summaryrefslogtreecommitdiff
path: root/docs/trusted-board-boot.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/trusted-board-boot.rst')
-rw-r--r--docs/trusted-board-boot.rst238
1 files changed, 238 insertions, 0 deletions
diff --git a/docs/trusted-board-boot.rst b/docs/trusted-board-boot.rst
new file mode 100644
index 00000000..6a28da01
--- /dev/null
+++ b/docs/trusted-board-boot.rst
@@ -0,0 +1,238 @@
+Trusted Board Boot Design Guide
+===============================
+
+
+.. section-numbering::
+ :suffix: .
+
+.. contents::
+
+The Trusted Board Boot (TBB) feature prevents malicious firmware from running on
+the platform by authenticating all firmware images up to and including the
+normal world bootloader. It does this by establishing a Chain of Trust using
+Public-Key-Cryptography Standards (PKCS).
+
+This document describes the design of ARM Trusted Firmware TBB, which is an
+implementation of the Trusted Board Boot Requirements (TBBR) specification,
+ARM DEN0006C-1. It should be used in conjunction with the `Firmware Update`_
+design document, which implements a specific aspect of the TBBR.
+
+Chain of Trust
+--------------
+
+A Chain of Trust (CoT) starts with a set of implicitly trusted components. On
+the ARM development platforms, these components are:
+
+- A SHA-256 hash of the Root of Trust Public Key (ROTPK). It is stored in the
+ trusted root-key storage registers.
+
+- The BL1 image, on the assumption that it resides in ROM so cannot be
+ tampered with.
+
+The remaining components in the CoT are either certificates or boot loader
+images. The certificates follow the `X.509 v3`_ standard. This standard
+enables adding custom extensions to the certificates, which are used to store
+essential information to establish the CoT.
+
+In the TBB CoT all certificates are self-signed. There is no need for a
+Certificate Authority (CA) because the CoT is not established by verifying the
+validity of a certificate's issuer but by the content of the certificate
+extensions. To sign the certificates, the PKCS#1 SHA-256 with RSA Encryption
+signature scheme is used with a RSA key length of 2048 bits. Future version of
+Trusted Firmware will support additional cryptographic algorithms.
+
+The certificates are categorised as "Key" and "Content" certificates. Key
+certificates are used to verify public keys which have been used to sign content
+certificates. Content certificates are used to store the hash of a boot loader
+image. An image can be authenticated by calculating its hash and matching it
+with the hash extracted from the content certificate. The SHA-256 function is
+used to calculate all hashes. The public keys and hashes are included as
+non-standard extension fields in the `X.509 v3`_ certificates.
+
+The keys used to establish the CoT are:
+
+- **Root of trust key**
+
+ The private part of this key is used to sign the BL2 content certificate and
+ the trusted key certificate. The public part is the ROTPK.
+
+- **Trusted world key**
+
+ The private part is used to sign the key certificates corresponding to the
+ secure world images (SCP\_BL2, BL31 and BL32). The public part is stored in
+ one of the extension fields in the trusted world certificate.
+
+- **Non-trusted world key**
+
+ The private part is used to sign the key certificate corresponding to the
+ non secure world image (BL33). The public part is stored in one of the
+ extension fields in the trusted world certificate.
+
+- **BL3-X keys**
+
+ For each of SCP\_BL2, BL31, BL32 and BL33, the private part is used to
+ sign the content certificate for the BL3-X image. The public part is stored
+ in one of the extension fields in the corresponding key certificate.
+
+The following images are included in the CoT:
+
+- BL1
+- BL2
+- SCP\_BL2 (optional)
+- BL31
+- BL33
+- BL32 (optional)
+
+The following certificates are used to authenticate the images.
+
+- **BL2 content certificate**
+
+ It is self-signed with the private part of the ROT key. It contains a hash
+ of the BL2 image.
+
+- **Trusted key certificate**
+
+ It is self-signed with the private part of the ROT key. It contains the
+ public part of the trusted world key and the public part of the non-trusted
+ world key.
+
+- **SCP\_BL2 key certificate**
+
+ It is self-signed with the trusted world key. It contains the public part of
+ the SCP\_BL2 key.
+
+- **SCP\_BL2 content certificate**
+
+ It is self-signed with the SCP\_BL2 key. It contains a hash of the SCP\_BL2
+ image.
+
+- **BL31 key certificate**
+
+ It is self-signed with the trusted world key. It contains the public part of
+ the BL31 key.
+
+- **BL31 content certificate**
+
+ It is self-signed with the BL31 key. It contains a hash of the BL31 image.
+
+- **BL32 key certificate**
+
+ It is self-signed with the trusted world key. It contains the public part of
+ the BL32 key.
+
+- **BL32 content certificate**
+
+ It is self-signed with the BL32 key. It contains a hash of the BL32 image.
+
+- **BL33 key certificate**
+
+ It is self-signed with the non-trusted world key. It contains the public
+ part of the BL33 key.
+
+- **BL33 content certificate**
+
+ It is self-signed with the BL33 key. It contains a hash of the BL33 image.
+
+The SCP\_BL2 and BL32 certificates are optional, but they must be present if the
+corresponding SCP\_BL2 or BL32 images are present.
+
+Trusted Board Boot Sequence
+---------------------------
+
+The CoT is verified through the following sequence of steps. The system panics
+if any of the steps fail.
+
+- BL1 loads and verifies the BL2 content certificate. The issuer public key is
+ read from the verified certificate. A hash of that key is calculated and
+ compared with the hash of the ROTPK read from the trusted root-key storage
+ registers. If they match, the BL2 hash is read from the certificate.
+
+ Note: the matching operation is platform specific and is currently
+ unimplemented on the ARM development platforms.
+
+- BL1 loads the BL2 image. Its hash is calculated and compared with the hash
+ read from the certificate. Control is transferred to the BL2 image if all
+ the comparisons succeed.
+
+- BL2 loads and verifies the trusted key certificate. The issuer public key is
+ read from the verified certificate. A hash of that key is calculated and
+ compared with the hash of the ROTPK read from the trusted root-key storage
+ registers. If the comparison succeeds, BL2 reads and saves the trusted and
+ non-trusted world public keys from the verified certificate.
+
+The next two steps are executed for each of the SCP\_BL2, BL31 & BL32 images.
+The steps for the optional SCP\_BL2 and BL32 images are skipped if these images
+are not present.
+
+- BL2 loads and verifies the BL3x key certificate. The certificate signature
+ is verified using the trusted world public key. If the signature
+ verification succeeds, BL2 reads and saves the BL3x public key from the
+ certificate.
+
+- BL2 loads and verifies the BL3x content certificate. The signature is
+ verified using the BL3x public key. If the signature verification succeeds,
+ BL2 reads and saves the BL3x image hash from the certificate.
+
+The next two steps are executed only for the BL33 image.
+
+- BL2 loads and verifies the BL33 key certificate. If the signature
+ verification succeeds, BL2 reads and saves the BL33 public key from the
+ certificate.
+
+- BL2 loads and verifies the BL33 content certificate. If the signature
+ verification succeeds, BL2 reads and saves the BL33 image hash from the
+ certificate.
+
+The next step is executed for all the boot loader images.
+
+- BL2 calculates the hash of each image. It compares it with the hash obtained
+ from the corresponding content certificate. The image authentication succeeds
+ if the hashes match.
+
+The Trusted Board Boot implementation spans both generic and platform-specific
+BL1 and BL2 code, and in tool code on the host build machine. The feature is
+enabled through use of specific build flags as described in the `User Guide`_.
+
+On the host machine, a tool generates the certificates, which are included in
+the FIP along with the boot loader images. These certificates are loaded in
+Trusted SRAM using the IO storage framework. They are then verified by an
+Authentication module included in the Trusted Firmware.
+
+The mechanism used for generating the FIP and the Authentication module are
+described in the following sections.
+
+Authentication Framework
+------------------------
+
+The authentication framework included in the Trusted Firmware provides support
+to implement the desired trusted boot sequence. ARM platforms use this framework
+to implement the boot requirements specified in the TBBR-client document.
+
+More information about the authentication framework can be found in the
+`Auth Framework`_ document.
+
+Certificate Generation Tool
+---------------------------
+
+The ``cert_create`` tool is built and runs on the host machine as part of the
+Trusted Firmware build process when ``GENERATE_COT=1``. It takes the boot loader
+images and keys as inputs (keys must be in PEM format) and generates the
+certificates (in DER format) required to establish the CoT. New keys can be
+generated by the tool in case they are not provided. The certificates are then
+passed as inputs to the ``fiptool`` utility for creating the FIP.
+
+The certificates are also stored individually in the in the output build
+directory.
+
+The tool resides in the ``tools/cert_create`` directory. It uses OpenSSL SSL
+library version 1.0.1 or later to generate the X.509 certificates. Instructions
+for building and using the tool can be found in the `User Guide`_.
+
+--------------
+
+*Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.*
+
+.. _Firmware Update: firmware-update.rst
+.. _X.509 v3: http://www.ietf.org/rfc/rfc5280.txt
+.. _User Guide: user-guide.rst
+.. _Auth Framework: auth-framework.rst