/* * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved. * Copyright 2017 NXP * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TRUSTY_PARAMS_LEN_BYTES (4096*2) /* linker defined symbols */ extern unsigned long __RO_START__; extern unsigned long __RO_END__; extern unsigned long __BL31_END__; #if USE_COHERENT_MEM extern unsigned long __COHERENT_RAM_START__; extern unsigned long __COHERENT_RAM_END__; #define BL31_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__) #define BL31_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__) #endif sc_ipc_t ipc_handle; #define BL31_RO_BASE (unsigned long)(&__RO_START__) #define BL31_RO_LIMIT (unsigned long)(&__RO_END__) #define BL31_END (unsigned long)(&__BL31_END__) static entry_point_info_t bl32_image_ep_info; static entry_point_info_t bl33_image_ep_info; const static int imx8qm_cci_map[] = { CLUSTER0_CCI_SLVAE_IFACE, CLUSTER1_CCI_SLVAE_IFACE }; /* get SPSR for BL33 entry */ static uint32_t get_spsr_for_bl33_entry(void) { unsigned long el_status; unsigned long mode; uint32_t spsr; /* figure out what mode we enter the non-secure world */ el_status = read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL2_SHIFT; el_status &= ID_AA64PFR0_ELX_MASK; mode = (el_status) ? MODE_EL2 : MODE_EL1; spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); return spsr; } #if DEBUG_CONSOLE_A53 static void lpuart32_serial_setbrg(unsigned int base, int baudrate) { unsigned int sbr, osr, baud_diff, tmp_osr, tmp_sbr, tmp_diff, tmp; unsigned int clk; sc_pm_clock_rate_t rate; sc_pm_get_clock_rate(ipc_handle, SC_R_UART_0, 2, &rate); clk = (unsigned int)rate; baud_diff = baudrate; osr = 0; sbr = 0; for (tmp_osr = 4; tmp_osr <= 32; tmp_osr++) { tmp_sbr = (clk / (baudrate * tmp_osr)); if (tmp_sbr == 0) tmp_sbr = 1; /*calculate difference in actual buad w/ current values */ tmp_diff = ( clk / (tmp_osr * tmp_sbr)); tmp_diff = tmp_diff - baudrate; /* select best values between sbr and sbr+1 */ if (tmp_diff > (baudrate - (clk / (tmp_osr * (tmp_sbr + 1))))) { tmp_diff = baudrate - (clk / (tmp_osr * (tmp_sbr + 1))); tmp_sbr++; } if (tmp_diff <= baud_diff) { baud_diff = tmp_diff; osr = tmp_osr; sbr = tmp_sbr; } } /*TODO handle buadrate outside acceptable rate * if (baudDiff > ((config->baudRate_Bps / 100) * 3)) * { * Unacceptable baud rate difference of more than 3% * return kStatus_LPUART_BaudrateNotSupport; * } */ tmp = mmio_read_32(IMX_BOOT_UART_BASE + BAUD); if ((osr >3) && (osr < 8)) tmp |= LPUART_BAUD_BOTHEDGE_MASK; tmp &= ~LPUART_BAUD_OSR_MASK; tmp |= LPUART_BAUD_OSR(osr-1); tmp &= ~LPUART_BAUD_SBR_MASK; tmp |= LPUART_BAUD_SBR(sbr); /* explicitly disable 10 bit mode & set 1 stop bit */ tmp &= ~(LPUART_BAUD_M10_MASK | LPUART_BAUD_SBNS_MASK); mmio_write_32(IMX_BOOT_UART_BASE + BAUD, tmp); } static int lpuart32_serial_init(unsigned int base) { unsigned int tmp; /*disable TX & RX before enabling clocks */ tmp = mmio_read_32(IMX_BOOT_UART_BASE + CTRL); tmp &= ~(CTRL_TE | CTRL_RE); mmio_write_32(IMX_BOOT_UART_BASE + CTRL, tmp); mmio_write_32(IMX_BOOT_UART_BASE + MODIR, 0); mmio_write_32(IMX_BOOT_UART_BASE + FIFO, ~(FIFO_TXFE | FIFO_RXFE)); mmio_write_32(IMX_BOOT_UART_BASE + MATCH, 0); /* * provide data bits, parity, stop bit, etc */ lpuart32_serial_setbrg(base, IMX_BOOT_UART_BAUDRATE); /* eight data bits no parity bit */ tmp = mmio_read_32(IMX_BOOT_UART_BASE + CTRL); tmp &= ~(LPUART_CTRL_PE_MASK | LPUART_CTRL_PT_MASK | LPUART_CTRL_M_MASK); mmio_write_32(IMX_BOOT_UART_BASE + CTRL, tmp); mmio_write_32(IMX_BOOT_UART_BASE + CTRL , CTRL_RE | CTRL_TE); mmio_write_32(IMX_BOOT_UART_BASE + DATA, 0x55); mmio_write_32(IMX_BOOT_UART_BASE + DATA, 0x55); mmio_write_32(IMX_BOOT_UART_BASE + DATA, 0x0A); return 0; } #endif void mx8_partition_resources(void) { sc_err_t err; sc_rm_pt_t secure_part, os_part; sc_rm_mr_t mr, mr_record = 64; bool owned, owned2; sc_faddr_t start, end, reg_end; int i; #ifdef TEE_IMX8 sc_rm_mr_t mr_tee = 64; bool mr_tee_atf_same = false; sc_faddr_t reg_start; #endif err = sc_rm_get_partition(ipc_handle, &secure_part); err = sc_rm_partition_alloc(ipc_handle, &os_part, false, false, false, false, false); err = sc_rm_set_parent(ipc_handle, os_part, secure_part); /* set secure resources to NOT-movable */ for (i = 0; i < (sizeof(secure_rsrcs) / sizeof(sc_rsrc_t)); i++) { err = sc_rm_set_resource_movable(ipc_handle, secure_rsrcs[i], secure_rsrcs[i], false); } /* * sc_rm_set_peripheral_permissions * * sc_rm_set_memreg_permissions * * sc_rm_set_pin_movable * */ for (mr = 0; mr < 64; mr++) { owned = sc_rm_is_memreg_owned(ipc_handle, mr); if (owned) { err = sc_rm_get_memreg_info(ipc_handle, mr, &start, &end); if (err) { ERROR("Memreg get info failed, %u\n", mr); } else { NOTICE("Memreg %u 0x%lx -- 0x%lx\n", mr, start, end); if (BL31_BASE >= start && (BL31_LIMIT - 1) <= end) { mr_record = mr; /* Record the mr for ATF running */ } #ifdef TEE_IMX8 else if (BL32_BASE >= start && (BL32_LIMIT -1) <= end) { mr_tee = mr; } #endif else { err = sc_rm_assign_memreg(ipc_handle, os_part, mr); if (err) ERROR("Memreg assign failed, 0x%lx -- 0x%lx, err %d\n", start, end, err); } } } } #ifdef TEE_IMX8 if (mr_tee != 64) { err = sc_rm_get_memreg_info(ipc_handle, mr_tee, &start, &end); if (err) { ERROR("Memreg get info failed, %u\n", mr_tee); } else { if ((BL32_LIMIT - 1) < end) { err = sc_rm_memreg_alloc(ipc_handle, &mr, BL32_LIMIT , end); if (err) { ERROR("sc_rm_memreg_alloc failed, 0x%lx -- 0x%lx\n", (sc_faddr_t)BL32_LIMIT, end); } else { err = sc_rm_assign_memreg(ipc_handle, os_part, mr); if (err) ERROR("Memreg assign failed, 0x%lx -- 0x%lx\n", (sc_faddr_t)BL32_LIMIT, end); } } if (start < (BL32_BASE - 1)) { err = sc_rm_memreg_alloc(ipc_handle, &mr, start, BL32_BASE - 1); if (err) { ERROR("sc_rm_memreg_alloc failed, 0x%lx -- 0x%lx\n", start, (sc_faddr_t)BL32_BASE - 1); } else { err = sc_rm_assign_memreg(ipc_handle, os_part, mr); if (err) ERROR("Memreg assign failed, 0x%lx -- 0x%lx\n", start, (sc_faddr_t)BL32_BASE - 1); } } } } #endif if (mr_record != 64) { err = sc_rm_get_memreg_info(ipc_handle, mr_record, &start, &end); #ifdef TEE_IMX8 if (BL32_BASE >= start && (BL32_LIMIT - 1) <= end) mr_tee_atf_same = true; #endif reg_end = end; if (err) { ERROR("Memreg get info failed, %u\n", mr_record); } else { if ((BL31_LIMIT - 1) < end) { #ifdef TEE_IMX8 if ((end > BL32_BASE) && mr_tee_atf_same) reg_end = BL32_BASE - 1; #endif err = sc_rm_memreg_alloc(ipc_handle, &mr, BL31_LIMIT, reg_end); if (err) { ERROR("sc_rm_memreg_alloc failed, 0x%lx -- 0x%lx\n", (sc_faddr_t)BL31_LIMIT, reg_end); } else { err = sc_rm_assign_memreg(ipc_handle, os_part, mr); if (err) ERROR("Memreg assign failed, 0x%lx -- 0x%lx\n", (sc_faddr_t)BL31_LIMIT, reg_end); } } #ifdef TEE_IMX8 if (mr_tee_atf_same) { if ((BL32_LIMIT - 1) < end) { reg_start = BL32_LIMIT; err = sc_rm_memreg_alloc(ipc_handle, &mr, reg_start, end); if (err) { ERROR("sc_rm_memreg_alloc failed, 0x%lx -- 0x%lx\n", reg_start, end); } else { err = sc_rm_assign_memreg(ipc_handle, os_part, mr); if (err) ERROR("Memreg assign failed, 0x%lx -- 0x%lx\n", reg_start, end); } } } #endif if (start < (BL31_BASE - 1)) { err = sc_rm_memreg_alloc(ipc_handle, &mr, start, BL31_BASE - 1); if (err) { ERROR("sc_rm_memreg_alloc failed, 0x%lx -- 0x%lx\n", start, (sc_faddr_t)BL31_BASE - 1); } else { err = sc_rm_assign_memreg(ipc_handle, os_part, mr); if (err) ERROR("Memreg assign failed, 0x%lx -- 0x%lx\n", start, (sc_faddr_t)BL31_BASE - 1); } } } } owned = sc_rm_is_resource_owned(ipc_handle, SC_R_M4_0_PID0); if (owned) err = sc_rm_set_resource_movable(ipc_handle, SC_R_M4_0_PID0, SC_R_M4_0_PID0, false); owned2 = sc_rm_is_resource_owned(ipc_handle, SC_R_M4_1_PID0); if (owned2) err = sc_rm_set_resource_movable(ipc_handle, SC_R_M4_1_PID0, SC_R_M4_1_PID0, false); /* move all movable resources and pins to non-secure partition */ err = sc_rm_move_all(ipc_handle, secure_part, os_part, true, true); /* iterate through peripherals to give NS OS part access */ for (i = 0; i < (sizeof(ns_access_allowed) / sizeof(sc_rsrc_t)); i++) { err = sc_rm_set_peripheral_permissions(ipc_handle, ns_access_allowed[i], os_part, SC_RM_PERM_FULL); } if (owned) { err = sc_rm_set_resource_movable(ipc_handle, SC_R_M4_0_PID0, SC_R_M4_0_PID0, true); err = sc_rm_assign_resource(ipc_handle, os_part, SC_R_M4_0_PID0); } if (owned2) { err = sc_rm_set_resource_movable(ipc_handle, SC_R_M4_1_PID0, SC_R_M4_1_PID0, true); err = sc_rm_assign_resource(ipc_handle, os_part, SC_R_M4_1_PID0); } if (err) NOTICE("Partitioning Failed\n"); else NOTICE("Non-secure Partitioning Succeeded\n"); } void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1, u_register_t arg2, u_register_t arg3) { #if DEBUG_CONSOLE static console_lpuart_t console; #endif /* open the IPC channel */ if (sc_ipc_open(&ipc_handle, SC_IPC_CH) != SC_ERR_NONE) { /* No console available now */ while (1); } #if DEBUG_CONSOLE_A53 /* Power up UART0 */ sc_pm_set_resource_power_mode(ipc_handle, SC_R_UART_0, SC_PM_PW_MODE_ON); /* Set UART0 clock root to 80 MHz */ sc_pm_clock_rate_t rate = 80000000; sc_pm_set_clock_rate(ipc_handle, SC_R_UART_0, 2, &rate); /* Enable UART0 clock root */ sc_pm_clock_enable(ipc_handle, SC_R_UART_0, 2, true, false); #define UART_PAD_CTRL (PADRING_IFMUX_EN_MASK | PADRING_GP_EN_MASK | \ (SC_PAD_CONFIG_OUT_IN << PADRING_CONFIG_SHIFT) | \ (SC_PAD_ISO_OFF << PADRING_LPCONFIG_SHIFT) | \ (SC_PAD_28FDSOI_DSE_DV_LOW << PADRING_DSE_SHIFT) | \ (SC_PAD_28FDSOI_PS_PD << PADRING_PULL_SHIFT)) /* Configure UART pads */ sc_pad_set(ipc_handle, SC_P_UART0_RX, UART_PAD_CTRL); sc_pad_set(ipc_handle, SC_P_UART0_TX, UART_PAD_CTRL); lpuart32_serial_init(IMX_BOOT_UART_BASE); #endif #if DEBUG_CONSOLE console_lpuart_register(IMX_BOOT_UART_BASE, IMX_BOOT_UART_CLK_IN_HZ, IMX_CONSOLE_BAUDRATE, &console); #endif /* Turn on MU1 for non-secure OS/Hypervisor */ sc_pm_set_resource_power_mode(ipc_handle, SC_R_MU_1A, SC_PM_PW_MODE_ON); /* create new partition for non-secure OS/Hypervisor * * uses global structs defined in sec_rsrc.h */ mx8_partition_resources(); #ifdef SPD_trusty sc_pm_set_resource_power_mode(ipc_handle, SC_R_CAAM_JR2, SC_PM_PW_MODE_ON); sc_pm_set_resource_power_mode(ipc_handle, SC_R_CAAM_JR2_OUT, SC_PM_PW_MODE_ON); sc_pm_set_resource_power_mode(ipc_handle, SC_R_CAAM_JR3, SC_PM_PW_MODE_ON); sc_pm_set_resource_power_mode(ipc_handle, SC_R_CAAM_JR3_OUT, SC_PM_PW_MODE_ON); #endif /* * tell BL3-1 where the non-secure software image is located * and the entry state information. */ bl33_image_ep_info.pc = PLAT_NS_IMAGE_OFFSET; bl33_image_ep_info.spsr = get_spsr_for_bl33_entry(); #ifdef TEE_IMX8 SET_PARAM_HEAD(&bl32_image_ep_info, PARAM_EP, VERSION_1, 0); SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE); bl32_image_ep_info.pc = BL32_BASE; bl32_image_ep_info.spsr = 0; #ifdef SPD_trusty bl32_image_ep_info.args.arg0 = BL32_SIZE; bl32_image_ep_info.args.arg1 = BL32_BASE; #endif #endif SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE); /* init the first cluster's cci slave interface */ cci_init(PLAT_CCI_BASE, imx8qm_cci_map, PLATFORM_CLUSTER_COUNT); cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr_el1())); } void bl31_plat_arch_setup(void) { /* add the mmap */ mmap_add_region(BL31_BASE, BL31_BASE, 0x20000, MT_MEMORY | MT_RW); mmap_add_region(BL31_BASE, BL31_BASE, BL31_RO_LIMIT - BL31_RO_BASE, MT_MEMORY | MT_RO); mmap_add_region(IMX_BOOT_UART_BASE, IMX_BOOT_UART_BASE, 0x1000, MT_DEVICE | MT_RW); mmap_add_region(SC_IPC_CH, SC_IPC_CH, 0x10000, MT_DEVICE | MT_RW); mmap_add_region(PLAT_GICD_BASE, PLAT_GICD_BASE, 0x10000, MT_DEVICE | MT_RW); mmap_add_region(PLAT_GICR_BASE, PLAT_GICR_BASE, 0xc0000, MT_DEVICE | MT_RW); mmap_add_region(PLAT_CCI_BASE, PLAT_CCI_BASE, 0x10000, MT_DEVICE | MT_RW); mmap_add_region(IMX_WUP_IRQSTR, IMX_WUP_IRQSTR, 0x10000, MT_DEVICE | MT_RW); #ifdef TEE_IMX8 mmap_add_region(BL32_BASE, BL32_BASE, BL32_SIZE, MT_MEMORY | MT_RW); #endif #if USE_COHERENT_MEM mmap_add_region(BL31_COHERENT_RAM_BASE, BL31_COHERENT_RAM_BASE, BL31_COHERENT_RAM_LIMIT - BL31_COHERENT_RAM_BASE, MT_DEVICE | MT_RW); #endif /* setup xlat table */ init_xlat_tables(); /* enable the MMU */ enable_mmu_el3(0); } void bl31_platform_setup(void) { /* init the GICv3 cpu and distributor interface */ plat_gic_driver_init(); plat_gic_init(); } entry_point_info_t *bl31_plat_get_next_image_ep_info(unsigned int type) { if (type == NON_SECURE) return &bl33_image_ep_info; if (type == SECURE) return &bl32_image_ep_info; return NULL; } unsigned int plat_get_syscnt_freq2(void) { return COUNTER_FREQUENCY; } void bl31_plat_runtime_setup(void) { return; } #ifdef SPD_trusty void plat_trusty_set_boot_args(aapcs64_params_t *args) { args->arg0 = BL32_SIZE; args->arg1 = BL32_BASE; args->arg2 = TRUSTY_PARAMS_LEN_BYTES; } #endif