summaryrefslogtreecommitdiff
path: root/plat/imx/common/imx8m/ddr4_dvfs.c
blob: a083613fb63d378849e0324fb1a4a49407728c32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/*
 * Copyright 2018 NXP
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <debug.h>
#include <ddrc.h>
#include <dram.h>
#include <mmio.h>

unsigned fsp_init_reg[3][4] = {
	{ DDRC_INIT3(0), DDRC_INIT4(0), DDRC_INIT6(0), DDRC_INIT7(0) },
	{ DDRC_FREQ1_INIT3(0), DDRC_FREQ1_INIT4(0), DDRC_FREQ1_INIT6(0), DDRC_FREQ1_INIT7(0) },
	{ DDRC_FREQ2_INIT3(0), DDRC_FREQ2_INIT4(0), DDRC_FREQ2_INIT6(0), DDRC_FREQ2_INIT7(0) },
};

static unsigned int mr_value[7];

void ddr4_mr_write(unsigned int mr, unsigned int data, unsigned int mr_type, unsigned int rank)
{
	unsigned int tmp, mr_mirror, data_mirror;
	/*
	 * 1. Poll MRSTAT.mr_wr_busy until it is 0 to make sure that there is
	 * no outstanding MR transAction. No
	 */
	do {
		tmp = mmio_read_32(DDRC_MRSTAT(0));
	} while (tmp & 0x1);

	/*
	 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
	 * and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
	 */
	tmp = mmio_read_32(DDRC_DIMMCTL(0));
	if ((tmp & 0x2) && (rank == 0x2)) {
		mr_mirror = (mr & 0x4) | ((mr & 0x1) << 1) | ((mr & 0x2) >> 1); /* BA0, BA1 swap */
		data_mirror = (data & 0x1607) | ((data & 0x8) << 1) | ((data & 0x10) >> 1) |
				((data & 0x20) << 1) | ((data & 0x40) >> 1) | ((data & 0x80) << 1) |
				 ((data & 0x100) >> 1) | ((data & 0x800) << 2) | ((data & 0x2000) >> 2) ;
	} else {
		mr_mirror = mr;
		data_mirror = data;
	}

	mmio_write_32(DDRC_MRCTRL0(0), mr_type | (mr_mirror << 12) | (rank << 4) );
	mmio_write_32(DDRC_MRCTRL1(0), data_mirror );

	/*
	 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This bit is
	 * self-clearing, and triggers the MR transaction. The uMCTL2 then asserts the
	 * MRSTAT.mr_wr_busy while it performs the MR transaction to SDRAM, and no further
	 * accesses can be initiated until it is deasserted.
	 */
	mmio_setbits_32(DDRC_MRCTRL0(0), (1 << 31));
	do {
		tmp = mmio_read_32(DDRC_MRSTAT(0));
	} while (tmp);
}

void dram_cfg_all_mr(unsigned int num_rank, unsigned int pstate)
{
	/*
	 * 15. Perform MRS commands as required to re-program timing registers
	 * in the SDRAM for the new frequency (in particular, CL, CWL and WR
	 * may need to be changed).
	 */

	for (int i = 1; i <= num_rank; i++) {
		for (int j = 0; j < 7; j++)
			ddr4_mr_write(j, mr_value[j], 0, i);
	}
}

void sw_pstate(unsigned int pstate)
{
	volatile unsigned int tmp;
	unsigned int i;

	mmio_write_32(DDRC_SWCTL(0), 0x0000);
	/* 12. Change the clock frequency to the desired value. */

	/*
	 * 13. Update any registers which may be required to change for the new frequency. This includes
	 * quasidynamic and dynamic registers. This includes both uMCTL2 registers and PHY registers.
	 */
	mmio_write_32(DDRC_MSTR2(0), pstate); /* UMCTL2_REGS_FREQ1 */
	mmio_setbits_32(DDRC_MSTR(0), (0x1 << 29));

	/*
	 * dvfs.18. Toggle RFSHCTL3.refresh_update_level to allow the new refresh-related
	 * register values to propagate to the refresh logic.
	 */
	tmp = mmio_read_32(DDRC_RFSHCTL3(0));
	if ((tmp & 0x2) == 0x2)
		mmio_write_32(DDRC_RFSHCTL3(0), tmp & 0xFFFFFFFD);
	else
		mmio_write_32(DDRC_RFSHCTL3(0), tmp | 0x2);
	/*
	 *dvfs.19. If required, trigger the initialization in the PHY. If using the gen2
	 * multiPHY, PLL initialization should be triggered at this point. See the PHY
	 * databook for details about the frequency change procedure.
	 */
	/* before write Dynamic reg, sw_done should be 0 */
	mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8));//pstate1
	mmio_write_32(DDRC_DFIMISC(0), 0x00000020 | (pstate << 8));

	/* wait DFISTAT.dfi_init_complete to 0 */
	do {
		tmp = 0x1 & mmio_read_32(DDRC_DFISTAT(0));
	} while (tmp);

	/* change the clock to the target frequency */
	dram_clock_switch(pstate);

	mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8));
	/* wait DFISTAT.dfi_init_complete to 1 */
	do {
		tmp = 0x1 & mmio_read_32(DDRC_DFISTAT(0));
	} while (!tmp);

	/*
	 * When changing frequencies the controller may violate the JEDEC
	 * requirement that no more than 16 refreshes should be issued within
	 * 2*tREFI. These extra refreshes are not expected to cause a problem
	 * in the SDRAM. This issue can be avoided by waiting for at least 2*tREFI
	 * before exiting self-refresh in step 19.
	 */
	for (i = 20; i > 0; i--)
		printf("waiting for 2*tREF (2*7.8us)\n");

	/* 14. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
	mmio_clrbits_32(DDRC_PWRCTL(0), (1 << 5));
	do {
		tmp  = 0x3f & (mmio_read_32((DDRC_STAT(0))));
	} while (tmp == 0x23);
}

void ddr4_dll_change(unsigned int num_rank, unsigned int pstate, unsigned int cur_pstate)
{
	volatile unsigned int tmp;
	enum DLL_STATE { NO_CHANGE=0, ON2OFF=1, OFF2ON=2} dll_sw; /* 0-no change, 1-on2off, 2-off2on.; */

	if (pstate != 0 && cur_pstate == 0)
		dll_sw = ON2OFF;
	else if (pstate == 0 && cur_pstate != 0)
		dll_sw = OFF2ON;
	else
		dll_sw = NO_CHANGE;

	/* the the following software programming sequence to switch from DLL-on to DLL-off, or reverse: */
	mmio_write_32(DDRC_SWCTL(0), 0x0000);

	mmio_write_32(DDRC_PCTRL_0(0), 0x00000000);

	/* 1. Set the DBG1.dis_hif = 1. This prevents further reads/writes being received on the HIF. */
	mmio_setbits_32(DDRC_DBG1(0), (0x1 << 1));

	/* 2. Set ZQCTL0.dis_auto_zq=1, to disable automatic generation of ZQCS/MPC(ZQ calibration) */
	mmio_setbits_32(DDRC_FREQ1_ZQCTL0(0), (1 << 31));
	mmio_setbits_32(DDRC_FREQ2_ZQCTL0(0), (1 << 31));
	mmio_setbits_32(DDRC_ZQCTL0(0), (1 << 31));

	/* 3. Set RFSHCTL3.dis_auto_refresh=1, to disable automatic refreshes */
	mmio_setbits_32(DDRC_RFSHCTL3(0), 0x1);
	/* 4. Ensure all commands have been flushed from the uMCTL2 by polling */
	do {
		tmp = 0x36000000 & mmio_read_32(DDRC_DBGCAM(0));
	} while (tmp != 0x36000000);

	/* mmio_write_32(DDRC_PCTRL_0(0), 0x00000000); */

	/* 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) to disable RTT_NOM: */
	/* a. DDR3: Write 0 to MR1[9], MR1[6] and MR1[2] */
	/* b. DDR4: Write 0 to MR1[10:8] */
	for (int i = 1; i <= num_rank; i++) {
		if (mr_value[1] & 0x700)
			ddr4_mr_write(1, mr_value[1] & 0xF8FF, 0, i);
	}

	/* 6. For DDR4 only: Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) to write 0 to */
	/* MR5[8:6] to disable RTT_PARK */
	for (int i = 1; i < num_rank; i++) {
		if (mr_value[5] & 0x1C0)
			ddr4_mr_write(5, mr_value[5] & 0xFE3F, 0, i);
	}

	if(dll_sw == ON2OFF) {
	        /* 7. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) to write 0 to MR2[11:9], to */
		/* disable RTT_WR (and therefore disable dynamic ODT). This applies for both DDR3 and DDR4. */
		for (int i = 1; i <= num_rank; i++) {
			if (mr_value[2] & 0xE00)
				ddr4_mr_write(2, mr_value[2] & 0xF1FF, 0, i);
		}

		/* 8. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) to disable the DLL. The */
		/* timing of this MRS is automatically handled by the uMCTL2. */
		/* a. DDR3: Write 1 to MR1[0] */
		/* b. DDR4: Write 0 to MR1[0] */
		for (int i = 1; i <= num_rank; i++) {
			ddr4_mr_write(1, mr_value[1] & 0xFFFE, 0, i);
		}
	}

	/* 9. Put the SDRAM into self-refresh mode by setting PWRCTL.selfref_sw = 1, and polling */
	/* STAT.operating_mode to ensure the DDRC has entered self-refresh. */
	mmio_setbits_32(DDRC_PWRCTL(0), (1 << 5));
	/*
	 * 10. Wait until STAT.operating_mode[1:0]==11 indicating that the DWC_ddr_umctl2
	 * core is in selfrefresh mode. Ensure transition to self-refresh was due to software
	 * by checking that
	 */
	/* STAT.selfref_type[1:0]=2`b10. */
	do {
		tmp  = 0x3f & (mmio_read_32((DDRC_STAT(0))));
	} while (tmp != 0x23);

	/* 11. Set the MSTR.dll_off_mode = 1 or 0. */
	if (dll_sw == ON2OFF)
		mmio_setbits_32(DDRC_MSTR(0), (1 << 15));

	if(dll_sw == OFF2ON)
		mmio_clrbits_32(DDRC_MSTR(0), (1 << 15));

	sw_pstate(pstate);

	/* DRAM dll enable */
	if (dll_sw == OFF2ON) {
		for (int i = 1; i <= num_rank; i++) {
			ddr4_mr_write(1, mr_value[1] | 0x1, 0, i);
		}

		for (int i = 1; i <= num_rank; i++) {
			ddr4_mr_write(0, mr_value[0] | 0x100, 0, i);
		}
	}

	dram_cfg_all_mr(num_rank, pstate);

	/* 16. Re-enable automatic generation of ZQCS/MPC(ZQ calibration) commands */
	mmio_clrbits_32(DDRC_FREQ1_ZQCTL0(0), (1 << 31));
	mmio_clrbits_32(DDRC_FREQ2_ZQCTL0(0), (1 << 31));
	mmio_clrbits_32(DDRC_ZQCTL0(0), (1 << 31));

	/* 17. Re-enable automatic refreshes (RFSHCTL3.dis_auto_refresh = 0) if they have been previously disabled. */
	mmio_clrbits_32(DDRC_RFSHCTL3(0), 0x1);
	/* 18. Restore ZQCTL0.dis_srx_zqcl */
	/* 19. Write DBG1.dis_hif = 0 to re-enable reads and writes. */
	mmio_clrbits_32(DDRC_DBG1(0), (0x1 << 1));

	mmio_write_32(DDRC_PCTRL_0(0), 0x00000001);
	/* 27. Write 1 to SBRCTL.scrub_en. Enable SBR if desired, only required if SBR instantiated. */

	/* set SWCTL.sw_done to enable quasi-dynamic register programming outside reset. */
	mmio_write_32(DDRC_SWCTL(0), 0x0001);

	/* wait SWSTAT.sw_done_ack to 1 */
	do {
		tmp  = 0x1 & mmio_read_32(DDRC_SWSTAT(0));
	} while (!tmp);
}

void ddr4_dll_no_change(unsigned int num_rank, unsigned int pstate)
{
	volatile unsigned int tmp;
	/* 1. set SWCTL.sw_done to disable quasi-dynamic register programming outside reset. */
	mmio_write_32(DDRC_SWCTL(0), 0x0000);

	/* 2. Write 0 to PCTRL_n.port_en. This blocks AXI port(s) from taking any transaction (blocks traffic on
	AXI ports). */
	mmio_write_32(DDRC_PCTRL_0(0), 0x00000000);

	/* 3. Poll PSTAT.rd_port_busy_n=0 and PSTAT.wr_port_busy_n=0. Wait until all AXI ports are idle (the
	 uMCTL2 core has to be idle). */
	do {
		tmp = mmio_read_32(DDRC_PSTAT(0));
	} while (tmp & 0x10001);

	/* 4. Write 0 to SBRCTL.scrub_en. Disable SBR, required only if SBR instantiated. */
	/* 5. Poll SBRSTAT.scrub_busy=0. Indicates that there are no outstanding SBR read commands */
	/* 6. Set DERATEEN.derate_enable = 0, if DERATEEN.derate_eanble = 1 and the read latency (RL) value */
	//needs to change after the frequency change (LPDDR2/3/4 only).
	/* 7. Set DBG1.dis_hif=1 so that no new commands will be accepted by the uMCTL2. */
	mmio_setbits_32(DDRC_DBG1(0), (0x1 << 1));
	/* 8. Poll DBGCAM.dbg_wr_q_empty and DBGCAM.dbg_rd_q_empty to ensure that write and read data buffers are empty. */
	do {
		tmp = 0x06000000 & mmio_read_32(DDRC_DBGCAM(0));
	} while (tmp != 0x06000000);
	/* 9. For DDR4, update MR6 with the new tDLLK value via the Mode Register Write signals */

	/* 10. Set DFILPCFG0.dfi_lp_en_sr = 0, if DFILPCFG0.dfi_lp_en_sr = 1, and wait until DFISTAT.dfi_lp_ack */
	/* 11. If DFI PHY Master interface is active in uMCTL2 (DFIPHYMSTR.phymstr_en == 1'b1) then disable it */
	/* 12. Wait until STAT.operating_mode[1:0]!=11 indicating that the DWC_ddr_umctl2 controller is not in self-refresh mode. */
	tmp  = 0x3 & (mmio_read_32((DDRC_STAT(0))));
	if (tmp == 0x3) {
		printf("C: Error DRAM should not in Self Refresh\n");
	}
	/* 13. Assert PWRCTL.selfref_sw for the DWC_ddr_umctl2 core to enter the self-refresh mode. */
	mmio_setbits_32(DDRC_PWRCTL(0), (1 << 5));
	/* 14. Wait until STAT.operating_mode[1:0]==11 indicating that the DWC_ddr_umctl2 core is in selfrefresh mode. */
	do {
		tmp  = 0x3f & (mmio_read_32((DDRC_STAT(0))));
	} while (tmp != 0x23);

	sw_pstate(pstate);
	dram_cfg_all_mr(num_rank, pstate);

	/* 23. Enable HIF commands by setting DBG1.dis_hif=0. */
	mmio_clrbits_32(DDRC_DBG1(0), (0x1 << 1));
	/* 24. Reset DERATEEN.derate_enable = 1 if DERATEEN.derate_enable has been set to 0 in step 6. */
	/* 25. If DFI PHY Master interface was active in uMCTL2 (DFIPHYMSTR.phymstr_en == 1'b1) before the */
	/* step 11 then enable it back by programming DFIPHYMSTR.phymstr_en = 1'b1. */
	/* 26. Write 1 to PCTRL_n.port_en. AXI port(s) are no longer blocked from taking transactions (Re-enable traffic on AXI ports). */
	/* Re-enable traffic on the AXI ports */
	mmio_write_32(DDRC_PCTRL_0(0), 0x00000001);
	/* 27. Write 1 to SBRCTL.scrub_en. Enable SBR if desired, only required if SBR instantiated. */

	/* set SWCTL.sw_done to enable quasi-dynamic register programming outside reset. */
	mmio_write_32(DDRC_SWCTL(0), 0x0001);

	/* wait SWSTAT.sw_done_ack to 1 */
	do {
		tmp  = 0x1 & mmio_read_32(DDRC_SWSTAT(0));
	} while (!tmp);
}

void get_mr_values(unsigned int pstate)
{
	uint32_t init_val;

	for (int i = 0; i < 3; i++) {
		init_val = mmio_read_32(fsp_init_reg[pstate][i]);
		mr_value[2*i] = init_val >> 16;
		mr_value[2*i + 1] = init_val & 0xFFFF;
	}

	mr_value[6] = mmio_read_32(fsp_init_reg[pstate][3]) & 0xFFFF;
}

void ddr4_swffc(struct dram_info *dram_info, unsigned int pstate)
{
	unsigned int cur_pstate = dram_info->current_fsp;

	get_mr_values(pstate);

	if ((pstate == 0 && cur_pstate !=0) || (pstate != 0 && cur_pstate == 0))
		ddr4_dll_change(dram_info->num_rank, pstate, cur_pstate);
	else
		ddr4_dll_no_change(dram_info->num_rank, pstate);

	dram_info->current_fsp = pstate;
}