @param[in] register_offset register offset of SMN.
+ *
+ * @return 1 if true, 0 if false (not within SMN)
+ */
+static inline int offset_within_smn(uint32_t register_offset)
+{
+ return register_offset >= SMN_STATUS && register_offset <= SMN_TIMER;
+}
+
+/*****************************************************************************/
+/* fn offset_within_scm() */
+/*****************************************************************************/
+/*!
+ * Check that the offset is with the bounds of the SCM register set.
+ *
+ * @param[in] register_offset Register offset of SCM
+ *
+ * @return 1 if true, 0 if false (not within SCM)
+ */
+static inline int offset_within_scm(uint32_t register_offset)
+{
+ return (register_offset >= SCM_RED_START)
+ && (register_offset < scm_highest_memory_address);
+ /* Although this would cause trouble for zeroize testing, this change would
+ * close a security whole which currently allows any kernel program to access
+ * any location in RED RAM. Perhaps enforce in non-SCC_DEBUG compiles?
+ && (register_offset <= SCM_INIT_VECTOR_1); */
+}
+
+/*****************************************************************************/
+/* fn check_register_accessible() */
+/*****************************************************************************/
+/*!
+ * Given the current SCM and SMN status, verify that access to the requested
+ * register should be OK.
+ *
+ * @param[in] register_offset register offset within SCC
+ * @param[in] smn_status recent value from #SMN_STATUS
+ * @param[in] scm_status recent value from #SCM_STATUS
+ *
+ * @return #SCC_RET_OK if ok, #SCC_RET_FAIL if not
+ */
+static scc_return_t
+check_register_accessible(uint32_t register_offset, uint32_t smn_status,
+ uint32_t scm_status)
+{
+ int error_code = SCC_RET_FAIL;
+
+ /* Verify that the register offset passed in is not among the verboten set
+ * if the SMN is in Fail mode.
+ */
+ if (offset_within_smn(register_offset)) {
+ if ((smn_status & SMN_STATUS_STATE_MASK) == SMN_STATE_FAIL) {
+ if (!((register_offset == SMN_STATUS) ||
+ (register_offset == SMN_COMMAND) ||
+ (register_offset == SMN_DEBUG_DETECT_STAT))) {
+ pr_debug
+ ("SCC Driver: Note: Security State is in FAIL state.\n");
+ } /* register not a safe one */
+ else {
+ /* SMN is in FAIL, but register is a safe one */
+ error_code = SCC_RET_OK;
+ }
+ } /* State is FAIL */
+ else {
+ /* State is not fail. All registers accessible. */
+ error_code = SCC_RET_OK;
+ }
+ }
+ /* offset within SMN */
+ /* Not SCM register. Check for SCM busy. */
+ else if (offset_within_scm(register_offset)) {
+ /* This is the 'cannot access' condition in the SCM */
+ if ((scm_status & SCM_STATUS_BUSY)
+ /* these are always available - rest fail on busy */
+ && !((register_offset == SCM_STATUS) ||
+ (register_offset == SCM_ERROR_STATUS) ||
+ (register_offset == SCM_INTERRUPT_CTRL) ||
+ (register_offset == SCM_CONFIGURATION))) {
+ pr_debug
+ ("SCC Driver: Note: Secure Memory is in BUSY state.\n");
+ } /* status is busy & register inaccessible */
+ else {
+ error_code = SCC_RET_OK;
+ }
+ }
+ /* offset within SCM */
+ return error_code;
+
+} /* check_register_accessible() */
+
+/*****************************************************************************/
+/* fn check_register_offset() */
+/*****************************************************************************/
+/*!
+ * Check that the offset is with the bounds of the SCC register set.
+ *
+ * @param[in] register_offset register offset of SMN.
+ *
+ * #SCC_RET_OK if ok, #SCC_RET_FAIL if not
+ */
+static scc_return_t check_register_offset(uint32_t register_offset)
+{
+ int return_value = SCC_RET_FAIL;
+
+ /* Is it valid word offset ? */
+ if (SCC_BYTE_OFFSET(register_offset) == 0) {
+ /* Yes. Is register within SCM? */
+ if (offset_within_scm(register_offset)) {
+ return_value = SCC_RET_OK; /* yes, all ok */
+ }
+ /* Not in SCM. Now look within the SMN */
+ else if (offset_within_smn(register_offset)) {
+ return_value = SCC_RET_OK; /* yes, all ok */
+ }
+ }
+
+ return return_value;
+}
+
+#ifdef SCC_REGISTER_DEBUG
+
+/*****************************************************************************/
+/* fn dbg_scc_read_register() */
+/*****************************************************************************/
+/*!
+ * Noisily read a 32-bit value to an SCC register.
+ * @param offset The address of the register to read.
+ *
+ * @return The register value
+ * */
+static uint32_t dbg_scc_read_register(uint32_t offset)
+{
+ uint32_t value;
+
+ value = readl(scc_base + offset);
+
+#ifndef SCC_RAM_DEBUG /* print no RAM references */
+ if ((offset < SCM_RED_MEMORY) || (offset >= scm_highest_memory_address)) {
+#endif
+ pr_debug("SCC RD: 0x%4x : 0x%08x\n", offset, value);
+#ifndef SCC_RAM_DEBUG
+ }
+#endif
+
+ return value;
+}
+
+/*****************************************************************************/
+/* fn dbg_scc_write_register() */
+/*****************************************************************************/
+/*
+ * Noisily read a 32-bit value to an SCC register.
+ * @param offset The address of the register to written.
+ *
+ * @param value The new register value
+ */
+static void dbg_scc_write_register(uint32_t offset, uint32_t value)
+{
+
+#ifndef SCC_RAM_DEBUG /* print no RAM references */
+ if ((offset < SCM_RED_MEMORY) || (offset >= scm_highest_memory_address)) {
+#endif
+ pr_debug("SCC WR: 0x%4x : 0x%08x\n", offset, value);
+#ifndef SCC_RAM_DEBUG
+ }
+#endif
+
+ (void)writel(value, scc_base + offset);
+}
+
+#endif /* SCC_REGISTER_DEBUG */