summaryrefslogtreecommitdiff
path: root/plat/common/aarch64
AgeCommit message (Collapse)Author
2017-05-03Use SPDX license identifiersdp-arm
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
2017-04-20Remove build option `ASM_ASSERTION`Antonio Nino Diaz
The build option `ENABLE_ASSERTIONS` should be used instead. That way both C and ASM assertions can be enabled or disabled together. All occurrences of `ASM_ASSERTION` in common code and ARM platforms have been replaced by `ENABLE_ASSERTIONS`. ASM_ASSERTION has been removed from the user guide. Change-Id: I51f1991f11b9b7ff83e787c9a3270c274748ec6f Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2017-03-31Add and use plat_crash_console_flush() APIAntonio Nino Diaz
This API makes sure that all the characters sent to the crash console are output before returning from it. Porting guide updated. Change-Id: I1785f970a40f6aacfbe592b6a911b1f249bb2735 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2017-03-20Move plat/common source file definitions to generic Makefilesdp-arm
These source file definitions should be defined in generic Makefiles so that all platforms can benefit. Ensure that the symbols are properly marked as weak so they can be overridden by platforms. NOTE: This change is a potential compatibility break for non-upstream platforms. Change-Id: I7b892efa9f2d6d216931360dc6c436e1d10cffed Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
2017-03-08Simplify translation tables headers dependenciesAntonio Nino Diaz
The files affected by this patch don't really depend on `xlat_tables.h`. By changing the included file it becomes easier to switch between the two versions of the translation tables library. Change-Id: Idae9171c490e0865cb55883b19eaf942457c4ccc Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2016-10-25Fix comment of plat_reset_handler stubMasahiro Yamada
As described in the Porting Guide, plat_reset_handler should preserve x19 to x29. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2016-08-19Add WFI in platform's unexpected error handlersSandrine Bailleux
This patch adds a WFI instruction in the default implementations of plat_error_handler() and plat_panic_handler(). This potentially reduces power consumption by allowing the hardware to enter a low-power state. The same change has been made to the FVP and Juno platform ports. Change-Id: Ia4e6e1e5bf1ed42efbba7d0ebbad7be8d5f9f173
2016-07-18Introduce `el3_runtime` and `PSCI` librariesSoby Mathew
This patch moves the PSCI services and BL31 frameworks like context management and per-cpu data into new library components `PSCI` and `el3_runtime` respectively. This enables PSCI to be built independently from BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant PSCI library sources and gets included by `bl31.mk`. Other changes which are done as part of this patch are: * The runtime services framework is now moved to the `common/` folder to enable reuse. * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture specific folder. * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder to `plat/common` folder. The original file location now has a stub which just includes the file from new location to maintain platform compatibility. Most of the changes wouldn't affect platform builds as they just involve changes to the generic bl1.mk and bl31.mk makefiles. NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION. Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
2016-07-18Rework type usage in Trusted FirmwareSoby Mathew
This patch reworks type usage in generic code, drivers and ARM platform files to make it more portable. The major changes done with respect to type usage are as listed below: * Use uintptr_t for storing address instead of uint64_t or unsigned long. * Review usage of unsigned long as it can no longer be assumed to be 64 bit. * Use u_register_t for register values whose width varies depending on whether AArch64 or AArch32. * Use generic C types where-ever possible. In addition to the above changes, this patch also modifies format specifiers in print invocations so that they are AArch64/AArch32 agnostic. Only files related to upcoming feature development have been reworked. Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
2016-07-08Derive stack alignment from CACHE_WRITEBACK_GRANULESoby Mathew
The per-cpu stacks should be aligned to the cache-line size and the `declare_stack` helper in asm_macros.S macro assumed a cache-line size of 64 bytes. The platform defines the cache-line size via CACHE_WRITEBACK_GRANULE macro. This patch modifies `declare_stack` helper macro to derive stack alignment from the platform defined macro. Change-Id: I1e1b00fc8806ecc88190ed169f4c8d3dd25fe95b
2016-05-20Add 32 bit version of plat_get_syscnt_freqAntonio Nino Diaz
Added plat_get_syscnt_freq2, which is a 32 bit variant of the 64 bit plat_get_syscnt_freq. The old one has been flagged as deprecated. Common code has been updated to use this new version. Porting guide has been updated. Change-Id: I9e913544926c418970972bfe7d81ee88b4da837e
2016-03-14Remove all non-configurable dead loopsAntonio Nino Diaz
Added a new platform porting function plat_panic_handler, to allow platforms to handle unexpected error situations. It must be implemented in assembly as it may be called before the C environment is initialized. A default implementation is provided, which simply spins. Corrected all dead loops in generic code to call this function instead. This includes the dead loop that occurs at the end of the call to panic(). All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have been removed. Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
2015-12-09Ensure BL31 does not print to boot console by defaultSoby Mathew
It is not ideal for BL31 to continue to use boot console at runtime which could be potentially uninitialized. This patch introduces a new optional platform porting API `bl31_plat_runtime_setup()` which allows the platform to perform any BL31 runtime setup just prior to BL31 exit during cold boot. The default weak implementation of this function will invoke `console_uninit()` which will suppress any BL31 runtime logs. On the ARM Standard platforms, there is an anomaly that the boot console will be reinitialized on resumption from system suspend in `arm_system_pwr_domain_resume()`. This will be resolved in the following patch. NOTE: The default weak definition of `bl31_plat_runtime_setup()` disables the BL31 console. To print the BL31 runtime messages, platforms must override this API and initialize a runtime console. Fixes ARM-software/tf-issues#328 Change-Id: Ibaf8346fcceb447fe1a5674094c9f8eb4c09ac4a
2015-11-26Pass the entry point info to bl1_plat_prepare_exit()Sandrine Bailleux
This patch modifies the prototype of the bl1_plat_prepare_exit() platform API to pass the address of the entry point info structure received from BL2. The structure contains information that can be useful, depending on the kind of clean up or bookkeeping operations to perform. The weak implementation of this function ignores this argument to preserve platform backwards compatibility. NOTE: THIS PATCH MAY BREAK PLATFORM PORTS THAT ARE RELYING ON THE FORMER PROTOTYPE OF THE BL1_PLAT_PREPARE_EXIT() API. Change-Id: I3fc18f637de06c85719c4ee84c85d6a4572a0fdb
2015-10-28Add optional platform error handler APIJuan Castillo
This patch adds an optional API to the platform port: void plat_error_handler(int err) __dead2; The platform error handler is called when there is a specific error condition after which Trusted Firmware cannot continue. While panic() simply prints the crash report (if enabled) and spins, the platform error handler can be used to hand control over to the platform port so it can perform specific bookeeping or post-error actions (for example, reset the system). This function must not return. The parameter indicates the type of error using standard codes from errno.h. Possible errors reported by the generic code are: -EAUTH : a certificate or image could not be authenticated (when Trusted Board Boot is enabled) -ENOENT : the requested image or certificate could not be found or an IO error was detected -ENOMEM : resources exhausted. Trusted Firmware does not use dynamic memory, so this error is usually an indication of an incorrect array size A default weak implementation of this function has been provided. It simply implements an infinite loop. Change-Id: Iffaf9eee82d037da6caa43b3aed51df555e597a3
2015-10-20Add optional bl1_plat_prepare_exit() APIJuan Castillo
This patch adds an optional API to the platform port: void bl1_plat_prepare_exit(void); This function is called prior to exiting BL1 in response to the RUN_IMAGE_SMC request raised by BL2. It should be used to perform platform specific clean up or bookkeeping operations before transferring control to the next image. A weak empty definition of this function has been provided to preserve platform backwards compatibility. Change-Id: Iec09697de5c449ae84601403795cdb6aca166ba1
2015-08-13PSCI: Add deprecated API for SPD when compatibility is disabledSoby Mathew
This patch defines deprecated platform APIs to enable Trusted Firmware components like Secure Payload and their dispatchers(SPD) to continue to build and run when platform compatibility is disabled. This decouples the migration of platform ports to the new platform API from SPD and enables them to be migrated independently. The deprecated platform APIs defined in this patch are : platform_get_core_pos(), platform_get_stack() and platform_set_stack(). The patch also deprecates MPIDR based context management helpers like cm_get_context_by_mpidr(), cm_set_context_by_mpidr() and cm_init_context(). A mechanism to deprecate APIs and identify callers of these APIs during build is introduced, which is controlled by the build flag WARN_DEPRECATED. If WARN_DEPRECATED is defined to 1, the users of the deprecated APIs will be flagged either as a link error for assembly files or compile time warning for C files during build. Change-Id: Ib72c7d5dc956e1a74d2294a939205b200f055613
2015-08-13PSCI: Switch to the new PSCI frameworksSoby Mathew
This commit does the switch to the new PSCI framework implementation replacing the existing files in PSCI folder with the ones in PSCI1.0 folder. The corresponding makefiles are modified as required for the new implementation. The platform.h header file is also is switched to the new one as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults to 1 to enable compatibility layer which let the existing platform ports to continue to build and run with minimal changes. The default weak implementation of platform_get_core_pos() is now removed from platform_helpers.S and is provided by the compatibility layer. Note: The Secure Payloads and their dispatchers still use the old platform and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build flag will remain enabled in subsequent patch. The compatibility for SPDs using the older APIs on platforms migrated to the new APIs will be added in the following patch. Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
2015-08-13PSCI: Implement platform compatibility layerSoby Mathew
The new PSCI topology framework and PSCI extended State framework introduces a breaking change in the platform port APIs. To ease the migration of the platform ports to the new porting interface, a compatibility layer is introduced which essentially defines the new platform API in terms of the old API. The old PSCI helpers to retrieve the power-state, its associated fields and the highest coordinated physical OFF affinity level of a core are also implemented for compatibility. This allows the existing platform ports to work with the new PSCI framework without significant rework. This layer will be enabled by default once the switch to the new PSCI framework is done and is controlled by the build flag ENABLE_PLAT_COMPAT. Change-Id: I4b17cac3a4f3375910a36dba6b03d8f1700d07e3
2015-08-13PSCI: Add framework to handle composite power statesSoby Mathew
The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
2015-08-13PSCI: Introduce new platform and CM helper APIsSoby Mathew
This patch introduces new platform APIs and context management helper APIs to support the new topology framework based on linear core position. This framework will be introduced in the follwoing patch and it removes the assumption that the MPIDR based affinity levels map directly to levels in a power domain tree. The new platforms APIs and context management helpers based on core position are as described below: * plat_my_core_pos() and plat_core_pos_by_mpidr() These 2 new mandatory platform APIs are meant to replace the existing 'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the linear index of the calling core and 'plat_core_pos_by_mpidr()' returns the linear index of a core specified by its MPIDR. The latter API will also validate the MPIDR passed as an argument and will return an error code (-1) if an invalid MPIDR is passed as the argument. This enables the caller to safely convert an MPIDR of another core to its linear index without querying the PSCI topology tree e.g. during a call to PSCI CPU_ON. Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always platform specific, it is no longer possible to maintain a default implementation of this API. Also it might not be possible for a platform port to verify an MPIDR before the C runtime has been setup or the topology has been initialized. This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to topology setup. As a result, the generic Trusted Firmware code does not call this API before the topology setup has been done. The 'plat_my_core_pos' API should be able to run without a C runtime. Since this API needs to return a core position which is equal to the one returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR, this too cannot have default implementation and is a mandatory API for platform ports. These APIs will be implemented by the ARM reference platform ports later in the patch stack. * plat_get_my_stack() and plat_set_my_stack() These APIs are the stack management APIs which set/return stack addresses appropriate for the calling core. These replace the 'platform_get_stack()' and 'platform_set_stack()' APIs. A default weak MP version and a global UP version of these APIs are provided for the platforms. * Context management helpers based on linear core position A set of new context management(CM) helpers viz cm_get_context_by_index(), cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index() are defined which are meant to replace the old helpers which took MPIDR as argument. The old CM helpers are implemented based on the new helpers to allow for code consolidation and will be deprecated once the switch to the new framework is done. Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
2015-04-08Add support to indicate size and end of assembly functionsKévin Petit
In order for the symbol table in the ELF file to contain the size of functions written in assembly, it is necessary to report it to the assembler using the .size directive. To fulfil the above requirements, this patch introduces an 'endfunc' macro which contains the .endfunc and .size directives. It also adds a .func directive to the 'func' assembler macro. The .func/.endfunc have been used so the assembler can fail if endfunc is omitted. Fixes ARM-Software/tf-issues#295 Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc Signed-off-by: Kévin Petit <kevin.petit@arm.com>
2014-08-20Add CPU specific power management operationsSoby Mathew
This patch adds CPU core and cluster power down sequences to the CPU specific operations framework introduced in a earlier patch. Cortex-A53, Cortex-A57 and generic AEM sequences have been added. The latter is suitable for the Foundation and Base AEM FVPs. A pointer to each CPU's operations structure is saved in the per-cpu data so that it can be easily accessed during power down seqeunces. An optional platform API has been introduced to allow a platform to disable the Accelerator Coherency Port (ACP) during a cluster power down sequence. The weak definition of this function (plat_disable_acp()) does not take any action. It should be overriden with a strong definition if the ACP is present on a platform. Change-Id: I8d09bd40d2f528a28d2d3f19b77101178778685d
2014-08-20Add platform API for reset handlingSoby Mathew
This patch adds an optional platform API (plat_reset_handler) which allows the platform to perform any actions immediately after a cold or warm reset e.g. implement errata workarounds. The function is called with MMU and caches turned off. This API is weakly defined and does nothing by default but can be overriden by a platform with a strong definition. Change-Id: Ib0acdccbd24bc756528a8bd647df21e8d59707ff
2014-08-01Call platform_is_primary_cpu() only from reset handlerJuan Castillo
The purpose of platform_is_primary_cpu() is to determine after reset (BL1 or BL3-1 with reset handler) if the current CPU must follow the cold boot path (primary CPU), or wait in a safe state (secondary CPU) until the primary CPU has finished the system initialization. This patch removes redundant calls to platform_is_primary_cpu() in subsequent bootloader entrypoints since the reset handler already guarantees that code is executed exclusively on the primary CPU. Additionally, this patch removes the weak definition of platform_is_primary_cpu(), so the implementation of this function becomes mandatory. Removing the weak symbol avoids other bootloaders accidentally picking up an invalid definition in case the porting layer makes the real function available only to BL1. The define PRIMARY_CPU is no longer mandatory in the platform porting because platform_is_primary_cpu() hides the implementation details (for instance, there may be platforms that report the primary CPU in a system register). The primary CPU definition in FVP has been moved to fvp_def.h. The porting guide has been updated accordingly. Fixes ARM-software/tf-issues#219 Change-Id: If675a1de8e8d25122b7fef147cb238d939f90b5e
2014-07-28Merge pull request #172 from soby-mathew/sm/asm_assertdanh-arm
Introduce asm assert and optimize crash reporting
2014-07-28Introduce crash console APIs for crash reportingSoby Mathew
This patch introduces platform APIs to initialise and print a character on a designated crash console. For the FVP platform, PL011_UART0 is the designated crash console. The platform porting guide is also updated to document the new APIs. Change-Id: I5e97d8762082e0c88c8c9bbb479353eac8f11a66
2014-07-28Remove the concept of coherent stacksAchin Gupta
This patch removes the allocation of memory for coherent stacks, associated accessor function and some dead code which called the accessor function. It also updates the porting guide to remove the concept and the motivation behind using stacks allocated in coherent memory. Fixes ARM-software/tf-issues#198 Change-Id: I00ff9a04f693a03df3627ba39727e3497263fc38
2014-07-19Make enablement of the MMU more flexibleAchin Gupta
This patch adds a 'flags' parameter to each exception level specific function responsible for enabling the MMU. At present only a single flag which indicates whether the data cache should also be enabled is implemented. Subsequent patches will use this flag when enabling the MMU in the warm boot paths. Change-Id: I0eafae1e678c9ecc604e680851093f1680e9cefa
2014-06-24Remove all checkpatch errors from codebaseJuan Castillo
Exclude stdlib files because they do not follow kernel code style. Fixes ARM-software/tf-issues#73 Change-Id: I4cfafa38ab436f5ab22c277cb38f884346a267ab
2014-05-23Add enable mmu platform porting interfacesDan Handley
Previously, the enable_mmu_elX() functions were implicitly part of the platform porting layer since they were included by generic code. These functions have been placed behind 2 new platform functions, bl31_plat_enable_mmu() and bl32_plat_enable_mmu(). These are weakly defined so that they can be optionally overridden by platform ports. Also, the enable_mmu_elX() functions have been moved to lib/aarch64/xlat_tables.c for optional re-use by platform ports. These functions are tightly coupled with the translation table initialization code. Fixes ARM-software/tf-issues#152 Change-Id: I0a2251ce76acfa3c27541f832a9efaa49135cc1c
2014-05-23Split platform.h into separate headersDan Handley
Previously, platform.h contained many declarations and definitions used for different purposes. This file has been split so that: * Platform definitions used by common code that must be defined by the platform are now in platform_def.h. The exact include path is exported through $PLAT_INCLUDES in the platform makefile. * Platform definitions specific to the FVP platform are now in /plat/fvp/fvp_def.h. * Platform API declarations specific to the FVP platform are now in /plat/fvp/fvp_private.h. * The remaining platform API declarations that must be ported by each platform are still in platform.h but this file has been moved to /include/plat/common since this can be shared by all platforms. Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
2014-05-06Reduce deep nesting of header filesDan Handley
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
2014-04-15Allocate single stacks for BL1 and BL2Andrew Thoelke
The BL images share common stack management code which provides one coherent and one cacheable stack for every CPU. BL1 and BL2 just execute on the primary CPU during boot and do not require the additional CPU stacks. This patch provides separate stack support code for UP and MP images, substantially reducing the RAM usage for BL1 and BL2 for the FVP platform. This patch also provides macros for declaring stacks and calculating stack base addresses to improve consistency where this has to be done in the firmware. The stack allocation source files are now included via platform.mk rather than the common BLx makefiles. This allows each platform to select the appropriate MP/UP stack support for each BL image. Each platform makefile must be updated when including this commit. Fixes ARM-software/tf-issues#76 Change-Id: Ia251f61b8148ffa73eae3f3711f57b1ffebfa632
2014-03-26Place assembler functions in separate sectionsAndrew Thoelke
This extends the --gc-sections behaviour to the many assembler support functions in the firmware images by placing each function into its own code section. This is achieved by creating a 'func' macro used to declare each function label. Fixes ARM-software/tf-issues#80 Change-Id: I301937b630add292d2dec6d2561a7fcfa6fec690
2014-02-17Increase coherent stack sizesAchin Gupta
This patch increases coherent stack size for both debug and release builds in order to accommodate stack-heavy printf() and extended EL3 functionality Change-Id: I30ef30530a01517a97e63d703873374828c09f20
2014-01-17Change comments in assembler files to help ctagsJeenu Viswambharan
Ctags seem to have a problem with generating tags for assembler symbols when a comment immediately follows an assembly label. This patch inserts a single space character between the label definition and the following comments to help ctags. The patch is generated by the command: git ls-files -- \*.S | xargs sed -i 's/^\([^:]\+\):;/\1: ;/1' Change-Id: If7a3c9d0f51207ea033cc8b8e1b34acaa0926475
2014-01-17Update year in copyright text to 2014Dan Handley
Change-Id: Ic7fb61aabae1d515b9e6baf3dd003807ff42da60
2013-12-05psci: fix error due to a non zero context idAchin Gupta
In the previous psci implementation, the psci_afflvl_power_on_finish() function would run into an error condition if the value of the context id parameter in the cpu_on and cpu_suspend psci calls was != 0. The parameter was being restored as the return value of the affinity level 0 finisher function. A non zero context id would be treated as an error condition. This would prevent successful wake up of the cpu from a power down state. Also, the contents of the general purpose registers were not being cleared upon return to the non-secure world after a cpu power up. This could potentially allow the non-secure world to view secure data. This patch ensures that all general purpose registers are set to ~0 prior to the final eret that drops the execution to the non-secure world. The context id is used to initialize the general purpose register x0 prior to re-entry into the non-secure world and is no longer restored as a function return value. A platform helper (platform_get_stack()) has been introduced to facilitate this change. Change-Id: I2454911ffd75705d6aa8609a5d250d9b26fa097c
2013-12-05Enable third party contributionsDan Handley
- Add instructions for contributing to ARM Trusted Firmware. - Update copyright text in all files to acknowledge contributors. Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
2013-10-25ARMv8 Trusted Firmware release v0.2Achin Gupta