summaryrefslogtreecommitdiff
path: root/plat/hisilicon/hikey/hikey_bl1_setup.c
blob: b005874632ac62af3b5f56a2501ff0dcec809578 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
 * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <console.h>
#include <debug.h>
#include <dw_mmc.h>
#include <emmc.h>
#include <errno.h>
#include <gpio.h>
#include <hi6220.h>
#include <hi6553.h>
#include <mmio.h>
#include <pl061_gpio.h>
#include <platform.h>
#include <platform_def.h>
#include <sp804_delay_timer.h>
#include <string.h>
#include <tbbr/tbbr_img_desc.h>

#include "../../bl1/bl1_private.h"
#include "hikey_def.h"
#include "hikey_private.h"

/*
 * Declarations of linker defined symbols which will help us find the layout
 * of trusted RAM
 */
extern unsigned long __COHERENT_RAM_START__;
extern unsigned long __COHERENT_RAM_END__;

/*
 * The next 2 constants identify the extents of the coherent memory region.
 * These addresses are used by the MMU setup code and therefore they must be
 * page-aligned.  It is the responsibility of the linker script to ensure that
 * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
 * page-aligned addresses.
 */
#define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)

/* Data structure which holds the extents of the trusted RAM for BL1 */
static meminfo_t bl1_tzram_layout;

enum {
	BOOT_NORMAL = 0,
	BOOT_USB_DOWNLOAD,
	BOOT_UART_DOWNLOAD,
};

meminfo_t *bl1_plat_sec_mem_layout(void)
{
	return &bl1_tzram_layout;
}

/*
 * Perform any BL1 specific platform actions.
 */
void bl1_early_platform_setup(void)
{
	const size_t bl1_size = BL1_RAM_LIMIT - BL1_RAM_BASE;

	/* Initialize the console to provide early debug support */
	console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);

	/* Allow BL1 to see the whole Trusted RAM */
	bl1_tzram_layout.total_base = BL1_RW_BASE;
	bl1_tzram_layout.total_size = BL1_RW_SIZE;

	/* Calculate how much RAM BL1 is using and how much remains free */
	bl1_tzram_layout.free_base = BL1_RW_BASE;
	bl1_tzram_layout.free_size = BL1_RW_SIZE;
	reserve_mem(&bl1_tzram_layout.free_base,
		    &bl1_tzram_layout.free_size,
		    BL1_RAM_BASE,
		    bl1_size);

	INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT,
	     bl1_size);
}

/*
 * Perform the very early platform specific architecture setup here. At the
 * moment this only does basic initialization. Later architectural setup
 * (bl1_arch_setup()) does not do anything platform specific.
 */
void bl1_plat_arch_setup(void)
{
	hikey_init_mmu_el3(bl1_tzram_layout.total_base,
			   bl1_tzram_layout.total_size,
			   BL1_RO_BASE,
			   BL1_RO_LIMIT,
			   BL1_COHERENT_RAM_BASE,
			   BL1_COHERENT_RAM_LIMIT);
}

static void hikey_sp804_init(void)
{
	uint32_t data;

	/* select the clock of dual timer0 */
	data = mmio_read_32(AO_SC_TIMER_EN0);
	while (data & 3) {
		data &= ~3;
		data |= 3 << 16;
		mmio_write_32(AO_SC_TIMER_EN0, data);
		data = mmio_read_32(AO_SC_TIMER_EN0);
	}
	/* enable the pclk of dual timer0 */
	data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4);
	while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0)) {
		mmio_write_32(AO_SC_PERIPH_CLKEN4, PCLK_TIMER1 | PCLK_TIMER0);
		data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4);
	}
	/* reset dual timer0 */
	data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
	mmio_write_32(AO_SC_PERIPH_RSTEN4, PCLK_TIMER1 | PCLK_TIMER0);
	do {
		data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
	} while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0));
	/* unreset dual timer0 */
	mmio_write_32(AO_SC_PERIPH_RSTDIS4, PCLK_TIMER1 | PCLK_TIMER0);
	do {
		data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
	} while ((data & PCLK_TIMER1) || (data & PCLK_TIMER0));

	sp804_timer_init(SP804_TIMER0_BASE, 10, 192);
}

static void hikey_gpio_init(void)
{
	pl061_gpio_init();
	pl061_gpio_register(GPIO0_BASE, 0);
	pl061_gpio_register(GPIO1_BASE, 1);
	pl061_gpio_register(GPIO2_BASE, 2);
	pl061_gpio_register(GPIO3_BASE, 3);
	pl061_gpio_register(GPIO4_BASE, 4);
	pl061_gpio_register(GPIO5_BASE, 5);
	pl061_gpio_register(GPIO6_BASE, 6);
	pl061_gpio_register(GPIO7_BASE, 7);
	pl061_gpio_register(GPIO8_BASE, 8);
	pl061_gpio_register(GPIO9_BASE, 9);
	pl061_gpio_register(GPIO10_BASE, 10);
	pl061_gpio_register(GPIO11_BASE, 11);
	pl061_gpio_register(GPIO12_BASE, 12);
	pl061_gpio_register(GPIO13_BASE, 13);
	pl061_gpio_register(GPIO14_BASE, 14);
	pl061_gpio_register(GPIO15_BASE, 15);
	pl061_gpio_register(GPIO16_BASE, 16);
	pl061_gpio_register(GPIO17_BASE, 17);
	pl061_gpio_register(GPIO18_BASE, 18);
	pl061_gpio_register(GPIO19_BASE, 19);

	/* Power on indicator LED (USER_LED1). */
	gpio_set_direction(32, GPIO_DIR_OUT);	/* LED1 */
	gpio_set_value(32, GPIO_LEVEL_HIGH);
	gpio_set_direction(33, GPIO_DIR_OUT);	/* LED2 */
	gpio_set_value(33, GPIO_LEVEL_LOW);
	gpio_set_direction(34, GPIO_DIR_OUT);	/* LED3 */
	gpio_set_direction(35, GPIO_DIR_OUT);	/* LED4 */
}

static void hikey_pmussi_init(void)
{
	uint32_t data;

	/* Initialize PWR_HOLD GPIO */
	gpio_set_direction(0, GPIO_DIR_OUT);
	gpio_set_value(0, GPIO_LEVEL_LOW);

	/*
	 * After reset, PMUSSI stays in reset mode.
	 * Now make it out of reset.
	 */
	mmio_write_32(AO_SC_PERIPH_RSTDIS4,
		      AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N);
	do {
		data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
	} while (data & AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N);

	/* Set PMUSSI clock latency for read operation. */
	data = mmio_read_32(AO_SC_MCU_SUBSYS_CTRL3);
	data &= ~AO_SC_MCU_SUBSYS_CTRL3_RCLK_MASK;
	data |= AO_SC_MCU_SUBSYS_CTRL3_RCLK_3;
	mmio_write_32(AO_SC_MCU_SUBSYS_CTRL3, data);

	/* enable PMUSSI clock */
	data = AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_CCPU |
	       AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_MCU;
	mmio_write_32(AO_SC_PERIPH_CLKEN5, data);
	data = AO_SC_PERIPH_CLKEN4_PCLK_PMUSSI;
	mmio_write_32(AO_SC_PERIPH_CLKEN4, data);

	gpio_set_value(0, GPIO_LEVEL_HIGH);
}

static void hikey_hi6553_init(void)
{
	uint8_t data;

	mmio_write_8(HI6553_PERI_EN_MARK, 0x1e);
	mmio_write_8(HI6553_NP_REG_ADJ1, 0);
	data = DISABLE6_XO_CLK_CONN | DISABLE6_XO_CLK_NFC |
		DISABLE6_XO_CLK_RF1 | DISABLE6_XO_CLK_RF2;
	mmio_write_8(HI6553_DISABLE6_XO_CLK, data);

	/* configure BUCK0 & BUCK1 */
	mmio_write_8(HI6553_BUCK01_CTRL2, 0x5e);
	mmio_write_8(HI6553_BUCK0_CTRL7, 0x10);
	mmio_write_8(HI6553_BUCK1_CTRL7, 0x10);
	mmio_write_8(HI6553_BUCK0_CTRL5, 0x1e);
	mmio_write_8(HI6553_BUCK1_CTRL5, 0x1e);
	mmio_write_8(HI6553_BUCK0_CTRL1, 0xfc);
	mmio_write_8(HI6553_BUCK1_CTRL1, 0xfc);

	/* configure BUCK2 */
	mmio_write_8(HI6553_BUCK2_REG1, 0x4f);
	mmio_write_8(HI6553_BUCK2_REG5, 0x99);
	mmio_write_8(HI6553_BUCK2_REG6, 0x45);
	mdelay(1);
	mmio_write_8(HI6553_VSET_BUCK2_ADJ, 0x22);
	mdelay(1);

	/* configure BUCK3 */
	mmio_write_8(HI6553_BUCK3_REG3, 0x02);
	mmio_write_8(HI6553_BUCK3_REG5, 0x99);
	mmio_write_8(HI6553_BUCK3_REG6, 0x41);
	mmio_write_8(HI6553_VSET_BUCK3_ADJ, 0x02);
	mdelay(1);

	/* configure BUCK4 */
	mmio_write_8(HI6553_BUCK4_REG2, 0x9a);
	mmio_write_8(HI6553_BUCK4_REG5, 0x99);
	mmio_write_8(HI6553_BUCK4_REG6, 0x45);

	/* configure LDO20 */
	mmio_write_8(HI6553_LDO20_REG_ADJ, 0x50);

	mmio_write_8(HI6553_NP_REG_CHG, 0x0f);
	mmio_write_8(HI6553_CLK_TOP0, 0x06);
	mmio_write_8(HI6553_CLK_TOP3, 0xc0);
	mmio_write_8(HI6553_CLK_TOP4, 0x00);

	/* configure LDO7 & LDO10 for SD slot */
	/* enable LDO7 */
	data = mmio_read_8(HI6553_LDO7_REG_ADJ);
	data = (data & 0xf8) | 0x2;
	mmio_write_8(HI6553_LDO7_REG_ADJ, data);
	mdelay(5);
	mmio_write_8(HI6553_ENABLE2_LDO1_8, 1 << 6);
	mdelay(5);
	/* enable LDO10 */
	data = mmio_read_8(HI6553_LDO10_REG_ADJ);
	data = (data & 0xf8) | 0x5;
	mmio_write_8(HI6553_LDO10_REG_ADJ, data);
	mdelay(5);
	mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 1);
	mdelay(5);
	/* enable LDO15 */
	data = mmio_read_8(HI6553_LDO15_REG_ADJ);
	data = (data & 0xf8) | 0x4;
	mmio_write_8(HI6553_LDO15_REG_ADJ, data);
	mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 6);
	mdelay(5);
	/* enable LDO19 */
	data = mmio_read_8(HI6553_LDO19_REG_ADJ);
	data |= 0x7;
	mmio_write_8(HI6553_LDO19_REG_ADJ, data);
	mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 2);
	mdelay(5);
	/* enable LDO21 */
	data = mmio_read_8(HI6553_LDO21_REG_ADJ);
	data = (data & 0xf8) | 0x3;
	mmio_write_8(HI6553_LDO21_REG_ADJ, data);
	mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 4);
	mdelay(5);
	/* enable LDO22 */
	data = mmio_read_8(HI6553_LDO22_REG_ADJ);
	data = (data & 0xf8) | 0x7;
	mmio_write_8(HI6553_LDO22_REG_ADJ, data);
	mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 5);
	mdelay(5);

	/* select 32.764KHz */
	mmio_write_8(HI6553_CLK19M2_600_586_EN, 0x01);
}

static void init_mmc0_pll(void)
{
	unsigned int data;

	/* select SYSPLL as the source of MMC0 */
	/* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */
	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 5 | 1 << 21);
	do {
		data = mmio_read_32(PERI_SC_CLK_SEL0);
	} while (!(data & (1 << 5)));
	/* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */
	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 29);
	do {
		data = mmio_read_32(PERI_SC_CLK_SEL0);
	} while (data & (1 << 13));

	mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 0));
	do {
		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
	} while (!(data & (1 << 0)));

	data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
	data |= 1 << 1;
	mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);

	do {
		mmio_write_32(PERI_SC_CLKCFG8BIT1, (1 << 7) | 0xb);
		data = mmio_read_32(PERI_SC_CLKCFG8BIT1);
	} while ((data & 0xb) != 0xb);
}

static void reset_mmc0_clk(void)
{
	unsigned int data;

	/* disable mmc0 bus clock */
	mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC0);
	do {
		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
	} while (data & PERI_CLK0_MMC0);
	/* enable mmc0 bus clock */
	mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC0);
	do {
		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
	} while (!(data & PERI_CLK0_MMC0));
	/* reset mmc0 clock domain */
	mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC0);

	/* bypass mmc0 clock phase */
	data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
	data |= 3;
	mmio_write_32(PERI_SC_PERIPH_CTRL2, data);

	/* disable low power */
	data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
	data |= 1 << 3;
	mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
	do {
		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
	} while (!(data & PERI_RST0_MMC0));

	/* unreset mmc0 clock domain */
	mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC0);
	do {
		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
	} while (data & PERI_RST0_MMC0);
}

static void init_media_clk(void)
{
	unsigned int data, value;

	data = mmio_read_32(PMCTRL_MEDPLLCTRL);
	data |= 1;
	mmio_write_32(PMCTRL_MEDPLLCTRL, data);

	for (;;) {
		data = mmio_read_32(PMCTRL_MEDPLLCTRL);
		value = 1 << 28;
		if ((data & value) == value)
			break;
	}

	data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
	data = 1 << 10;
	mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
}

static void init_mmc1_pll(void)
{
	uint32_t data;

	/* select SYSPLL as the source of MMC1 */
	/* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */
	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 11 | 1 << 27);
	do {
		data = mmio_read_32(PERI_SC_CLK_SEL0);
	} while (!(data & (1 << 11)));
	/* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */
	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 30);
	do {
		data = mmio_read_32(PERI_SC_CLK_SEL0);
	} while (data & (1 << 14));

	mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 1));
	do {
		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
	} while (!(data & (1 << 1)));

	data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
	data |= 1 << 2;
	mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);

	do {
		/* 1.2GHz / 50 = 24MHz */
		mmio_write_32(PERI_SC_CLKCFG8BIT2, 0x31 | (1 << 7));
		data = mmio_read_32(PERI_SC_CLKCFG8BIT2);
	} while ((data & 0x31) != 0x31);
}

static void reset_mmc1_clk(void)
{
	unsigned int data;

	/* disable mmc1 bus clock */
	mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC1);
	do {
		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
	} while (data & PERI_CLK0_MMC1);
	/* enable mmc1 bus clock */
	mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC1);
	do {
		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
	} while (!(data & PERI_CLK0_MMC1));
	/* reset mmc1 clock domain */
	mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC1);

	/* bypass mmc1 clock phase */
	data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
	data |= 3 << 2;
	mmio_write_32(PERI_SC_PERIPH_CTRL2, data);

	/* disable low power */
	data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
	data |= 1 << 4;
	mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
	do {
		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
	} while (!(data & PERI_RST0_MMC1));

	/* unreset mmc0 clock domain */
	mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC1);
	do {
		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
	} while (data & PERI_RST0_MMC1);
}

/* Initialize PLL of both eMMC and SD controllers. */
static void hikey_mmc_pll_init(void)
{
	init_mmc0_pll();
	reset_mmc0_clk();
	init_media_clk();

	dsb();

	init_mmc1_pll();
	reset_mmc1_clk();
}

/*
 * Function which will perform any remaining platform-specific setup that can
 * occur after the MMU and data cache have been enabled.
 */
void bl1_platform_setup(void)
{
	dw_mmc_params_t params;

	assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) &&
	       ((SRAM_BASE + SRAM_SIZE) >=
		(HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE)));
	hikey_sp804_init();
	hikey_gpio_init();
	hikey_pmussi_init();
	hikey_hi6553_init();

	hikey_mmc_pll_init();

	memset(&params, 0, sizeof(dw_mmc_params_t));
	params.reg_base = DWMMC0_BASE;
	params.desc_base = HIKEY_BL1_MMC_DESC_BASE;
	params.desc_size = 1 << 20;
	params.clk_rate = 24 * 1000 * 1000;
	params.bus_width = EMMC_BUS_WIDTH_8;
	params.flags = EMMC_FLAG_CMD23;
	dw_mmc_init(&params);

	hikey_io_setup();
}

/*
 * The following function checks if Firmware update is needed,
 * by checking if TOC in FIP image is valid or not.
 */
unsigned int bl1_plat_get_next_image_id(void)
{
	int32_t boot_mode;
	unsigned int ret;

	boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE);
	switch (boot_mode) {
	case BOOT_NORMAL:
		ret = BL2_IMAGE_ID;
		break;
	case BOOT_USB_DOWNLOAD:
	case BOOT_UART_DOWNLOAD:
		ret = NS_BL1U_IMAGE_ID;
		break;
	default:
		WARN("Invalid boot mode is found:%d\n", boot_mode);
		panic();
	}
	return ret;
}

image_desc_t *bl1_plat_get_image_desc(unsigned int image_id)
{
	unsigned int index = 0;

	while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) {
		if (bl1_tbbr_image_descs[index].image_id == image_id)
			return &bl1_tbbr_image_descs[index];

		index++;
	}

	return NULL;
}

void bl1_plat_set_ep_info(unsigned int image_id,
		entry_point_info_t *ep_info)
{
	unsigned int data = 0;

	if (image_id == BL2_IMAGE_ID)
		return;
	inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
	__asm__ volatile ("mrs	%0, cpacr_el1" : "=r"(data));
	do {
		data |= 3 << 20;
		__asm__ volatile ("msr	cpacr_el1, %0" : : "r"(data));
		__asm__ volatile ("mrs	%0, cpacr_el1" : "=r"(data));
	} while ((data & (3 << 20)) != (3 << 20));
	INFO("cpacr_el1:0x%x\n", data);

	ep_info->args.arg0 = 0xffff & read_mpidr();
	ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
				DISABLE_ALL_EXCEPTIONS);
}