summaryrefslogtreecommitdiff
path: root/lib/aarch64
AgeCommit message (Collapse)Author
2017-06-21Exit early if size zero for cache helpersSoby Mathew
This patch enables cache helper functions `flush_dcache_range`, `clean_dcache_range` and `invalidate_dcache_range` to exit early if the size argument specified is zero Change-Id: I0b63e8f4bd3d47ec08bf2a0b0b9a7ff8a269a9b0 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
2017-05-03Use SPDX license identifiersdp-arm
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
2017-04-20Remove build option `ASM_ASSERTION`Antonio Nino Diaz
The build option `ENABLE_ASSERTIONS` should be used instead. That way both C and ASM assertions can be enabled or disabled together. All occurrences of `ASM_ASSERTION` in common code and ARM platforms have been replaced by `ENABLE_ASSERTIONS`. ASM_ASSERTION has been removed from the user guide. Change-Id: I51f1991f11b9b7ff83e787c9a3270c274748ec6f Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2017-03-20Replace ASM signed tests with unsignedDouglas Raillard
ge, lt, gt and le condition codes in assembly provide a signed test whereas hs, lo, hi and ls provide the unsigned counterpart. Signed tests should only be used when strictly necessary, as using them on logically unsigned values can lead to inverting the test for high enough values. All offsets, addresses and usually counters are actually unsigned values, and should be tested as such. Replace the occurrences of signed condition codes where it was unnecessary by an unsigned test as the unsigned tests allow the full range of unsigned values to be used without inverting the result with some large operands. Change-Id: I58b7e98d03e3a4476dfb45230311f296d224980a Signed-off-by: Douglas Raillard <douglas.raillard@arm.com>
2017-02-06Introduce unified API to zero memoryDouglas Raillard
Introduce zeromem_dczva function on AArch64 that can handle unaligned addresses and make use of DC ZVA instruction to zero a whole block at a time. This zeroing takes place directly in the cache to speed it up without doing external memory access. Remove the zeromem16 function on AArch64 and replace it with an alias to zeromem. This zeromem16 function is now deprecated. Remove the 16-bytes alignment constraint on __BSS_START__ in firmware-design.md as it is now not mandatory anymore (it used to comply with zeromem16 requirements). Change the 16-bytes alignment constraints in SP min's linker script to a 8-bytes alignment constraint as the AArch32 zeromem implementation is now more efficient on 8-bytes aligned addresses. Introduce zero_normalmem and zeromem helpers in platform agnostic header that are implemented this way: * AArch32: * zero_normalmem: zero using usual data access * zeromem: alias for zero_normalmem * AArch64: * zero_normalmem: zero normal memory using DC ZVA instruction (needs MMU enabled) * zeromem: zero using usual data access Usage guidelines: in most cases, zero_normalmem should be preferred. There are 2 scenarios where zeromem (or memset) must be used instead: * Code that must run with MMU disabled (which means all memory is considered device memory for data accesses). * Code that fills device memory with null bytes. Optionally, the following rule can be applied if performance is important: * Code zeroing small areas (few bytes) that are not secrets should use memset to take advantage of compiler optimizations. Note: Code zeroing security-related critical information should use zero_normalmem/zeromem instead of memset to avoid removal by compilers' optimizations in some cases or misbehaving versions of GCC. Fixes ARM-software/tf-issues#408 Change-Id: Iafd9663fc1070413c3e1904e54091cf60effaa82 Signed-off-by: Douglas Raillard <douglas.raillard@arm.com>
2016-12-14Fix integer comparison in memcpy16Douglas Raillard
Unsigned conditions should be used instead of signed ones when comparing addresses or sizes in assembly. Signed-off-by: Douglas Raillard <douglas.raillard@arm.com> Change-Id: Id3bd9ccaf58c37037761af35ac600907c4bb0580
2016-04-13Refactor the xlat_tables library codeSoby Mathew
The AArch32 long descriptor format and the AArch64 descriptor format correspond to each other which allows possible sharing of xlat_tables library code between AArch64 and AArch32. This patch refactors the xlat_tables library code to seperate the common functionality from architecture specific code. Prior to this patch, all of the xlat_tables library code were in `lib/aarch64/xlat_tables.c` file. The refactored code is now in `lib/xlat_tables/` directory. The AArch64 specific programming for xlat_tables is in `lib/xlat_tables/aarch64/xlat_tables.c` and the rest of the code common to AArch64 and AArch32 is in `lib/xlat_tables/xlat_tables_common.c`. Also the data types used in xlat_tables library APIs are reworked to make it compatible between AArch64 and AArch32. The `lib/aarch64/xlat_tables.c` file now includes the new xlat_tables library files to retain compatibility for existing platform ports. The macros related to xlat_tables library are also moved from `include/lib/aarch64/arch.h` to the header `include/lib/xlat_tables.h`. NOTE: THE `lib/aarch64/xlat_tables.c` FILE IS DEPRECATED AND PLATFORM PORTS ARE EXPECTED TO INCLUDE THE NEW XLAT_TABLES LIBRARY FILES IN THEIR MAKEFILES. Change-Id: I3d17217d24aaf3a05a4685d642a31d4d56255a0f
2016-03-31Remove xlat_helpers.cAntonio Nino Diaz
lib/aarch64/xlat_helpers.c defines helper functions to build translation descriptors, but no common code or upstream platform port uses them. As the rest of the xlat_tables code evolves, there may be conflicts with these helpers, therefore this code should be removed. Change-Id: I9f5be99720f929264818af33db8dada785368711
2016-03-11Merge pull request #542 from sandrine-bailleux-arm/km/pt-zerodanh-arm
Initialize all translation table entries
2016-03-07Initialize all translation table entriesKristina Martsenko
The current translation table code maps in a series of regions, zeroing the unmapped table entries before and in between the mapped regions. It doesn't, however, zero the unmapped entries after the last mapped region, leaving those entries at whatever value that memory has initially. This is bad because those values can look like valid translation table entries, pointing to valid physical addresses. The CPU is allowed to do speculative reads from any such addresses. If the addresses point to device memory, the results can be unpredictable. This patch zeroes the translation table entries following the last mapped region, ensuring all table entries are either valid or zero (invalid). In addition, it limits the value of ADDR_SPACE_SIZE to those allowed by the architecture and supported by the current code (see D4.2.5 in the Architecture Reference Manual). This simplifies this patch a lot and ensures existing code doesn't do unexpected things. Change-Id: Ic28b6c3f89d73ef58fa80319a9466bb2c7131c21
2016-03-03Extend memory attributes to map non-cacheable memorySandrine Bailleux
At the moment, the memory translation library allows to create memory mappings of 2 types: - Device nGnRE memory (named MT_DEVICE in the library); - Normal, Inner Write-back non-transient, Outer Write-back non-transient memory (named MT_MEMORY in the library). As a consequence, the library code treats the memory type field as a boolean: everything that is not device memory is normal memory and vice-versa. In reality, the ARMv8 architecture allows up to 8 types of memory to be used at a single time for a given exception level. This patch reworks the memory attributes such that the memory type is now defined as an integer ranging from 0 to 7 instead of a boolean. This makes it possible to extend the list of memory types supported by the memory translation library. The priority system dictating memory attributes for overlapping memory regions has been extended to cope with these changes but the algorithm at its core has been preserved. When a memory region is re-mapped with different memory attributes, the memory translation library examines the former attributes and updates them only if the new attributes create a more restrictive mapping. This behaviour is unchanged, only the manipulation of the value has been modified to cope with the new format. This patch also introduces a new type of memory mapping in the memory translation library: MT_NON_CACHEABLE, meaning Normal, Inner Non-cacheable, Outer Non-cacheable memory. This can be useful to map a non-cacheable memory region, such as a DMA buffer for example. The rules around the Execute-Never (XN) bit in a translation table for an MT_NON_CACHEABLE memory mapping have been aligned on the rules used for MT_MEMORY mappings: - If the memory is read-only then it is also executable (XN = 0); - If the memory is read-write then it is not executable (XN = 1). The shareability field for MT_NON_CACHEABLE mappings is always set as 'Outer-Shareable'. Note that this is not strictly needed since shareability is only relevant if the memory is a Normal Cacheable memory type, but this is to align with the existing device memory mappings setup. All Device and Normal Non-cacheable memory regions are always treated as Outer Shareable, regardless of the translation table shareability attributes. This patch also removes the 'ATTR_SO' and 'ATTR_SO_INDEX' #defines. They were introduced to map memory as Device nGnRnE (formerly called "Strongly-Ordered" memory in the ARMv7 architecture) but were not used anywhere in the code base. Removing them avoids any confusion about the memory types supported by the library. Upstream platforms do not currently use the MT_NON_CACHEABLE memory type. NOTE: THIS CHANGE IS SOURCE COMPATIBLE BUT PLATFORMS THAT RELY ON THE BINARY VALUES OF `mmap_attr_t` or the `attr` argument of `mmap_add_region()` MAY BE BROKEN. Change-Id: I717d6ed79b4c845a04e34132432f98b93d661d79
2016-02-01Use tf_printf() for debug logs from xlat_tables.cSoby Mathew
The debug prints used to debug translation table setup in xlat_tables.c used the `printf()` standard library function instead of the stack optimized `tf_printf()` API. DEBUG_XLAT_TABLE option was used to enable debug logs within xlat_tables.c and it configured a much larger stack size for the platform in case it was enabled. This patch modifies these debug prints within xlat_tables.c to use tf_printf() and modifies the format specifiers to be compatible with tf_printf(). The debug prints are now enabled if the VERBOSE prints are enabled in Trusted Firmware via LOG_LEVEL build option. The much larger stack size definition when DEBUG_XLAT_TABLE is defined is no longer required and the platform ports are modified to remove this stack size definition. Change-Id: I2f7d77ea12a04b827fa15e2adc3125b1175e4c23
2016-01-14Remove direct usage of __attribute__((foo))Soren Brinkmann
Migrate all direct usage of __attribute__ to usage of their corresponding macros from cdefs.h. e.g.: - __attribute__((unused)) -> __unused Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
2015-09-14Make generic code work in presence of system cachesAchin Gupta
On the ARMv8 architecture, cache maintenance operations by set/way on the last level of integrated cache do not affect the system cache. This means that such a flush or clean operation could result in the data being pushed out to the system cache rather than main memory. Another CPU could access this data before it enables its data cache or MMU. Such accesses could be serviced from the main memory instead of the system cache. If the data in the sysem cache has not yet been flushed or evicted to main memory then there could be a loss of coherency. The only mechanism to guarantee that the main memory will be updated is to use cache maintenance operations to the PoC by MVA(See section D3.4.11 (System level caches) of ARMv8-A Reference Manual (Issue A.g/ARM DDI0487A.G). This patch removes the reliance of Trusted Firmware on the flush by set/way operation to ensure visibility of data in the main memory. Cache maintenance operations by MVA are now used instead. The following are the broad category of changes: 1. The RW areas of BL2/BL31/BL32 are invalidated by MVA before the C runtime is initialised. This ensures that any stale cache lines at any level of cache are removed. 2. Updates to global data in runtime firmware (BL31) by the primary CPU are made visible to secondary CPUs using a cache clean operation by MVA. 3. Cache maintenance by set/way operations are only used prior to power down. NOTE: NON-UPSTREAM TRUSTED FIRMWARE CODE SHOULD MAKE EQUIVALENT CHANGES IN ORDER TO FUNCTION CORRECTLY ON PLATFORMS WITH SUPPORT FOR SYSTEM CACHES. Fixes ARM-software/tf-issues#205 Change-Id: I64f1b398de0432813a0e0881d70f8337681f6e9a
2015-04-08Add support to indicate size and end of assembly functionsKévin Petit
In order for the symbol table in the ELF file to contain the size of functions written in assembly, it is necessary to report it to the assembler using the .size directive. To fulfil the above requirements, this patch introduces an 'endfunc' macro which contains the .endfunc and .size directives. It also adds a .func directive to the 'func' assembler macro. The .func/.endfunc have been used so the assembler can fail if endfunc is omitted. Fixes ARM-Software/tf-issues#295 Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc Signed-off-by: Kévin Petit <kevin.petit@arm.com>
2015-03-16Add macro to calculate number of elements in an arrayVikram Kanigiri
This patch defines the ARRAY_SIZE macro for calculating number of elements in an array and uses it where appropriate. Change-Id: I72746a9229f0b259323972b498b9a3999731bc9b
2014-10-29Add support for level specific cache maintenance operationsSoby Mathew
This patch adds level specific cache maintenance functions to cache_helpers.S. The new functions 'dcsw_op_levelx', where '1 <= x <= 3', allow to perform cache maintenance by set/way for that particular level of cache. With this patch, functions to support cache maintenance upto level 3 have been implemented since it is the highest cache level for most ARM SoCs. These functions are now utilized in CPU specific power down sequences to implement them as mandated by processor specific technical reference manual. Change-Id: Icd90ce6b51cff5a12863bcda01b93601417fd45c
2014-08-20Introduce framework for CPU specific operationsSoby Mathew
This patch introduces a framework which will allow CPUs to perform implementation defined actions after a CPU reset, during a CPU or cluster power down, and when a crash occurs. CPU specific reset handlers have been implemented in this patch. Other handlers will be implemented in subsequent patches. Also moved cpu_helpers.S to the new directory lib/cpus/aarch64/. Change-Id: I1ca1bade4d101d11a898fb30fea2669f9b37b956
2014-07-28Merge pull request #172 from soby-mathew/sm/asm_assertdanh-arm
Introduce asm assert and optimize crash reporting
2014-07-28Implement an assert() callable from assembly codeSoby Mathew
The patch implements a macro ASM_ASSERT() which can be invoked from assembly code. When assertion happens, file name and line number of the check is written to the crash console. Fixes ARM-software/tf-issues#95 Change-Id: I6f905a068e1c0fa4f746d723f18df60daaa00a86
2014-07-28Simplify management of SCTLR_EL3 and SCTLR_EL1Achin Gupta
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They do not have to be saved and restored either. The M, WXN and optionally the C bit are set in the enable_mmu_elX() function. This is done during both the warm and cold boot paths. Fixes ARM-software/tf-issues#226 Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
2014-07-19Make enablement of the MMU more flexibleAchin Gupta
This patch adds a 'flags' parameter to each exception level specific function responsible for enabling the MMU. At present only a single flag which indicates whether the data cache should also be enabled is implemented. Subsequent patches will use this flag when enabling the MMU in the warm boot paths. Change-Id: I0eafae1e678c9ecc604e680851093f1680e9cefa
2014-07-09Calculate TCR bits based on VA and PALin Ma
Currently the TCR bits are hardcoded in xlat_tables.c. In order to map higher physical address into low virtual address, the TCR bits need to be configured accordingly. This patch is to save the max VA and PA and calculate the TCR.PS/IPS and t0sz bits in init_xlat_tables function. Change-Id: Ia7a58e5372b20200153057d457f4be5ddbb7dae4
2014-06-16Merge pull request #130 from athoelke/at/inline-asm-sysreg-v2danh-arm
Make system register functions inline assembly v2
2014-06-10Make system register functions inline assemblyAndrew Thoelke
Replace the current out-of-line assembler implementations of the system register and system instruction operations with inline assembler. This enables better compiler optimisation and code generation when accessing system registers. Fixes ARM-software/tf-issues#91 Change-Id: I149af3a94e1e5e5140a3e44b9abfc37ba2324476
2014-06-02Enable mapping higher physical addressLin Ma
Current ATF uses a direct physical-to-virtual mapping, that is, a physical address is mapped to the same address in the virtual space. For example, physical address 0x8000_0000 is mapped to 0x8000_0000 virtual. This approach works fine for FVP as all its physical addresses fall into 0 to 4GB range. But for other platform where all I/O addresses are 48-bit long, If we follow the same direct mapping, we would need virtual address range from 0 to 0x8fff_ffff_ffff, which is about 144TB. This requires a significant amount of memory for MMU tables and it is not necessary to use that much virtual space in ATF. The patch is to enable mapping a physical address range to an arbitrary virtual address range (instead of flat mapping) Changed "base" to "base_va" and added "base_pa" in mmap_region_t and modified functions such as mmap_add_region and init_xlation_table etc. Fixes ARM-software/tf-issues#158
2014-05-23Add enable mmu platform porting interfacesDan Handley
Previously, the enable_mmu_elX() functions were implicitly part of the platform porting layer since they were included by generic code. These functions have been placed behind 2 new platform functions, bl31_plat_enable_mmu() and bl32_plat_enable_mmu(). These are weakly defined so that they can be optionally overridden by platform ports. Also, the enable_mmu_elX() functions have been moved to lib/aarch64/xlat_tables.c for optional re-use by platform ports. These functions are tightly coupled with the translation table initialization code. Fixes ARM-software/tf-issues#152 Change-Id: I0a2251ce76acfa3c27541f832a9efaa49135cc1c
2014-05-23Split platform.h into separate headersDan Handley
Previously, platform.h contained many declarations and definitions used for different purposes. This file has been split so that: * Platform definitions used by common code that must be defined by the platform are now in platform_def.h. The exact include path is exported through $PLAT_INCLUDES in the platform makefile. * Platform definitions specific to the FVP platform are now in /plat/fvp/fvp_def.h. * Platform API declarations specific to the FVP platform are now in /plat/fvp/fvp_private.h. * The remaining platform API declarations that must be ported by each platform are still in platform.h but this file has been moved to /include/plat/common since this can be shared by all platforms. Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
2014-05-23Merge pull request #102 from achingupta:ag/tf-issues#104-v2Andrew Thoelke
2014-05-22Use secure timer to generate S-EL1 interruptsAchin Gupta
This patch adds support in the TSP to program the secure physical generic timer to generate a EL-1 interrupt every half second. It also adds support for maintaining the timer state across power management operations. The TSPD ensures that S-EL1 can access the timer by programming the SCR_EL3.ST bit. This patch does not actually enable the timer. This will be done in a subsequent patch once the complete framework for handling S-EL1 interrupts is in place. Change-Id: I1b3985cfb50262f60824be3a51c6314ce90571bc
2014-05-22Merge pull request #91 from linmaonly/lin_devAndrew Thoelke
Address issue 156: 64-bit addresses get truncated
2014-05-20Address issue 156: 64-bit addresses get truncatedLin Ma
Addresses were declared as "unsigned int" in drivers/arm/peripherals/pl011/pl011.h and in function init_xlation_table. Changed to use "unsigned long" instead Fixes ARM-software/tf-issues#156
2014-05-16Rework BL3-1 unhandled exception handling and reportingSoby Mathew
This patch implements the register reporting when unhandled exceptions are taken in BL3-1. Unhandled exceptions will result in a dump of registers to the console, before halting execution by that CPU. The Crash Stack, previously called the Exception Stack, is used for this activity. This stack is used to preserve the CPU context and runtime stack contents for debugging and analysis. This also introduces the per_cpu_ptr_cache, referenced by tpidr_el3, to provide easy access to some of BL3-1 per-cpu data structures. Initially, this is used to provide a pointer to the Crash stack. panic() now prints the the error file and line number in Debug mode and prints the PC value in release mode. The Exception Stack is renamed to Crash Stack with this patch. The original intention of exception stack is no longer valid since we intend to support several valid exceptions like IRQ and FIQ in the trusted firmware context. This stack is now utilized for dumping and reporting the system state when a crash happens and hence the rename. Fixes ARM-software/tf-issues#79 Improve reporting of unhandled exception Change-Id: I260791dc05536b78547412d147193cdccae7811a
2014-05-08Merge pull request #58 from athoelke/optimise-cache-flush-v2danh-arm
Optimise data cache clean/invalidate operation v2
2014-05-07Optimise data cache clean/invalidate operationAndrew Thoelke
The data cache clean and invalidate operations dcsw_op_all() and dcsw_op_loius() were implemented to invoke a DSB and ISB barrier for every set/way operation. This adds a substantial performance penalty to an already expensive operation. These functions have been reworked to provide an optimised implementation derived from the code in section D3.4 of the ARMv8 ARM. The helper macro setup_dcsw_op_args has been moved and reworked alongside the implementation. Fixes ARM-software/tf-issues#146 Change-Id: Icd5df57816a83f0a842fce935320a369f7465c7f
2014-05-07Remove unused or invalid asm helper functionsAndrew Thoelke
There are a small number of non-EL specific helper functions which are no longer used, and also some unusable helper functions for non-existant registers. This change removes all of these functions. Change-Id: Idd656cef3b59cf5c46fe2be4029d72288b649c24
2014-05-07Access system registers directly in assemblerAndrew Thoelke
Instead of using the system register helper functions to read or write system registers, assembler coded functions should use MRS/MSR instructions. This results in faster and more compact code. This change replaces all usage of the helper functions with direct register accesses. Change-Id: I791d5f11f257010bb3e6a72c6c5ab8779f1982b3
2014-05-07Replace disable_mmu with assembler versionAndrew Thoelke
disable_mmu() cannot work as a C function as there is no control over data accesses generated by the compiler between disabling and cleaning the data cache. This results in reading stale data from main memory. As assembler version is provided for EL3, and a variant that also disables the instruction cache which is now used by the BL1 exception handling function. Fixes ARM-software/tf-issues#147 Change-Id: I0cf394d2579a125a23c2f2989c2e92ace6ddb1a6
2014-05-07Correct usage of data and instruction barriersAndrew Thoelke
The current code does not always use data and instruction barriers as required by the architecture and frequently uses barriers excessively due to their inclusion in all of the write_*() helper functions. Barriers should be used explicitly in assembler or C code when modifying processor state that requires the barriers in order to enable review of correctness of the code. This patch removes the barriers from the helper functions and introduces them as necessary elsewhere in the code. PORTING NOTE: check any port of Trusted Firmware for use of system register helper functions for reliance on the previous barrier behaviour and add explicit barriers as necessary. Fixes ARM-software/tf-issues#92 Change-Id: Ie63e187404ff10e0bdcb39292dd9066cb84c53bf
2014-05-06Reduce deep nesting of header filesDan Handley
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
2014-05-06Always use named structs in header filesDan Handley
Add tag names to all unnamed structs in header files. This allows forward declaration of structs, which is necessary to reduce header file nesting (to be implemented in a subsequent commit). Also change the typedef names across the codebase to use the _t suffix to be more conformant with the Linux coding style. The coding style actually prefers us not to use typedefs at all but this is considered a step too far for Trusted Firmware. Also change the IO framework structs defintions to use typedef'd structs to be consistent with the rest of the codebase. Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
2014-05-06Move include and source files to logical locationsDan Handley
Move almost all system include files to a logical sub-directory under ./include. The only remaining system include directories not under ./include are specific to the platform. Move the corresponding source files to match the include directory structure. Also remove pm.h as it is no longer used. Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3