summaryrefslogtreecommitdiff
path: root/plat/imx/imx8m/ddr/ddr4_dvfs.c
blob: 8634792801baa2c198bb5b3710bb4f97ac6751b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
 * Copyright 2018 NXP
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <drivers/delay_timer.h>
#include <lib/mmio.h>

#include <dram.h>

void ddr4_mr_write(uint32_t mr, uint32_t data, uint32_t mr_type, uint32_t rank)
{
	uint32_t val, mr_mirror, data_mirror;

	/*
	 * 1. Poll MRSTAT.mr_wr_busy until it is 0 to make sure
	 * that there is no outstanding MR transAction.
	 */
	while (mmio_read_32(DDRC_MRSTAT(0)) & 0x1)
		;

	/*
	 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
	 * and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
	 */
	val = mmio_read_32(DDRC_DIMMCTL(0));
	if ((val & 0x2) && (rank == 0x2)) {
		mr_mirror = (mr & 0x4) | ((mr & 0x1) << 1) | ((mr & 0x2) >> 1); /* BA0, BA1 swap */
		data_mirror = (data & 0x1607) | ((data & 0x8) << 1) | ((data & 0x10) >> 1) |
				((data & 0x20) << 1) | ((data & 0x40) >> 1) | ((data & 0x80) << 1) |
				 ((data & 0x100) >> 1) | ((data & 0x800) << 2) | ((data & 0x2000) >> 2) ;
	} else {
		mr_mirror = mr;
		data_mirror = data;
	}

	mmio_write_32(DDRC_MRCTRL0(0), mr_type | (mr_mirror << 12) | (rank << 4) );
	mmio_write_32(DDRC_MRCTRL1(0), data_mirror );

	/*
	 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1.
	 * This bit is self-clearing, and triggers the MR transaction.
	 * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
	 * the MR transaction to SDRAM, and no further accesses can be
	 * initiated until it is deasserted.
	 */
	mmio_setbits_32(DDRC_MRCTRL0(0), BIT(31));

	while (mmio_read_32(DDRC_MRSTAT(0)))
		;
}

void dram_cfg_all_mr(struct dram_info *info, uint32_t pstate)
{
	uint32_t num_rank = info->num_rank;
	/*
	 * 15. Perform MRS commands as required to re-program
	 * timing registers in the SDRAM for the new frequency
	 * (in particular, CL, CWL and WR may need to be changed).
	 */

	for (int i = 1; i <= num_rank; i++) {
		for (int j = 0; j < 6; j++)
			ddr4_mr_write(j, info->mr_table[pstate][j], 0, i);

		ddr4_mr_write(6, info->mr_table[pstate][7], 0, i);
	}
}

void sw_pstate(uint32_t pstate, uint32_t drate)
{
	uint32_t val;

	mmio_write_32(DDRC_SWCTL(0), 0x0);

	/*
	 * Update any registers which may be required to
	 * change for the new frequency.
	 */
	mmio_write_32(DDRC_MSTR2(0), pstate);
	mmio_setbits_32(DDRC_MSTR(0), (0x1 << 29));

	/*
	 * Toggle RFSHCTL3.refresh_update_level to allow the
	 * new refresh-related register values to propagate
	 * to the refresh logic.
	 */
	val = mmio_read_32(DDRC_RFSHCTL3(0));
	if (val & 0x2)
		mmio_write_32(DDRC_RFSHCTL3(0), val & 0xFFFFFFFD);
	else
		mmio_write_32(DDRC_RFSHCTL3(0), val | 0x2);
	/*
	 * 19. If required, trigger the initialization in the PHY.
	 * If using the gen2 multiPHY, PLL initialization should
	 * be triggered at this point. See the PHY databook for
	 * details about the frequency change procedure.
	 */
	mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8));
	mmio_write_32(DDRC_DFIMISC(0), 0x00000020 | (pstate << 8));

	/* wait DFISTAT.dfi_init_complete to 0 */
	while (mmio_read_32(DDRC_DFISTAT(0)) & 0x1)
		;

	/* change the clock to the target frequency */
	dram_clock_switch(drate, false);

	mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8));

	/* wait DFISTAT.dfi_init_complete to 1 */
	while (!(mmio_read_32(DDRC_DFISTAT(0)) & 0x1))
		;

	/*
	 * When changing frequencies the controller may violate the JEDEC
	 * requirement that no more than 16 refreshes should be issued within
	 * 2*tREFI. These extra refreshes are not expected to cause a problem
	 * in the SDRAM. This issue can be avoided by waiting for at least 2*tREFI
	 * before exiting self-refresh in step 19.
	 */
	udelay(14);

	/* 14. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
	mmio_clrbits_32(DDRC_PWRCTL(0), (1 << 5));

	while ((mmio_read_32(DDRC_STAT(0)) & 0x3f) == 0x23)
		;
}

void ddr4_swffc(struct dram_info *dram_info, unsigned int pstate)
{
	uint32_t drate = dram_info->timing_info->fsp_table[pstate];

	/*
	 * 1. set SWCTL.sw_done to disable quasi-dynamic register
	 * programming outside reset.
	 */
	mmio_write_32(DDRC_SWCTL(0), 0x0);

	/*
	 * 2. Write 0 to PCTRL_n.port_en. This blocks AXI port(s)
	 * from taking any transaction (blocks traffic on AXI ports).
	 */
	mmio_write_32(DDRC_PCTRL_0(0), 0x0);

	/*
	 * 3. Poll PSTAT.rd_port_busy_n=0 and PSTAT.wr_port_busy_n=0.
	 * Wait until all AXI ports are idle (the uMCTL2 core has to
	 * be idle).
	 */
	while (mmio_read_32(DDRC_PSTAT(0)) & 0x10001)
		;

	/*
	 * 4. Write 0 to SBRCTL.scrub_en. Disable SBR, required only if
	 * SBR instantiated.
	 * 5. Poll SBRSTAT.scrub_busy=0.
	 * 6. Set DERATEEN.derate_enable = 0, if DERATEEN.derate_eanble = 1
	 * and the read latency (RL) value needs to change after the frequency
	 * change (LPDDR2/3/4 only).
	 * 7. Set DBG1.dis_hif=1 so that no new commands will be accepted by the uMCTL2.
	 */
	mmio_setbits_32(DDRC_DBG1(0), (0x1 << 1));

	/*
	 * 8. Poll DBGCAM.dbg_wr_q_empty and DBGCAM.dbg_rd_q_empty to ensure
	 * that write and read data buffers are empty.
	 */
	while ((mmio_read_32(DDRC_DBGCAM(0)) & 0x06000000) != 0x06000000)
		;

	/*
	 * 9. For DDR4, update MR6 with the new tDLLK value via the Mode
	 * Register Write signals
	 * 10. Set DFILPCFG0.dfi_lp_en_sr = 0, if DFILPCFG0.dfi_lp_en_sr = 1,
	 * and wait until DFISTAT.dfi_lp_ack
	 * 11. If DFI PHY Master interface is active in uMCTL2, then disable it
	 * 12. Wait until STAT.operating_mode[1:0]!=11 indicating that the
	 * controller is not in self-refresh mode.
	 */
	if ((mmio_read_32(DDRC_STAT(0)) & 0x3) == 0x3)
		printf("C: Error DRAM should not in Self Refresh\n");

	/*
	 * 13. Assert PWRCTL.selfref_sw for the DWC_ddr_umctl2 core to enter
	 * the self-refresh mode.
	 */
	mmio_setbits_32(DDRC_PWRCTL(0), (1 << 5));

	/*
	 * 14. Wait until STAT.operating_mode[1:0]==11 indicating that the
	 * controller core is in self-refresh mode.
	 */
	while ((mmio_read_32(DDRC_STAT(0)) & 0x3f) != 0x23)
		;

	sw_pstate(pstate, drate);
	dram_cfg_all_mr(dram_info, pstate);

	/* 23. Enable HIF commands by setting DBG1.dis_hif=0. */
	mmio_clrbits_32(DDRC_DBG1(0), (0x1 << 1));

	/*
	 * 24. Reset DERATEEN.derate_enable = 1 if DERATEEN.derate_enable
	 * has been set to 0 in step 6.
	 * 25. If DFI PHY Master interface was active before step 11 then
	 * enable it back by programming DFIPHYMSTR.phymstr_en = 1'b1.
	 * 26. Write 1 to PCTRL_n.port_en. AXI port(s) are no longer blocked
	 * from taking transactions (Re-enable traffic on AXI ports)
	 */
	mmio_write_32(DDRC_PCTRL_0(0), 0x1);

	/*
	 * 27. Write 1 to SBRCTL.scrub_en. Enable SBR if desired, only
	 * required if SBR instantiated.
	 */

	/*
	 * set SWCTL.sw_done to enable quasi-dynamic register programming
	 * outside reset.
	 */
	mmio_write_32(DDRC_SWCTL(0), 0x1);

	/* wait SWSTAT.sw_done_ack to 1 */
	while (!(mmio_read_32(DDRC_SWSTAT(0)) & 0x1))
		;
}