/* * Copyright 2018 NXP * * SPDX-License-Identifier: BSD-3-Clause */ #include #include static void lpddr4_mr_write(uint32_t mr_rank, uint32_t mr_addr, uint32_t mr_data) { /* * 1. Poll MRSTAT.mr_wr_busy until it is 0. This checks that there * is no outstanding MR transaction. No * writes should be performed to MRCTRL0 and MRCTRL1 if MRSTAT.mr_wr_busy = 1. */ while (mmio_read_32(DDRC_MRSTAT(0)) & 0x1) ; /* * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, * MRCTRL0.mr_rank and (for MRWs) * MRCTRL1.mr_data to define the MR transaction. */ mmio_write_32(DDRC_MRCTRL0(0), (mr_rank << 4)); mmio_write_32(DDRC_MRCTRL1(0), (mr_addr << 8) | mr_data); mmio_setbits_32(DDRC_MRCTRL0(0), BIT(31)); } void lpddr4_swffc(struct dram_info *info, unsigned int init_fsp, unsigned int fsp_index) { uint32_t mr, emr, emr2, emr3; uint32_t mr11, mr12, mr22, mr14; uint32_t val; uint32_t derate_backup[3]; uint32_t (*mr_data)[8]; /* 1. program targetd UMCTL2_REGS_FREQ1/2/3,already done, skip it. */ /* 2. MR13.FSP-WR=1, MRW to update MR registers */ mr_data = info->mr_table; mr = mr_data[fsp_index][0]; emr = mr_data[fsp_index][1]; emr2 = mr_data[fsp_index][2]; emr3 = mr_data[fsp_index][3]; mr11 = mr_data[fsp_index][4]; mr12 = mr_data[fsp_index][5]; mr22 = mr_data[fsp_index][6]; mr14 = mr_data[fsp_index][7]; val = (init_fsp == 1) ? 0x2 << 6 : 0x1 << 6; emr3 = (emr3 & 0x003f) | val | 0x0d00; /* 12. set PWRCTL.selfref_en=0 */ mmio_clrbits_32(DDRC_PWRCTL(0), 0xf); /* It is more safe to config it here */ mmio_clrbits_32(DDRC_DFIPHYMSTR(0), 0x1); lpddr4_mr_write(3, 13, emr3); lpddr4_mr_write(3, 1, mr); lpddr4_mr_write(3, 2, emr); lpddr4_mr_write(3, 3, emr2); lpddr4_mr_write(3, 11, mr11); lpddr4_mr_write(3, 12, mr12); lpddr4_mr_write(3, 14, mr14); lpddr4_mr_write(3, 22, mr22); do { val = mmio_read_32(DDRC_MRSTAT(0)); } while (val & 0x1); /* 3. disable AXI ports */ mmio_write_32(DDRC_PCTRL_0(0), 0x0); /* 4.Poll PSTAT.rd_port_busy_n=0 and PSTAT.wr_port_busy_n=0. */ do { val = mmio_read_32(DDRC_PSTAT(0)); } while (val != 0); /* 6.disable SBRCTL.scrub_en, skip if never enable it */ /* 7.poll SBRSTAT.scrub_busy Q2: should skip phy master if never enable it */ /* Disable phy master */ #ifdef DFILP_SPT /* 8. disable DFI LP */ /* DFILPCFG0.dfi_lp_en_sr */ val = mmio_read_32(DDRC_DFILPCFG0(0)); if (val & 0x100) { mmio_write_32(DDRC_DFILPCFG0(0), 0x0); do { val = mmio_read_32(DDRC_DFISTAT(0)); // dfi_lp_ack val2= mmio_read_32(DDRC_STAT(0)); // operating_mode } while (((val & 0x2) == 0x2) && ((val2 & 0x7) == 3)); } #endif /* 9. wait until in normal or power down states */ do { /* operating_mode */ val= mmio_read_32(DDRC_STAT(0)); } while (((val & 0x7) != 1) && ((val & 0x7) != 2)); /* 10. Disable automatic derating: derate_enable */ val= mmio_read_32(DDRC_DERATEEN(0)); derate_backup[0] = val; mmio_clrbits_32(DDRC_DERATEEN(0), 0x1); val= mmio_read_32(DDRC_FREQ1_DERATEEN(0)); derate_backup[1] = val; mmio_clrbits_32(DDRC_FREQ1_DERATEEN(0), 0x1); val= mmio_read_32(DDRC_FREQ2_DERATEEN(0)); derate_backup[2] = val; mmio_clrbits_32(DDRC_FREQ2_DERATEEN(0), 0x1); /* 11. disable automatic ZQ calibration */ mmio_setbits_32(DDRC_ZQCTL0(0), BIT(31)); mmio_setbits_32(DDRC_FREQ1_ZQCTL0(0), BIT(31)); mmio_setbits_32(DDRC_FREQ2_ZQCTL0(0), BIT(31)); /* 12. set PWRCTL.selfref_en=0 */ mmio_clrbits_32(DDRC_PWRCTL(0), 0x1); /* 13.Poll STAT.operating_mode is in "Normal" (001) or "Power-down" (010) */ do { val= mmio_read_32(DDRC_STAT(0)); } while (((val & 0x7) != 1) && ((val & 0x7) != 2)); /* 14-15. trigger SW SR */ /* bit 5: selfref_sw, bit 6: stay_in_selfref */ mmio_setbits_32(DDRC_PWRCTL(0), 0x60); /* 16. Poll STAT.selfref_state in "Self Refresh 1" */ do { val= mmio_read_32(DDRC_STAT(0)); } while ((val & 0x300) != 0x100); /* 17. disable dq */ mmio_setbits_32(DDRC_DBG1(0), 0x1); /* 18. Poll DBGCAM.wr_data_pipeline_empty and DBGCAM.rd_data_pipeline_empty */ do { val = mmio_read_32(DDRC_DBGCAM(0)); val &= 0x30000000; } while (val != 0x30000000); /* 19. change MR13.FSP-OP to new FSP and MR13.VRCG to high current */ emr3 = (((~init_fsp) & 0x1) << 7) | (0x1 << 3) | (emr3 & 0x0077) | 0x0d00; lpddr4_mr_write(3, 13, emr3); /* 20. enter SR Power Down */ mmio_clrsetbits_32(DDRC_PWRCTL(0), 0x60, 0x20); /* 21. Poll STAT.selfref_state is in "SR Power down" */ do { val= mmio_read_32(DDRC_STAT(0)); } while ((val & 0x300) != 0x200); /* 22. set dfi_init_complete_en = 0 */ /* 23. switch clock */ /* set SWCTL.dw_done to 0 */ mmio_write_32(DDRC_SWCTL(0), 0x0000); /* 24. program frequency mode=1(bit 29), target_frequency=target_freq (bit 29) */ mmio_write_32(DDRC_MSTR2(0), fsp_index); /* 25. DBICTL for FSP-OP[1], skip it if never enable it */ /* 26.trigger initialization in the PHY */ /* Q3: if refresh level is updated, then should program */ /* as updating refresh, need to toggle refresh_update_level signal */ val= mmio_read_32(DDRC_RFSHCTL3(0)); val = val ^ 0x2; mmio_write_32(DDRC_RFSHCTL3(0), val); /* Q4: only for legacy PHY, so here can skipped */ /* dfi_frequency -> 0x1x */ val= mmio_read_32(DDRC_DFIMISC(0)); val &= 0xFE; val |= (fsp_index << 8); mmio_write_32(DDRC_DFIMISC(0), val); /* dfi_init_start */ val |= 0x20; mmio_write_32(DDRC_DFIMISC(0), val); /* polling dfi_init_complete de-assert */ do { val = mmio_read_32(DDRC_DFISTAT(0)); } while ((val & 0x1) == 0x1); /* change the clock frequency */ dram_clock_switch(info->timing_info->fsp_table[fsp_index], info->bypass_mode); /* dfi_init_start de-assert */ mmio_clrbits_32(DDRC_DFIMISC(0), 0x20); /* polling dfi_init_complete re-assert */ do { val = mmio_read_32(DDRC_DFISTAT(0)); } while ((val & 0x1) == 0x0); /* 27. set ZQCTL0.dis_srx_zqcl = 1 */ if (fsp_index == 0) { mmio_setbits_32(DDRC_ZQCTL0(0), BIT(30)); } else if (fsp_index == 1) { mmio_setbits_32(DDRC_FREQ1_ZQCTL0(0), BIT(30)); } else { mmio_setbits_32(DDRC_FREQ2_ZQCTL0(0), BIT(30)); } /* 28,29. exit "self refresh power down" to stay "self refresh 2" */ /* exit SR power down */ mmio_clrsetbits_32(DDRC_PWRCTL(0), 0x60, 0x40); /* 30. Poll STAT.selfref_state in "Self refresh 2" */ do { val= mmio_read_32(DDRC_STAT(0)); } while ((val & 0x300) != 0x300); /* 31. change MR13.VRCG to normal */ emr3 = (emr3 & 0x00f7) | 0x0d00; lpddr4_mr_write(3, 13, emr3); /* enable PHY master */ mmio_write_32(DDRC_DFIPHYMSTR(0), 0x1); /* 32. issue ZQ if required: zq_calib_short, bit 4 */ /* polling zq_calib_short_busy */ mmio_setbits_32(DDRC_DBGCMD(0), 0x10); do { val= mmio_read_32(DDRC_DBGSTAT(0)); } while ((val & 0x10 ) != 0x0); /* 33. Reset ZQCTL0.dis_srx_zqcl=0 */ if (fsp_index == 1) mmio_clrbits_32(DDRC_FREQ1_ZQCTL0(0), BIT(30)); else if (fsp_index == 2) mmio_clrbits_32(DDRC_FREQ2_ZQCTL0(0), BIT(30)); else mmio_clrbits_32(DDRC_ZQCTL0(0), BIT(30)); /* set SWCTL.dw_done to 1 and poll SWSTAT.sw_done_ack=1 */ mmio_write_32(DDRC_SWCTL(0), 0x1); /* wait SWSTAT.sw_done_ack to 1 */ do { val = mmio_read_32(DDRC_SWSTAT(0)); } while ((val & 0x1) == 0x0); /* 34. set PWRCTL.stay_in_selfreh=0, exit SR */ mmio_clrbits_32(DDRC_PWRCTL(0), 0x40); /* wait tXSR */ /* 35. Poll STAT.selfref_state in "Idle" */ do { val = mmio_read_32(DDRC_STAT(0)); } while ((val & 0x300) != 0x0); #ifdef DFILP_SPT /* 36. restore dfi_lp.dfi_lp_en_sr */ mmio_setbits_32(DDRC_DFILPCFG0(0), BIT(8)); #endif /* 37. re-enable CAM: dis_dq */ mmio_clrbits_32(DDRC_DBG1(0), 0x1); /* 38. re-enable automatic SR: selfref_en */ mmio_setbits_32(DDRC_PWRCTL(0), 0x1); /* 39. re-enable automatic ZQ: dis_auto_zq=0 */ /* disable automatic ZQ calibration */ if (fsp_index == 1) mmio_clrbits_32(DDRC_FREQ1_ZQCTL0(0), BIT(31)); else if (fsp_index == 2) mmio_clrbits_32(DDRC_FREQ2_ZQCTL0(0), BIT(31)); else mmio_clrbits_32(DDRC_ZQCTL0(0), BIT(31)); /* 40. re-emable automatic derating: derate_enable */ mmio_write_32(DDRC_DERATEEN(0), derate_backup[0]); mmio_write_32(DDRC_FREQ1_DERATEEN(0), derate_backup[1]); mmio_write_32(DDRC_FREQ2_DERATEEN(0), derate_backup[2]); /* 41. write 1 to PCTRL.port_en */ mmio_write_32(DDRC_PCTRL_0(0), 0x1); /* 42. enable SBRCTL.scrub_en, skip if never enable it */ }