/* * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hikey_def.h" #include "hikey_private.h" /* * The next 2 constants identify the extents of the code & RO data region. * These addresses are used by the MMU setup code and therefore they must be * page-aligned. It is the responsibility of the linker script to ensure that * __RO_START__ and __RO_END__ linker symbols refer to page-aligned addresses. */ #define BL31_RO_BASE (unsigned long)(&__RO_START__) #define BL31_RO_LIMIT (unsigned long)(&__RO_END__) /* * The next 2 constants identify the extents of the coherent memory region. * These addresses are used by the MMU setup code and therefore they must be * page-aligned. It is the responsibility of the linker script to ensure that * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to * page-aligned addresses. */ #define BL31_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__) #define BL31_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__) static entry_point_info_t bl32_ep_info; static entry_point_info_t bl33_ep_info; /****************************************************************************** * On a GICv2 system, the Group 1 secure interrupts are treated as Group 0 * interrupts. *****************************************************************************/ const unsigned int g0_interrupt_array[] = { IRQ_SEC_PHY_TIMER, IRQ_SEC_SGI_0 }; /* * Ideally `arm_gic_data` structure definition should be a `const` but it is * kept as modifiable for overwriting with different GICD and GICC base when * running on FVP with VE memory map. */ gicv2_driver_data_t hikey_gic_data = { .gicd_base = PLAT_ARM_GICD_BASE, .gicc_base = PLAT_ARM_GICC_BASE, .g0_interrupt_num = ARRAY_SIZE(g0_interrupt_array), .g0_interrupt_array = g0_interrupt_array, }; static const int cci_map[] = { CCI400_SL_IFACE3_CLUSTER_IX, CCI400_SL_IFACE4_CLUSTER_IX }; entry_point_info_t *bl31_plat_get_next_image_ep_info(unsigned int type) { entry_point_info_t *next_image_info; next_image_info = (type == NON_SECURE) ? &bl33_ep_info : &bl32_ep_info; /* None of the images on this platform can have 0x0 as the entrypoint */ if (next_image_info->pc) return next_image_info; return NULL; } void bl31_early_platform_setup(bl31_params_t *from_bl2, void *plat_params_from_bl2) { /* Initialize the console to provide early debug support */ console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE); /* Initialize CCI driver */ cci_init(CCI400_BASE, cci_map, ARRAY_SIZE(cci_map)); cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr_el1())); /* * Copy BL3-2 and BL3-3 entry point information. * They are stored in Secure RAM, in BL2's address space. */ bl32_ep_info = *from_bl2->bl32_ep_info; bl33_ep_info = *from_bl2->bl33_ep_info; } void bl31_plat_arch_setup(void) { hikey_init_mmu_el3(BL31_BASE, BL31_LIMIT - BL31_BASE, BL31_RO_BASE, BL31_RO_LIMIT, BL31_COHERENT_RAM_BASE, BL31_COHERENT_RAM_LIMIT); } void bl31_platform_setup(void) { /* Initialize the GIC driver, cpu and distributor interfaces */ gicv2_driver_init(&hikey_gic_data); gicv2_distif_init(); gicv2_pcpu_distif_init(); gicv2_cpuif_enable(); hisi_ipc_init(); hisi_pwrc_setup(); } void bl31_plat_runtime_setup(void) { }