
OpenAMP Framework User Reference

© 2010-2014 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth in
the license agreement provided with the software, except for provisions which are contrary to applicable
mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777

Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210

Website: www.mentor.com
SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback_form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form

OpemAMP Framework User Reference, 3

Table of Contents

Chapter 1
OpenAMP Framework Overview . 7

Abbreviations, Terminology, and Definitions . 7
Overview . 8
Components and Capabilities . 8

Chapter 2
System-Wide Considerations for Using OpenAMP Framework . 11

Chapter 3
The remoteproc Component . 15

Concepts. 15
Creation and Boot of Remote Firmware Using remoteproc . 18

Defining the Resource Table and Creating the Remote ELF Image 18
Making Remote Firmware Accessible to the Master . 19

remoteproc API Usage. 20
remoteproc API Functions . 24

remoteproc_init . 25
remoteproc_deinit . 27
remoteproc_boot . 28
remoteproc_shutdown. 29
remoteproc_resource_init . 30
remoteproc_resource_deinit . 32
remoteproc Configurable Options. 32

Chapter 4
The RPMsg Component . 35

RPMsg Channel . 35
RPMsg Endpoint . 35
RPMsg Header . 36
OpenAMP Framework RPMsg Driver . 37
RPMsg API Usage . 38

RPMsg API Usage From the Master Software Context . 38
RPMsg API Usage From Remote Software Context . 40

RPMsg API Functions . 42
rpmsg_send . 43
rpmsg_sendto . 44
rpmsg_send_offchannel . 46
rpmsg_trysend. 48
rpmsg_trysendto . 49
rpmsg_trysendoffchannel . 51
rpmsg_get_buffer_size . 53

Table of Contents

4 OpemAMP Framework User Reference,

rpmsg_create_ept . 54
rpmsg_destroy_ept . 55
rpmsg_chnl_cb_t. 56
rpmsg_rx_cb_t . 57
RPMsg Configurable Options. 57

Chapter 5
Proxy Infrastructure. 59

Proxy Infrastructure Overview . 59
Usage of Proxy Infrastructure on Master. 60
Usage of Proxy Infrastructure on Remote . 61

Chapter 6
OpenAMP Framework Porting Guidelines . 63

Platform Porting Overview . 64
Platform-Specific APIs . 65
Configuration Porting . 68
Environment Porting . 68

Appendix A
Virtio Concepts and RPMsg Usage . 71

Third-Party Information

Mentor Graphics BSD License, v1.0

OpemAMP Framework User Reference, 5

List of Figures

Figure 1-1. Managing Remote Processes with the OpenAMP framework 10
Figure 2-1. System Topology Types . 12
Figure 2-2. Determining the Memory Layout in an AMP System . 13
Figure 3-1. remoteproc Conceptual Diagram . 16
Figure 3-2. The Remote Firmware Creation Process. 18
Figure 4-1. RPMsg Endpoints . 36
Figure 4-2. RPMsg Driver Components . 37
Figure 5-1. The Proxy Infrastructure . 60
Figure A-1. Virtio Concepts . 71
Figure A-2. The Virtqueue and Vring . 73

6 OpemAMP Framework User Reference,

List of Tables

Table 1-1. Abbreviations and Terminology . 7
Table 6-1. OpenAMP Framework Porting Layers . 63
Table 6-2. OpenAMP HIL Files . 63
Table 6-3. HIL File Changes . 64
Table 6-4. Environment Porting APIs . 69

OpemAMP Framework User Reference, 7

Chapter 1
OpenAMP Framework Overview

Open Asymmetric Multi Processing (OpenAMP) Framework provides software components
that enable development of software applications for Asymmetric Multiprocessing (AMP)
systems.

Abbreviations, Terminology, and Definitions
The following abbreviations and terminology appear throughout the document.

Table 1-1. Abbreviations and Terminology

Abbreviations and Terminology Definition

OpenAMP Framework Open Asymmetric Multi Processing Framework

AMP Asymmetric Multi Processing

LCM Life Cycle Management

IPC Inter Processor Communication

RTOS Real Time Operating System

BM or BME Bare Metal or Bare Metal Environment

HIL Hardware Interface Layer

IPI Inter-Processor Interrupt

Master The CPU/software context that comes up first
and manages other CPUs/software contexts
present in the AMP system.

Remote The CPU/software context that is brought up by
the master CPUs/software context present in the
AMP system.

Master processor A Master CPU in a multicore SoC.

Remote processor A Remote CPU in a multicore SoC.

Master software context Any software context that can run on a master
processor. This software context could be Linux
or other OS, RTOS, or bare metal environment
based.

OpemAMP Framework User Reference,8

OpenAMP Framework Overview
Overview

Overview
An AMP system is characterized by multiple homogeneous and/or heterogeneous processing
cores (for example, the Texas Instruments TI OMAP (System on Chips) SoCs have dual ARM
Cortex A15, dual ARM Cortex M4, and C64 DSP cores). These cores typically run independent
instances of homogeneous and/or heterogeneous software environments, such as Linux1,
RTOS, and Bare Metal that work together to achieve the design goals of the end application.
While Symmetric Multiprocessing (SMP) operating systems allow load balancing of
application workload across homogeneous processors present in such AMP SoCs, asymmetric
multiprocessing design paradigms are required to leverage parallelism from the heterogeneous
cores present in the system.

Increasingly, today’s multicore applications require heterogeneous processing power.
Heterogeneous multicore SoCs often have one or more general purpose CPUs (for example,
dual ARM Cortex A9 cores on Xilinx Zynq) with DSPs and/or smaller CPUs and/or soft IP (on
SoCs such as Xilinx Zynq APSOC). These specialized CPUs, as compared to the general
purpose CPUs, are typicallyt dedicated for demand-driven offload of specialized application
functionality to achieve maximum system performance. Systems developed using these types of
SoCs, characterized by heterogeneity in both hardware and software, are generally termed as
AMP systems.

In AMP systems, it is typical for software running on a master to bring up software/firmware
contexts on a remote on a demand-driven basis and communicate with them using IPC
mechanisms to offload work during run time. The participating master and remote processors
may be homogeneous or heterogeneous in nature.

A master is defined as the CPU/software that is booted first and is responsible for managing
other CPUs and their software contexts present in an AMP system. A remote is defined as the
CPU/software context managed by the master software context present.

Components and Capabilities
The OpenAMP Framework implementation provides the necessary API infrastructure required
to develop AMP systems.

Remote software context Any software context that can run on a remote
processor. This software context could be Linux
or other OS, RTOS, or bare metal environment
based.

Environment or software environment Refers to the underlying software environment
which could be OS, RTOS, or bare metal based.

1. Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Table 1-1. Abbreviations and Terminology (cont.)

OpenAMP Framework Overview
Components and Capabilities

OpemAMP Framework User Reference, 9

The key components and capabilities provided by the OpenAMP Framework include:

• remoteproc — This component allows for the Life Cycle Management (LCM) of
remote processors from software running on a master processor. The remoteproc API
provided by the OpenAMP Framework is compliant with the remoteproc infrastructure
present in upstream Linux 3.4.x kernel onward. The Linux remoteproc infrastructure
and API was first implemented by Texas Instruments.

• RPMsg – The RPMsg API enables Inter Processor Communications (IPC) between
independent software contexts running on homogeneous or heterogenous cores present
in an AMP system. This API is compliant with the RPMsg bus infrastructure present in
upstream Linux 3.4.x kernel onward. The Linux RPMsg bus and API infrastructure was
first implemented by Texas Instruments.

Texas Instruments’ remoteproc and RPMsg infrastructure available in the upstream Linux
kernel today enable the Linux applications running on a master processor to manage the life
cycle of remote processor/firmware and perform IPC with them. However, there is no open-
source API/software available that provides similar functionality and interfaces for other
possible software contexts (RTOS- or bare metal-based applications) running on the remote
processor to communicate with the Linux master. Also, AMP applications may require RTOS-
or bare metal-based applications to run on the master processor and be able to manage and
communicate with various software environments (RTOS, bare metal, or even Linux) on the
remote processor.

The OpenAMP Framework fills these gaps. It provides the required LCM and IPC
infrastructure from the RTOS and bare metal environments with the API conformity and
functional symmetry available in the upstream Linux kernel. As in upstream Linux, the
OpenAMP Framework's remoteproc and RPMsg infrastructure uses virtio as the transport
layer/abstraction.

Figure 1-1 shows the various software environments/configurations supported by the
OpenAMP Framework. As shown in this illustration, the OpenAMP Framework can be used
with RTOS or bare metal contexts on a remote processor to communicate with Linux
applications (in kernel space or user space) or other RTOS/bare metal-based applications
running on the master processor through the remoteproc and RPMsg components.

The OpenAMP Framework also serves as a stand-alone library that enables RTOS and bare
metal applications on a master processor to manage the life cycle of remote processor/firmware
and communicate with them using RPMsg.

OpemAMP Framework User Reference,10

OpenAMP Framework Overview
Components and Capabilities

Figure 1-1. Managing Remote Processes with the OpenAMP framework

In addition to providing a software framework/API for LCM and IPC, the OpenAMP
Framework supplies a proxy infrastructure that provides a transparent interface to remote
contexts from Linux user space applications running on the master processor. The proxy
application hides all the logistics involved in bringing-up the remote software context and its
shutdown sequence. In addition, it supports RPMsg-based Remote Procedure Calls (RPCs)
from remote context. A retargeting API available from the remote context allows C library
system calls such as "_open", "_close", "_read", and "_write" to be forwarded to the proxy
application on the master for service.

For more information on this infrastructure and its capabilities, see Figure 5-1 on page 60.

In addition to the core capabilities, the OpenAMP Framework contains abstraction layers
(porting layer) for migration to different software environments and new target
processors/platforms

OpemAMP Framework User Reference, 11

Chapter 2
System-Wide Considerations for Using

OpenAMP Framework

AMP systems could either be supervised (using a hypervisor to enforce isolation and resource
virtualization) or unsupervised (modifying each participating software context to ensure best-
effort isolation and cooperative usage of shared resources). With unsupervised AMP systems,
there is no strict isolation or supervision of shared resource usage.

Take the following system-wide considerations into account to develop unsupervised AMP
systems using the OpenAMP framework:

Note
Usage of OpenAMP Framework for supervised AMP systems is not covered in this
document.

• Determine system architecture/topology

The OpenAMP framework implicitly assumes master-slave (remote) system
architecture. The topology for the master-slave (remote) architecture should be
determined; either star, chain, or a combination. Figure 2-1 shows some simple use
cases.

o Case 1 — A single master software context on processor 1 controlling life cycle and
communicating with two independent remote software contexts on processors 2 and
3, in star topology,

o Case 2 — Master software context 1 on processor 1 brings up remote software
context 1 on processor 2. This context acts as master software context 2 for remote
software context 2 on processor 3, in chain topology.

OpemAMP Framework User Reference,12

System-Wide Considerations for Using OpenAMP Framework

Figure 2-1. System Topology Types

• Determine system and IO resource partitioning

Various OSs, RTOSs, and bare metal environments have their own preferred
mechanisms for discovering platform-specific information such as available RAM
memory, available peripheral IO resources (their memory-mapped IO region), clocks,
interrupt resources, and so forth.

For example, the Linux kernel uses device trees and bare metal environment typically
define platform-specific device information in headers or dedicated data structures that
would be compiled into the application.

To ensure mutually-exclusive usage of unshared system (memory) and IO resources
(peripherals) between the participating software environments in an AMP system, you
are required to partition the resources so that each software environment is only aware of
the resources that are available to it. This would involve, for example, removing unused
resource nodes and modifying the available memory definitions from the device tree
sources, platform definition files, headers, and so forth, to ensure best-effort partitioning
of system resources.

• Determine memory layout

For the purpose of this description, assume you are using the Zynq SOC used in AMP
system architecture with SMP Linux running on the dual Cortex A9 cores, and a RTOS
on one instance of Microblaze soft core, and bare metal on another instance of
Microblaze soft core in the fabric.

To develop an AMP system using the OpenAMP Framework, it is important to
determine the memory regions that would be owned and shared between each of the
participating software environments in the AMP system. For example, in a configuration
such as this, the memory address ranges owned (for code/data/bss/heap) by each
participating OS or bare metal context, and the shared memory regions to be used by
IPC mechanisms (virtio rings and memory for data buffers) needs to be determined.
Memory alignment requirements should be taken into consideration while making this
determination.

System-Wide Considerations for Using OpenAMP Framework

OpemAMP Framework User Reference, 13

Figure 2-2 illustrates the memory layout for Linux master/Nucleus RTOS-based remote
application, and Nucleus RTOS-based master/bare metal-based remote application in
chain configuration. After the memory layout is determined, update the platform
specific data accessible using the Hardware Interface Layer (HIL) to reflect the memory
layout of choice.

Figure 2-2. Determining the Memory Layout in an AMP System

• Ensure cooperative usage of shared resources between software environments in the
AMP system

For the purpose of this discussion, assume you are using a Linux master/bare metal-
based remote system configuration.

The interrupt controller is typically a shared resource in multicore SoCs. It is general
practice for OSs to reset and initialize (clear and disable all interrupts) the interrupt
controller during their boot sequence given the general assumption that the OS would
own the entire system. This will not work in AMP systems; if an OS in remote software
context resets and initializes the interrupt controller, it would catastrophically break the
master software contexts run time since the master context could already be using the
interrupt controller to manage its interrupt resources. Therefore, remote software
environments should be patched such that they cooperatively use the interrupt controller
(for example, do not reset/clear/disable all interrupts blindly but initialize only the
interrupts that belong to the remote context). Ensure the timer peripheral used by the

OpemAMP Framework User Reference,14

System-Wide Considerations for Using OpenAMP Framework

remote OS/RTOS context is different from the one used by the master software context
so the individual run-times do not interfere with each other.

OpemAMP Framework User Reference, 15

Chapter 3
The remoteproc Component

The remoteproc APIs provided by the OpenAMP Framework allow software applications
running on the master processor to manage the life cycle of a remote processor and its software
context. A complete description of the remoteproc workflow and APIs are provided.

Concepts
The remoteproc APIs provide life cycle management of remote processors by performing five
essential functions.

• Allow the master software applications to load the code and data sections of the remote
firmware image to appropriate locations in memory for in-place execution

• Release the remote processor from reset to start execution of the remote firmware

• Establish RPMsg communication channels for run-time communications with the
remote context

• Shut down the remote software context and processor when its services are not needed

• Provide an API for use in the remote application context that allows the remote
applications to seamlessly initialize the remoteproc system on the remote side and
establish communication channels with the master context

Note
The remoteproc infrastructure provided by the OpenAMP framework is for use with
RTOS and bare metal environments only in master or remote configurations. If the AMP
use case requires Linux OS as the master, use the upstream Linux remoteproc
infrastructure. Refer to Figure 1-1 on page 10.

The remoteproc component currently supports Executable and Linkable Format (ELF) for the
remote firmware; however, the framework can be easily extended to support other image
formats. The remote firmware image publishes the system resources it requires to remoteproc
on the master using a statically linked resource table data structure. The resource table data
structure contains entries that define the system resources required by the remote firmware (for
example, contiguous memory carve-outs required by remote firmware’s code and data
sections), and features/functionality supported by the remote firmware (like virtio devices and
their configuration information required for RPMsg-based IPC).

OpemAMP Framework User Reference,16

The remoteproc Component
Concepts

The remoteproc APIs on the master processor use the information published through the
firmware resource table to allocate appropriate system resources and to create virtio devices for
IPC with the remote software context. Figure 3-1 illustrates the resource table usage.

Figure 3-1. remoteproc Conceptual Diagram

When the application on the master calls to the remoteproc_init API, it performs the following:

• Causes remoteproc to fetch the firmware ELF image and decode it

• Obtains the resource table and parses it to handle entries

• Carves out memory for remote firmware before creating virtio devices for
communications with remote context

The master application then performs the following actions:

1. Calls the remoteproc_boot API to boot the remote context

2. Locates the code and data sections of the remote firmware image

3. Releases the remote processor to start execution of the remote firmware.

The remoteproc Component
Concepts

OpemAMP Framework User Reference, 17

After the remote application is running on the remote processor, the remote application calls the
remoteproc_resource_init API to create the virtio/RPMsg devices required for IPC with the
master context. Invocation of this API causes remoteproc on the remote context to use the
rpmsg name service announcement feature to advertise the rpmsg channels served by the remote
application.

The master receives the advertisement messages and performs the following tasks:

1. Invokes the channel created callback registered by the master application

2. Responds to remote context with a name service acknowledgement message

After the acknowledgement is received from master, remoteproc on the remote side invokes the
RPMsg channel-created callback registered by the remote application. The RPMsg channel is
established at this point. All RPMsg APIs can be used subsequently on both sides for run time
communications between the master and remote software contexts.

To shut down the remote processor/firmware, the remoteproc_shutdown API is to be used from
the master context. Invoking this API with the desired remoteproc instance handle
asynchronously shuts down the remote processor. Using this API directly does not allow for
graceful shutdown of remote context.

For gracefully bringing down the remote context, the following steps can be performed:

1. The master application sends an application-specific shutdown message to the remote
context

2. The remote application cleans up application resources, sends a shutdown acknowledge
to master, and invokes remoteproc_resource_deinit API to deinitialize remoteproc on
the remote side.

3. On receiving the shutdown acknowledge message, the master application invokes the
remoteproc_shutdown API to shut down the remote processor and deinitialize
remoteproc using remoteproc_deinit on its side.

OpemAMP Framework User Reference,18

The remoteproc Component
Creation and Boot of Remote Firmware Using remoteproc

Creation and Boot of Remote Firmware Using
remoteproc

You can create and boot remote firmware for Linux, RTOS, and bare metal-based remote
applications using remoteproc. The following procedure provides general steps for creating and
executing remote firmware on a supported platform.

Figure 3-2 illustrates the remote firmware creation process.

Figure 3-2. The Remote Firmware Creation Process

Defining the Resource Table and Creating the
Remote ELF Image

Creating a remote image through remoteproc begins by defining the resource table and creating
the remote ELF image.

Procedure

1. Define the resource table structure in the application. The resource table must minimally
contain carve-out and VirtIO device information for IPC.

The remoteproc Component
Creation and Boot of Remote Firmware Using remoteproc

OpemAMP Framework User Reference, 19

As an example, please refer to the resource table defined in the bare metal remote echo
test application at <open_amp>/apps/tests/remote/baremetal/echo_test/rsc_table.c. The
resource table contains entries for memory carve-out and virtio device resources. The
memory carve-out entry contains info like firmware ELF image start address and size.
The virtio device resource contains virtio device features, vring addresses, size, and
alignment information. The resource table data structure is placed in the resource table
section of remote firmware ELF image using compiler directives.

2. After defining the resource table and creating the OpenAMP Framework library, link the
remote application with the RTOS or bare metal library and the OpenAMP Framework
library to create a remote firmware ELF image capable of in-place execution from its
pre-determined memory region. (The pre-determined memory region is determined
according to guidelines provided by section.)

3. For remote Linux, step 1 describes modifications to be made to the resource table.
Figure 3-2 on page 18 shows the high level steps involved in creation of the remote
Linux firmware image. The flow leverages supported Petalinux workflows to create a
Linux FIT image that encapsulates the Linux kernel image, Device Tree Blob (DTB),
and initramfs.

The user applications and kernel drivers required on the remote Linux context could be
built into the initramfs using supported Petalinux workflows or moved to the remote
root file system as needed after boot. The FIT image is linked along with a boot strap
package provided within the OpenAMP Framework. The bootstrap implements the
functionality required to decode the FIT image (using libfdt), uncompress the Linux
kernel image (using zlib) and locate the kernel image, initramfs, and DTB in RAM. It
can also set up the ARM general purpose registers with arguments to boot Linux, and
transfer control to the Linux entry point.

Making Remote Firmware Accessible to the Master
After creating the remote firmware’s ELF image, you need to make it accessible to remoteproc
in the master context.

Procedure

1. If the RTOS- or bare metal-based master software context has a file system, place this
firmware ELF image in the file system.

2. Implement the get_firmware API in config.c (in the OPENAMP/porting/config/
directory) to fetch the remote firmware image by name from the file system.

3. For AMP use cases with Linux as master, place the firmware application in the root file
system for use by Linux remoteproc platform drivers.

OpemAMP Framework User Reference,20

The remoteproc Component
remoteproc API Usage

In the OpenAMP Framework reference port to Zynq ZC702EVK, the bare metal library used by
the master software applications do not include a file system. Therefore, the remote image is
packaged along with the master ELF image. The remote ELF image is converted to an object
file using “objcpy” available in the “GCC bin-utils”. This object file is further linked with the
master ELF image.

The remoteproc component on the master uses the start and end symbols from the remote object
files to get the remote ELF image base and size. Since the logistics used by the master to obtain
a remote firmware image is deployment specific, the config_get_firmware API in config.c of
the OPENAMP/porting/config/ directory implements all the logistics described in this
procedure to enable the OpenAMP Framework remoteproc on the master to obtain the remote
firmware image.

You can now use the remoteproc APIs.

remoteproc API Usage
The following sections assumes a simple application for description.

• The application software on the master processor uses remoteproc to load and execute a
remote application (remote firmware) on the remote processor

• After the remote application is running, an rpmsg channel is established between the
remote and master applications

• The RPMsg APIs are used for IPC

This simple example should serve as a reference for most typical use cases – where the master
software context would bring up the remote context, establish communication channel with it,
and start the IPC to offload the computation to the remote context.

Using remoteproc APIs From the Master Software
Context

Using OpenAMP framework on a software application on the master processor involves
bringing up a remote software context and communicating with it. The following steps describe
the general procedure.

Procedure

1. Initialize the remoteproc using the remoteproc_init API and provide callback functions
for rpmsg channel creation, rpmsg channel destruction, and rpmsg rx callbacks.

2. Boot the image using remoteproc_boot API.

3. Provide implementation of rpmsg_channel_created, rpmsg_channel_destroyed, and
rpmsg_rx_cb functions. The functions are listed as follows:

The remoteproc Component
remoteproc API Usage

OpemAMP Framework User Reference, 21

void rpmsg_channel_created (struct rpmsg_channel *rp_chnl)
void rpmsg_channel_destroyed(struct rpmsg_channel *rp_chnl)
void rpmsg_rx_cb(struct rpmsg_channel *rp_chnl, void *data, int

len, void * priv, unsigned long src)

When using the RPMSG framework from the master software context, the application calls
remoteproc_init API to bring up the remote software context. When the remote application
boots up on the remote processor, a call to remoteproc_resource_init API initializes remoteproc
and rpmsg on the remote side, triggering the RPMSG framework on the remote side to send the
rpmsg name service message to advertise itself to the master context.

This announcement causes the RPMSG framework on the master to call the rpmsg channel-
created callback registered during initialization. The application is notified from the channel-
created callback (using methods that make send for the environment) of the availability of a live
rpmsg channel to remote context. The application is free to use rpmsg APIs for IPC with remote
context from this point onward.

Examples

The code snippet that follows showcases a sample master application that brings up a remote
application that echoes all incoming messages back to the sender.

Example 3-1. Master Application With Echoes to Sender

#include "open_amp.h"
/* Application provided callbacks */
void rpmsg_channel_created(struct rpmsg_channel *rp_chnl);
void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl);
void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl , void *data ,
 int len , void * priv , unsigned long src);

/* Globals */
char remote_fw_name[]= "remote_firmware";

int main(int argc, void *argv) {

 struct remote_proc *proc;
 int idx ,i,ret;

 /* Initialize Remoteproc */
 ret = remoteproc_init((void *) remote_fw_name, rpmsg_channel_created,
 rpmsg_channel_deleted, rpmsg_rx_cb_t, &proc);

 /* Boot remote firmware */
 if(!ret && (proc))
 ret = remoteproc_boot(proc);

 if(!ret)
 {
 /* Block waiting for invocation of rpmsg channel created callback.

 */
 /* In RTOS environments control should block here

 on a blocking primitive, for example, semaphore, which would be

OpemAMP Framework User Reference,22

The remoteproc Component
remoteproc API Usage

 released by the rpmsg channel created callback */
 /* In bare metal environments control should block here
 For example, by spinning on a flag to be released by the rpmsg

 channel created callback */
 wait()/* This is pseudo-code */

 /* rpmsg APIs can be used for IPC from this point onward */

 }

 /* To shut down the remote processor
 asynchronously and de-initialize the system */
 remoteproc_shutdown(proc);
 remoteproc_deinit(proc);
}

void rpmsg_channel_created(struct rpmsg_channel *rp_chnl) {

 /* Release the context blocked on rpmsg channel creation callback
invocation */
}

void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl) {

 /* Clean up application resources used by rpmsg */
}

void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl, void *data, int len,
 void * priv, unsigned long src) {

 /* Copy received data to application buffer */
 /* Release the context blocked on rpmsg rx callback invocation */
}

Using remoteproc APIs From Remote Software Context
Software applications using the OpenAMP framework on a remote processor must initialize the
remoteproc and establish communications with the master software context. The steps that
follow describe the general procedure.

Procedure

1. Initialize the remoteproc using the remoteproc_resource_init API and provide callback
functions for RPMsg channel creation, RPMsg channel destruction, and RPMsg rx
callbacks.

int remoteproc_resource_init(struct rsc_table_info *rsc_info,
 rpmsg_chnl_cb_t channel_created,
 rpmsg_chnl_cb_t channel_destroyed,
 rpmsg_rx_cb_t default_cb,
 struct remote_proc** rproc_handle)

2. Provide implementation of RPMsg channel created, RPMsg channel destroyed, and
RPMsg rx callback functions. The functions are listed as follows:

The remoteproc Component
remoteproc API Usage

OpemAMP Framework User Reference, 23

void rpmsg_channel_created (struct rpmsg_channel *rp_chnl)
void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl)
void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl, void *data, int
 len, void * pric, unsigned long src)

When the remote application calls the remoteproc_resource_init API, the remoteproc and rpmsg
components are initialized on the remote side. On receiving a name service acknowledgement
message from the master, the OpenAMP framework on the remote application calls the
rpmsg_chnl_cb_t callback. From the channel_created callback, the remote application is
notified of the availability of a live RPMsg channel to the master context. The remote
application is free to start communications with the master context from this point onward.

Examples

The code snippet below shows a simple echo remote application the uses the OpenAMP
framework APIs to echo back data received from the master.

Example 3-2. Remote Application with Echoes to Master

#include "open_amp.h"

/* Internal functions */
static void rpmsg_channel_created(struct rpmsg_channel *rp_chnl);
static void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl);
static void rpmsg_rx_cb_t(struct rpmsg_channel *, void *, int, void *,
unsigned long);

/* Globals */
static struct remote_proc *proc = NULL;
static struct rsc_table_info rsc_info;
extern const struct remote_resource_table resources;

/* Application entry point */
int main() {

 int ret;
 rsc_info.rsc_tab = (struct resource_table *)&resources;
 rsc_info.size = sizeof(resources);

 /* Application specific initialization
 .
 .
 .*/

 /* Initialize remoteproc on the remote side */
 ret = remoteproc_resource_init(&rsc_info, rpmsg_channel_created,
 rpmsg_channel_deleted, rpmsg_rx_cb_t,

 &proc);
 if (ret) {
 printf("Error during initialization\r\n");
 }

 /* Block waiting for invocation of rpmsg channel created callback. */

OpemAMP Framework User Reference,24

The remoteproc Component
remoteproc API Functions

 /* In RTOS environments control should block here on a blocking
 primitive, for example, semaphore, which would be released by the
 rpmsg channel created callback */

 /* In bare metal environments control should block here
 For example, by spinning on a flag to be released by the rpmsg

 channel created callback */
 wait()/* This is pseudo-code */

 /* rpmsg APIs can be used for IPC from this point onward */

 return 0;
}

static void rpmsg_channel_created(struct rpmsg_channel *rp_chnl)
{

 /* New channel created, save its handle for subsequent reference */
}

static void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl)
{

 /* perform any clean up required */
}

static void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl, void *data,
 int len,
 void * priv, unsigned long src)

{
/* Echo data back to master*/

 rpmsg_send(rp_chnl, data, len);
}

remoteproc API Functions
The OpenAMP framework provides the following functions for using the remoteproc API.

• remoteproc_init

• remoteproc_deinit

• remoteproc_boot

• remoteproc_shutdown

• remoteproc_resource_init

• remoteproc_resource_deinit

The remoteproc Component
remoteproc_init

OpemAMP Framework User Reference, 25

remoteproc_init
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

The remoteproc_init API is meant to be used on the master processor. It is a non-blocking call
that returns a status and handle to remoteproc instance on successful execution.

Usage
int remoteproc_init(char *fw_name,

 rpmsg_chnl_cb_t channel_created,
 rpmsg_chnl_cb_t channel_destroyed,
 rpmsg_rx_cb_t default_cb,
 struct remote_proc** rproc_handle);

Arguments
• fw_name

IN direction — The name of the firmware to load

• channel_created

IN direction — The RPMsg channel creation callback

• channel_destroyed

IN direction — The RPMsg channel deletion callback

• default_cb

IN direction — The default rx callback for the RPMsg channel

• rproc_handle

OUT direction — The pointer to a new remoteproc instance

Return Values
• RPROC_SUCCESS

The initialization completed successfully.

• RPROC_ERR_NO_RSC_TABLE

The resource table is not present in the ELF file.

• RPROC_ERR_CPU_ID

The CPU does not exist for the given firmware name.

• RPROC_ERR_NO_MEM

An out-of-memory error occurred.

OpemAMP Framework User Reference,26

The remoteproc Component
remoteproc_init

Description
This call performs the following operations:

• Consults HIL and identifies the firmware definition

• Populates the platform data structure with relevant HIL parameters

• Parses firmware and obtains resource table

• Reserves memory required for firmware based on resource table entries

Related Topics

remoteproc API Functions

The remoteproc Component
remoteproc_deinit

OpemAMP Framework User Reference, 27

remoteproc_deinit
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

This API is meant to be used on the master processor. It is a non-blocking call that returns a
status.

Usage
int remoteproc_deinit (struct remote_proc *rproc);

Arguments
• rproc

IN direction — The pointer to a remoteproc instance to deinitialize

Return Values
• RPROC_SUCCESS

The deinitialization completed successfully.

Description
This API performs the following operations:

• Free up memory reserved for firmware

• Reclaim memory allocated for hw_proc and remote_proc data structures

Related Topics

remoteproc API Functions

OpemAMP Framework User Reference,28

The remoteproc Component
remoteproc_boot

remoteproc_boot
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

The API is meant to be used on the master processor. It is a non-blocking call that returns a
status.

Usage
int remoteproc_boot(struct remote_proc *rproc);

Arguments
• rproc

IN direction — The pointer to the remoteproc instance to boot

Return Values
• RPROC_SUCCESS

The initialization completed successfully.

• RPROC_ERR_PARAM

An invalid parameter was passed.

• RPROC_ERR_LOADER

An error occurred while loading the ELF image.

Description
This call performs the following operations:

• Copies the firmware image’s text and data sections to memory carved out for firmware
sections by remoteproc_init

• Releases the remote processor from reset

• Creates the rpmsg_virtio_device for the master node

Related Topics

remoteproc API Functions

The remoteproc Component
remoteproc_shutdown

OpemAMP Framework User Reference, 29

remoteproc_shutdown
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

This API is meant to be used on the master processor to shut down the remote processor. It is a
non-blocking call that returns a status.

Usage
int remoteproc_shutdown(struct remote_proc *rproc);

Arguments
• rproc

IN direction — The pointer to the remoteproc instance to shut down

Return Values
• RPROC_SUCCESS

The shutdown completed successfully.

Description
This call performs the following operations:

• Powers down the remote processor

• Reclaims resources

Related Topics

remoteproc API Functions

OpemAMP Framework User Reference,30

The remoteproc Component
remoteproc_resource_init

remoteproc_resource_init
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

This API is meant to be used on the remote processor. It is a non-blocking call that returns a
status.

Usage
int remoteproc_resource_init(struct rsc_table_info *rsc_info,

 rpmsg_chnl_cb_t channel_created,
 rpmsg_chnl_cb_t channel_destroyed,
 rpmsg_rx_cb_t default_cb,
 struct remote_proc** rproc_handle);

Arguments
• rsc_info

IN direction - pointer to resource table info control block

• channel_created

IN direction — The RPMsg channel creation callback

• channel_destroyed

IN direction — The RPMsg channel deletion callback

• default_cb

IN direction — The default rx callback for the RPMsg channel

• rproc_handle

OUT direction — The pointer to a new remoteproc instance

Return Values
• RPROC_SUCCESS

The initialization completed successfully.

• RPROC_ERR_NO_RSC_TABLE

The resource table is not present in the ELF file.

• RPROC_ERR_CPU_ID

An invalid CPU ID was received from the HIL.

• RPROC_ERR_NO_MEM

An out-of-memory error occurred.

• RPROC_ERR_PARAM

The remoteproc Component
remoteproc_resource_init

OpemAMP Framework User Reference, 31

An invalid parameter was passed.

Description
This call performs the following operations:

• Consults HIL and identifies the CPU ID from the platform definition

• Populates the platform data structure with relevant HIL parameters

• Creates and initializes the RPMsg remote device on the remote side

• Parses firmware and obtains the resource table to make requested MMIO mappings
(optional step)

• Creates, initializes, and provides the rproc handle to the application

Related Topics

remoteproc API Functions

OpemAMP Framework User Reference,32

The remoteproc Component
remoteproc_resource_deinit

remoteproc_resource_deinit
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

This API is meant to be used on the remote processor for deinitializing the remoteproc
resources used by the remote firmware. It is a non-blocking call that returns a status.

Usage
int remoteproc_deinit(struct remote_proc *rproc);

Arguments
• Rproc

IN direction — The pointer to the remoteproc instance to deinitialize

Return Values
• RPROC_SUCCESS

The deinitialization completed successfully.

Description
This call performs the following operations:

• Reclaims memory allocated for hw_proc, rproc, and remote_device data structures

Related Topics

remoteproc Configurable Options
Some remoteproc parameters allow you to configure certain options through their
corresponding header files.

RPROC_BOOT_DELAY

File: open_amp\remoteproc\remoteproc.h

This is the time in milliseconds defined for remotproc on the master to wait to allow the remote
context to boot and initialize remoteproc. This parameter is required to make sure that the
RPMsg is initialized on the remote application, otherwise the notification from the master is lost
and the remote does not send the name service announcement.

remoteproc API Functions

The remoteproc Component
remoteproc_resource_deinit

OpemAMP Framework User Reference, 33

Related Topics

remoteproc API Functions

OpemAMP Framework User Reference,34

The remoteproc Component
remoteproc_resource_deinit

OpemAMP Framework User Reference, 35

Chapter 4
The RPMsg Component

The RPmsg APIs provided by the OpenAMP Framework allow RTOS, or bare metal-based
applications/drivers running on master and/or remote processors, to perform IPC in an AMP
configuration. The RPMsg component only implements the end-user facing APIs and defines
the protocol (message header format) component for inter processor communications. The
OpenAMP Framework implements a VirtIO-based transport abstraction on which RPMsg
performs shared memory based IPC. For VirtIO details please refer to “Virtio Concepts and
RPMsg Usage” on page 71.

RPMsg Channel
Every remote core in RPMsg component is represented by RPMsg device that provides a
communication channel between master and remote, hence RPMsg devices are also known as
channels.

RPMsg channel is identified by the textual name and local (source) and destination address. The
RPMsg framework keeps track of channels using their names.

RPMsg Endpoint
RPMsg endpoints provide logical connections on top of RPMsg channel. It allows the user to
bind multiple rx callbacks on the same channel.

Every RPMsg endpoint has a unique src address and associated call back function. When an
application creates an endpoint with the local address, all the further inbound messages with the
destination address equal to local address of endpoint are routed to that callback function. Every
channel has a default endpoint which enables applications to communicate without even
creating new endpoints.

OpemAMP Framework User Reference,36

The RPMsg Component
RPMsg Header

Figure 4-1. RPMsg Endpoints

RPMsg Header
Every RPMsg transfer starts with the RPMsg header, which contains addresses of Source and
Destination endpoints and payload information.

The RPMsg driver routes the message using the destination address. The header is provided
below:

struct rpmsg_hdr {
unsigned long src;
unsigned long dst;
unsigned long reserved;
unsigned short len;
unsigned short flags;
unsigned char data[0];

} __attribute__((packed));

The RPMsg channel and endpoint concept is depicted in Figure 4-1. The example considers a
hypothetical multicore system with core IDs P1, P2 and P3. P1 is the master and P2 and P3 are

The RPMsg Component
OpenAMP Framework RPMsg Driver

OpemAMP Framework User Reference, 37

remotes. The RPMsg packet transmitted from Master contains src address of Remote (P3)
endpoint as destination. Whereas the message from remote contains src address of Master in its
destination field. The RPMsg stack on respective cores routes the message to application based
on the destination address.

OpenAMP Framework RPMsg Driver
Next Figure shows major components present in the OpenAMP Framework RPMsg driver.
Communicating cores in the system are represented by the remote device. The remote device
encapsulates VirtIO device that provides transport services for RPMsg driver. Moreover, it
contains reference to RPMsg channels and endpoints associated with the channels. RPMsg
endpoints provide logical connections to remote cores on top of RPMsg channel. A default
endpoint is created during initialization and user provided callback is bound to it.
remoteproc_init API allows user to bind callbacks to default endpoint. The remoteproc_init API
internally uses rpmsg_init function to achieve callback binding. Users are allowed to create
additional endpoints for the given channel using rpmsg_create_ept API.

Figure 4-2. RPMsg Driver Components

OpemAMP Framework User Reference,38

The RPMsg Component
RPMsg API Usage

Applications use APIs provided by the RPMsg driver to communicate with the RPMsg
channels. When data is received from the application, RPMsg copies it to internal memory after
appending RPMsg header. It then searches the corresponding VirtIO device and places message
pointer in virtqueue, followed by a notification. rpmsg_send API is used to send data over
default endpoint. rpmsg_sendto, and rpmsg_send_offchannel APIs are used for directing
messages to any given application created endpoint.

RPMsg driver generates notifications for applications using callbacks for incoming messages.
The notification handling mechanism in RPMsg driver directs the message to applications
based on its destination address. There are two types of notifications events: Rx completion and
Channel Creation/Deletion events. Rx completion event is generated when data is received from
the communication counterpart. The channel creation/deletion events are triggered when Name
Service (NS) is received from the remote. Application binds callback to RPMsg driver using
rpmsg_create_ept API. A default callback is bound to the RPMsg channel during initialization.

RPMsg API Usage
RPMsg API usage is illustrated using a simple echo application.

The assumptions are as follows:

• The application software on the master processor uses remoteproc to load and execute
an echo application (remote firmware) on the remote processor

• After the remote application is running, an rpmsg channel is established between the
remote and master applications

• Any message sent by the master application to the remote application using rpmsg APIs
is echoed back to the master application

This example should serve as a reference for most typical use cases – where the master software
context would bring up the remote context, establish communication channel with it, and start
the IPC to offload the computation to the remote context.

RPMsg API Usage From the Master Software
Context

After bringing up the remote context, the user application is free to use rpmsg APIs for IPC with
remote context from that point onward.

Instructions for bringing up the remote context are present in “remoteproc API Usage” on
page 20.

The code snippet in Example 4-1 on page 39 showcases a sample master application that sends
messages to a remote, using the rpmsg_send API, then waits for an echo from the remote.

The RPMsg Component
RPMsg API Usage

OpemAMP Framework User Reference, 39

Example 4-1. Master Application With Echoes to Sender

#include "open_amp.h"

/* Application provided callbacks */
void rpmsg_channel_created(struct rpmsg_channel *rp_chnl);
void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl);
void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl,

void *data,
 int len,

void * priv,
unsigned long src);

/* Globals */
struct rpmsg_channel *app_rp_chnl;
char remote_fw_name []= "remote_firmware";
char s_buff[256];
char r_buff[256];

int main(int argc , void *argv) {

 struct remote_proc *proc;
 int idx ,i,ret;

 /* Initialize Remoteproc */
 ret = remoteproc_init((void *) remote_fw_name,

 rpmsg_channel_created,
 rpmsg_channel_deleted,

 rpmsg_rx_cb_t, &proc);

 /* Boot remote firmware */
 if(!ret && (proc))
 ret = remoteproc_boot(proc);

 if(!ret)
 {
 /* Block waiting for invocation of rpmsg channel created callback.

 */

 /* In RTOS environments control should block here
 on a blocking primitive, for example, semaphore, which would be
 released by the rpmsg channel created callback */

 /* In bare metal environments, control should block here
 by spinning on a flag to be released by the rpmsg channel

 created callback */

 /* This is pseudo-code */
 wait()

 /* Setup the buffer with a pattern */
 memset(s_buff, 0xA5, sizeof(s_buff));

 /* Send data to remote side. */

 rpmsg_send(app_rp_chnl, s_buff, sizeof(s_buff));

OpemAMP Framework User Reference,40

The RPMsg Component
RPMsg API Usage

 /* Block waiting for invocation of rpmsg rx callback. */
 /* This is pseudo-code */
 wait();

 /* Verify the data received in r_buff */
 }

 /* Shut down the remote processor and de-initialize the system */
 remoteproc_shutdown(proc);
 remoteproc_deinit(proc);
}

void rpmsg_channel_created(struct rpmsg_channel *rp_chnl) {

 app_rp_chnl = rp_chnl;

 /* Release the context blocked on rpmsg channel creation callback
 invocation */

}

void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl) {

 /* Clean up application resources used by rpmsg */
}

void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl,
 void *data,
 int len,
 void * priv,
 unsigned long src) {

 /* Copy received data to application buffer */
 memcpy(r_buff,data,len);

 /* Release the context blocked on rpmsg rx callback invocation */
}

RPMsg API Usage From Remote Software Context
After the remote image is up and running, the user application waits for the channel creation
callback. The remote application is free to start communications with the master context from
that point onward.

Instructions for bringing up the remote context are present in “remoteproc API Usage” on
page 20.

The code example below shows an echo remote application that uses the RPMsg APIs to echo
data received from the master.

#include "open_amp.h"

/* Internal functions */
static void rpmsg_channel_created(struct rpmsg_channel *rp_chnl);
static void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl);

The RPMsg Component
RPMsg API Usage

OpemAMP Framework User Reference, 41

static void rpmsg_rx_cb_t(struct rpmsg_channel *, void *, int, void *,
unsigned long);

/* Globals */
static struct rpmsg_channel *app_rp_chnl;
static struct remote_proc *proc = NULL;
static struct rsc_table_info rsc_info;
extern const struct remote_resource_table resources;

/* Application entry point */
int main()
{
 int ret;

 rsc_info.rsc_tab = (struct resource_table *)&resources;
 rsc_info.size = sizeof(resources);

 /* Application specific initialization
 .
 .
 .*/

 /* Initialize remoteproc on the remote side */
 ret = remoteproc_resource_init(&rsc_info, rpmsg_channel_created,
 rpmsg_channel_deleted, rpmsg_rx_cb_t,

 &proc);

 if (ret)
 {

 printf("Error during initialization\r\n");
 }

 /* Wait in infinite loop – echo functionality is provided by callback
 functions*/

 while(1)
 {

 sleep(100);
 }

 return 0;
}

static void rpmsg_channel_created(struct rpmsg_channel *rp_chnl)
{
 /* New channel created, save its handle for subsequent reference */
 app_rp_chnl = rp_chnl;
}

static void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl)
{

/* perform any clean up required */
}

static void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl, void *data,
 int len, void * priv, unsigned long src)

{
 /* Echo data back to master*/
 rpmsg_send(rp_chnl, data, len);
}

OpemAMP Framework User Reference,42

The RPMsg Component
RPMsg API Functions

RPMsg API Functions
The RPMSG framework provides following RPMsg APIs for messaging:

• rpmsg_send

• rpmsg_sendto

• rpmsg_send_offchannel

• rpmsg_trysend

• rpmsg_trysendto

• rpmsg_trysendoffchannel

• rpmsg_get_buffer_size

• rpmsg_create_ept

• rpmsg_destroy_ept

• rpmsg_chnl_cb_t

• rpmsg_rx_cb_t

The RPMsg Component
rpmsg_send

OpemAMP Framework User Reference, 43

rpmsg_send
Target Files:

• Function definition — open_amp/rpmsg/rpmsg.h

This function sends user provided data of specified size to the default endpoint associated with
the RPMsg channel. If no TX buffers are available, the API will either block until one becomes
available or a timeout of 15 seconds elapses. This function copies the data in its internal buffer
so the caller can reclaim the buffer once this call has been returned.

Usage
static inline int rpmsg_send(struct rpmsg_channel *rpdev,

 void *data,
 int len);

Arguments
• rpdev

IN direction — The pointer to the RPMsg device

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

An out-of-memory error was received.

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference,44

The RPMsg Component
rpmsg_sendto

rpmsg_sendto
Target Files:

• Function definition — open_amp/rpmsg/rpmsg.h

This function sends user provided data of specified size to the RPMsg device endpoint with
specfied destination address. In case there are no TX buffers available, the API will block until
one becomes available, or a timeout of 15 seconds elapses. This function copies the data in its
internal buffer so the caller can reclaim the buffer once this call has been returned.

Usage
static inline int rpmsg_sendto(struct rpmsg_channel *rpdev,

 void *data,
 int len,
 unsigned long dst);

Arguments
• rpdev

IN direction — The pointer to the RPMsg device

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

• dst

IN direction — The destination address of the message

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

An out-of-memory error was received.

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

The RPMsg Component
rpmsg_sendto

OpemAMP Framework User Reference, 45

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference,46

The RPMsg Component
rpmsg_send_offchannel

rpmsg_send_offchannel
Target Files:

• Function definition — open_amp/rpmsg/rpmsg.h

This function sends a message using explicit src/dst addresses. In case there are no TX buffers
available, the API will block until one becomes available, or a timeout of 15 seconds elapses.
This function copies the data in its internal buffer so the caller can reclaim the buffer once this
call has been returned.

Usage
static inline int rpmsg_send_offchannel(struct rpmsg_channel *rpdev,

 unsigned long src,
 unsigned long dst,
 void *data,
 int len);

Arguments
• rpdev

IN direction — The pointer to the RPMsg device

• src

IN direction — The source address of the message

• dst

IN direction — The destination address of the message

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

An out-of-memory error was received.

The RPMsg Component
rpmsg_send_offchannel

OpemAMP Framework User Reference, 47

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference,48

The RPMsg Component
rpmsg_trysend

rpmsg_trysend
Target Files:

• Function definition — open_amp/rpmsg/rpmsg.h

This function sends user-provided data of specified size to the default endpoint associated with
the RPMsg channel. The src and the dst address are that of the RPMsg channel itself. In case
there are no TX buffers available, the API will immediately return with an error code. This
function copies the data in its internal buffer so the caller can reclaim the buffer once this
function has been returned.

Usage
static inline int rpmsg_trysend(struct rpmsg_channel *rpdev,

 void *data,
 int len);

Arguments
• rpdev

IN direction — The pointer to the RPMsg device

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

An out-of-memory error was received.

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

Related Topics

RPMsg API Functions

The RPMsg Component
rpmsg_trysendto

OpemAMP Framework User Reference, 49

rpmsg_trysendto
Target Files:

• Function definition — open_amp/rpmsg/rpmsg.h

This function sends user-provided data of specified size to the RPMsg device endpoint with the
specfied destination address. In case there are no TX buffers available, the API will
immeditately return with an error code. This function copies the data in its internal buffer so the
caller can reclaim the buffer once this call has been returned.

Usage
static inline int rpmsg_trysendto(struct rpmsg_channel *rpdev,

 void *data,
 int len,
 unsigned long dst);

Arguments
• rpdev

IN direction — The pointer to the RPMsg channel

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

• dst

IN direction — The destination address of the message

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

An out-of-memory error was received.

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

OpemAMP Framework User Reference,50

The RPMsg Component
rpmsg_trysendto

Related Topics

RPMsg API Functions

The RPMsg Component
rpmsg_trysendoffchannel

OpemAMP Framework User Reference, 51

rpmsg_trysendoffchannel
Target Files:

• Prototype definition — open_amp/rpmsg/rpmsg.h

• Function definition — open_amp/rpmsg/rpmsg.c

This function sends messages to the default endpoint associated with the RPMsg channel. In
case there are no TX buffers available, the API will immediately return with an error code. This
function copies the data in its internal buffer so the caller can reclaim the buffer once this call
has been returned.

Usage
int rpmsg_trysendoffchannel(struct rpmsg_channel *rp_chnl,

 unsigned long src,
 unsigned long dst,
 char *data,
 int len);

Arguments
• rp_chnl

IN direction — The pointer to the RPMsg channel

• src

IN direction — The source address of the message

• dst

IN direction — The destination address of the message

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

OpemAMP Framework User Reference,52

The RPMsg Component
rpmsg_trysendoffchannel

An out-of-memory error was received.

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

Related Topics

RPMsg API Functions

The RPMsg Component
rpmsg_get_buffer_size

OpemAMP Framework User Reference, 53

rpmsg_get_buffer_size
Target Files:

• Prototype definition — open_amp/rpmsg/rpmsg.h

• Function definition — open_amp/rpmsg/rpmsg.c

This function returns the size of the buffer that is available for sending messages.

Usage
int rpmsg_get_buffer_size(struct rpmsg_channel *rp_chnl);

Arguments
• rp_chnl

IN direction — The pointer to the RPMsg channel

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was passed.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference,54

The RPMsg Component
rpmsg_create_ept

rpmsg_create_ept
Target Files:

• Prototype definition — open_amp/rpmsg/rpmsg.h

• Function definition — open_amp/rpmsg/rpmsg.c

This function creates a new endpoint for a given RPMsg channel and returns it to the caller.

Usage
struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rp_chnl,

 rpmsg_rx_cb_t cb,
 void *priv,
 unsigned long addr);

Arguments
• rp_chnl

IN direction — The pointer to the RPMsg channel.

• cb

IN direction — The rx callback function for the endpoint.

• priv

IN direction — Any private data; provided as a parameter in the callback.

• addr

IN direction — The local (src) address of the endpoint. If RPMSG_ADDR_ANY is passed
as an address, the RPMsg driver chooses the address itself.

Return Values
• RPMSG_NULL

This value returns only if an error occurs; otherwise, a valid pointer returns.

Related Topics

RPMsg API Functions

The RPMsg Component
rpmsg_destroy_ept

OpemAMP Framework User Reference, 55

rpmsg_destroy_ept
Target Files:

• Prototype definition — open_amp/rpmsg/rpmsg.h

• Function definition — open_amp/rpmsg/rpmsg.c

This function deletes the RPMsg endpoint and reclaims resources.

Usage
void rpmsg_destroy_ept(struct rpmsg_endpoint *rp_ept);

Arguments
• rp_ept

IN direction — The pointer to the RPMsg endpoint to deinitialize

Return Values
None.

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference,56

The RPMsg Component
rpmsg_chnl_cb_t

rpmsg_chnl_cb_t
This is a typdef for channel creation/deletion callback that an application registers with the
rpmsg driver during calls to remoteproc_init and remoteproc_resource_init functions.

An example channel creation callback function declaration is provided under Usage.

Usage
void rpmsg_chnl_cb_t(struct rpmsg_channel *rp_chnl);

Arguments
• rp_chnl

IN direction — The pointer to the created RPMsg channel

Related Topics

RPMsg API Functions

The RPMsg Component
rpmsg_rx_cb_t

OpemAMP Framework User Reference, 57

rpmsg_rx_cb_t
Target Files:

• Function definition — open_amp/rpmsg/rpmsg_core.h

This is a typedef for the data rx completion callback function that an application must provide
during calls to remoteproc_init and rpmsg_create_ept functions. This callback is invoked by
the RPMsg driver when data is received. The application must copy the data to the local buffer
before returning this callback fucnction.

An example rx callback function declaration is provided under Usage.

Usage
void rpmsg_rx_complete (struct rpmsg_channel *rp_chnl,

 void *data,
 int len,
 void *priv,
 unsigned long src);

Arguments
• rp_chnl

IN direction — The pointer to the RPMsg channel on which data is received.

• data

IN direction — The buffer containing received data.

• len

IN direction — The size of data received, in bytes

• priv

IN direction — Any private data provided during endpoint creation

• src

IN direction — The address of the endpoint from which data is received

Related Topics

RPMsg Configurable Options
Some RPMsg parameters allow you to configure certain options through their corresponding
header files.

RPMSG_BUFFER_SIZE

File : open_amp/rpmsg/rpmsg_core.h

RPMsg API Functions

OpemAMP Framework User Reference,58

The RPMsg Component
rpmsg_rx_cb_t

Buffer size supported by the RPMsg driver. To transmit data size greater than this value, you
will have to split it into buffer size blocks.

RPMSG_MAX_VQ_PER_RDEV

File : open_amp/rpmsg/rpmsg_core.h

Maximum virtual queues (“virtqueues”) per remote device. Currently only two virtqueues are
supported.

RPMSG_NS_EPT_ADDR

File : open_amp/rpmsg/rpmsg_core.h

Address of name service endpoint. For Linux master, the address must be same as that defined
by the Linux RPMsg bus driver.

RPMSG_ADDR_BMP_SIZE

File : open_amp/rpmsg/rpmsg_core.h

Size of the bitmap array used to keep track of free and used endpoint addresses.

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference, 59

Chapter 5
Proxy Infrastructure

The OpenAmp Framework provides a proxy infrastructure that provides a transparent interface
to RTOS and bare metal-based remote contexts from Linux user space applications running on
the master processor. Read the following sections for a description of this infrastructure.

Proxy Infrastructure Overview
The proxy application essentially hides all the logistics involved in bringing-up the remote
software context and its shutdown sequence. In addition, it supports RPCs from remote context
using system calls such as “_open”, “_close”, “_read”, and “_write”. In remote context, these
system calls are retargeted to proxy applications running on the master over rpmsg for service.

The proxy infrastructure consists of the following:

• A proxy application running as a Linux user space application on the master processor

• An rpmsg-retargeting API available for use from RTOS or bare metal contexts running
on the remote processor

The rpmsg-retargeting API allows C library calls from the remote software context to be
retargeted over rpmsg-based IPC (as an RPC) to the dedicated proxy application running as a
user space Linux application on the master processor. The proxy application handles the remote
procedure calls, allowing the remote context to perform useful operations like printf, scanf, and
fileIO to STDIO and file handles available on the Linux master. For example, a printf() call
from the remote software application context would print the message to the STDOUT
(console) of the proxy application running on Linux on the master processor; similarly for
scanf, and file IO as well. This capability can be very useful for development and debugging of
remote applications.

Figure 5-1 illustrates the proxy infrastructure.

OpemAMP Framework User Reference,60

Proxy Infrastructure
Usage of Proxy Infrastructure on Master

Figure 5-1. The Proxy Infrastructure

Usage of Proxy Infrastructure on Master
On the master Linux OS, the proxy application is to be executed with the path to the remote
firmware image.

>proxy_app –f <path_to_remote_firmware>

For more information on creating a firmware image, see “Creation and Boot of Remote
Firmware Using remoteproc” on page 18.

The proxy app performs all logistics required to do the following:

• Load the necessary kernel drivers

• Load and execute the remote firmware application

• Establish rpmsg channel and system endpoint connections with remote context.

After the proxy application is running, system calls such as “_open”, “_close”, “_read”, and
“_write” on the remote side are forwarded to the proxy application for service, enabling the

Proxy Infrastructure
Usage of Proxy Infrastructure on Remote

OpemAMP Framework User Reference, 61

remote context to access the STDIO and file handles available on the master. To terminate the
remote context, you can either end the proxy application (SIGTERM), interrupt the application
using CTRL + C (SIGINT), or close the console (SIGHUP). This causes the proxy application
on master to perform the following:

• Transmit a shutdown request to the remote

• Unload relevant kernel drivers

• Bring the system back to a pristine state

The proxy user space application running on the master requires the rpmsg_proxy_dev_driver
kernel driver, which creates the rpmsg_proxy device and exposes the rpmsg proxy services to
the proxy application in user space. Along with this, other user developed rpmsg kernel drivers
can create application specific character devices to expose rpmsg based IPC services to user
space. User space applications access these application-specific rpmsg devices to realize the
application IPC needs. The proxy app merely serves as a Linux user space application that hides
the logistics of managing the remote firmware from the user and enables debugging of remote
applications.

Usage of Proxy Infrastructure on Remote
On the remote side, the proxy infrastructure provides an rpmsg_retarget API. Once the rpmsg
channel is established with the master (by invocation of channel creation callback), the
application can invoke the rpmsg_retarget_init API. This latter API creates a new rpmsg
endpoint (address 127) dedicated to be the system endpoint to forward remote procedure calls to
the proxy on the master and process RPC response from the master.

When the RX callback registered with the system endpoint receives a shutdown request from
the master, the remote application should invoke the rpmsg_retarget_deinit API, which destroys
the system endpoint and shuts down the rpmsg-based retargeting infrastructure used for RPC.
The reference implementation provides a sample implementation that showcases the usage of
this API.

OpemAMP Framework User Reference,62

Proxy Infrastructure
Usage of Proxy Infrastructure on Remote

OpemAMP Framework User Reference, 63

Chapter 6
OpenAMP Framework Porting Guidelines

The OpenAMP Framework provides abstractions that allow for porting of the OpenAMP
Framework to various software environments (operating systems and bare metal environments)
and hardware platforms (processors/platforms). The source code for porting components reside
in the OPENAMP/porting/ directory.

Table 6-1 shows the the OpenAMP Framework porting layer information.

The high level components, such as RPMSG and Remoteproc, use abstractions provided by the
HIL component present in the OPENAMP/common/hil directory to access the platform and
configuration porting pieces. The environment abstractions are directly used by the high level
components.

The description of various files present in the HIL component is provided in the Table 6-2.

Table 6-1. OpenAMP Framework Porting Layers

Directory Description

OPENAMP/porting/config System level configuration options

OPENAMP/porting/<platform_name> Patform porting component

OPENAMP/porting/env Software environment interface layer that contains
abstractions for RTL functions and OS/BM
environment features

Table 6-2. OpenAMP HIL Files

Directory Description

OPENAMP/common/hil/hil.h This is generic code that will not require porting.
Exposes public interface of HIL to higher level
software modules (rpmsg, remoteproc). It also
defines interface for platform and config porting
components.

OPENAMP/common/hil/hil.c This is generic code that will not require porting.
Implements the HIL APIs that enable higher layers
to access the HIL data structures.

OpemAMP Framework User Reference,64

OpenAMP Framework Porting Guidelines
Platform Porting Overview

The description of various files present in the platform porting component is provided in
Table 6-3. Users are expected to provide definitions for porting functions in these files.

Platform Porting Overview
Platform porting consists of three general steps.

The steps for platform porting are as follows:

1. Implement mechanics for obtaining platform-specific info. This includes the CPU ID
and its associated configuration, shared memory regions, IPI, virtio device information,
rpmsg channel information, and so forth.

2. Implement platform specific code for enabling and triggering IPIs for rpmsg, defined by
hil_platform_ops (<open_amp>/common/hil/hil.h).

3. Implement platform specific code for booting and shutting down remote contexts for the
remoteproc, defined by hil_platform_ops.

Table 6-3. HIL File Changes

File Name Description

OPENAMP/porting/<platform_name>
/platform.h

This is a processor/platform-specific header. You
define platform-specific definitions for the new
processor/platform in this file.

OPENAMP/porting/<platform_name>
/platform.c

This is a processor/platform-specific file in which
you are expected to implement the functions defined
in the hil_platform_ops function table.

OPENAMP/porting/<platform_name>
/platform_info.c

This file consists of APIs that fetch platform-
specific information required by the OpenAMP
Framework. You are expected to define this
information and implement mechanics to obtain this
platform specific information based on software
environment and hardware platform to be used.

The reference implementation puts this file to use to
obtain platform-specific information for the
ZC702EVK platform, for bare metal-based software
environments.

For reference, see
<$OPENAMP>/porting/zc702evk/platform_info.c.

OpenAMP Framework Porting Guidelines
Platform-Specific APIs

OpemAMP Framework User Reference, 65

Platform-Specific APIs
Platform information (CPU ID, shared memory, interrupts, and channels information) is
obtained during the call to the hil_create_proc API, which invokes platform porting APIs.

The following platform porting APIs are invoked by the hil_create_proc API:

• platform_get_processor_info

• platform_get_processor_for_fw

These APIs are invoked on a per-processor basis to obtain platform-specific information.
Ensure you provide implementation of these APIs for each new platform/configuration in the
platform_info.c file.

platform_get_processor_info

This function accepts a pointer to hil_proc structure and CPU ID as parameters. The successful
return from this function should populate all fields of the proc_shm, proc_intr, and proc_chnl
control blocks and CPU ID fields of the “hil_proc” data structure. The proc_chnl structure
elements are required to be populated only when the OpenAMP Framework is used with remote
software contexts. Moreover, for remote contexts, this function is called with the
HIL_RSVD_CPU_ID parameter to indicate that the platform information is requested for the
master.

Consider an example of platform information provided by bare metal applications. The
application defines a hil_proc structure(example_node) and populates only the platform-
specific fields leaving rest of fields empty. The platform_get_processor_info function copies
the contents of this structure to hil_proc structure passed as a parameter. These nodes must be
defined for each core present in the system.

For example, if there is a system with three cores, then for the master context, two such nodes
would be defined corresponding to each remote. In the case of the remote, only one node is
required (for the master, since each remote can have one master only).

struct hil_proc example_node =
{
 /* CPU node for remote context */
 {
 /* CPU ID of master */
 MASTER_CPU_ID,
 /* Shared memory info - Last field is not used currently */
 {
 SHM_ADDR, SHM_SIZE, 0x00
 },
 /* VirtIO device info */
 {
 /* Leave these three fields empty as these are obtained from

rsc
 * table.
 */

OpemAMP Framework User Reference,66

OpenAMP Framework Porting Guidelines
Platform-Specific APIs

 0, 0, 0,
 /* Vring info */
 {
 {
 /* Provide only vring interrupts info here. Other

fields are
 * obtained from the resource table so leave them

empty.
 */
 NULL, NULL, 0, 0,
 {
 VRING0_IPI_VECT,IPI_PRIORITY,IPI_POLARITY,NULL
 }
 },
 {
 NULL, NULL, 0, 0,
 {
 VRING1_IPI_VECT, IPI_PRIORITY,IPI_POLARITY,NULL
 }
 }
 }
 },
 /* Number of RPMSG channels */
 1,
 /* RPMSG channel info */
 {
 {"rpmsg-openamp-demo-channel"}
 },
 /* HIL platform ops table. */
 NULL,
 /* Next three fields are for future use only */
 0,
 0,
 NULL
 }

int platform_get_processor_info(struct hil_proc *proc , int cpu_id) {
 int idx;
 for(idx = 0; idx < sizeof(proc_table)/sizeof(struct hil_proc); idx++)
{
 if((cpu_id == HIL_RSVD_CPU_ID) || (proc_table[idx].cpu_id ==
cpu_id)) {
 env_memcpy(proc,&proc_table[idx], sizeof(struct hil_proc));
 return 0;
 }
 }
 return -1;
}

The other option is to populate the required structures individually and copy them one by one to
the hil_proc structure in the platform_get_processor_info function. The following code
illustrates this scenario.

#define CPU_ID 1
#define NUM_CHANNELS 1

struct proc_shm ex_shm = {

OpenAMP Framework Porting Guidelines
Platform-Specific APIs

OpemAMP Framework User Reference, 67

 SHM_ADDR, SHM_SIZE, 0x00
 };

struct proc_chnl ex_chnl = {
 "rpmsg-openamp-demo-channel"};
};

struct proc_intr ex_intr = {
 VRING1_IPI_VECT, IPI_PRIORITY, IPI_POLARITY
};

int platform_get_processor_info(struct hil_proc *proc , int cpu_id) {
 emv_memcpy(&proc-> sh_buff , &ex_shm , sizeof(struct proc_shm));
 emv_memcpy(&proc-> chnls, &ex_chnl , sizeof(struct proc_chnl));
 emv_memcpy(&proc-> vdev.vring_info[0].intr_info, &ex_intr ,

 sizeof(struct proc_intr));
 emv_memcpy(&proc-> vdev.vring_info[1].intr_info, &ex_intr ,
 sizeof(struct proc_intr));

 return 0;
}

platform_get_processor_for_fw

This function returns the CPU ID for the given firmware name. The platform information is
expected to provide the necessary firmware bindings to CPU ID. This implementation is
required only when the OpenAMP Framework is used with master software contexts.

APIs to Implement to Provide Platform-Specific
Functionality

The hil_platform_ops data structure defines specific functions that you are required to
implement. The hil_platform_ops reference is saved in the hil_proc structure in the
platform_get_processor_info call. Implementation of these functions should be provided in the
platform.c file.

The following platform-specific functions need to be implemented.

enable_interrupt

This function enables APIs for virtio notification and registers the interrupt handler for them.

notify

This function triggers interrupts to let the other core know that there is data available for
processing.

get_status

This function is for future use.

OpemAMP Framework User Reference,68

OpenAMP Framework Porting Guidelines
Configuration Porting

set_status

This function is for future use.

boot_cpu

Boot the remote CPU specified by CPU ID at the load address passed in as parameter.

shutdown_cpu

Shuts down the remote CPU specified by CPU ID.

Configuration Porting
The configuration porting component provides system level configuration abstractions such as
obtaining firmware for the master and interrupts registery info.

Currently it requires users to implement only the config_get_firmware function for retrieving
remote firmware. The function signature is present in the <open_amp>/porting/config/config.h
file.

Environment Porting
The env directory contains the file env.h, which declares all the environment-specific APIs
required by the OpenAMP Framework. The OpenAMP Framework reference implementation
for Zynq ZC702EVK contains environmental API implementations/abstractions for simple bare
metal execution environments. This reference implementation for Zynq should serve as a good
starting point for enabling other new environments.

Table 6-4 presents the key environment APIs and a brief description their expected
functionality/implementation.

OpenAMP Framework Porting Guidelines
Environment Porting

OpemAMP Framework User Reference, 69

Table 6-4. Environment Porting APIs

API Expected functionality

env_init, env_deinit Implements the OpenAMP Framework
required, environment-specific initialization
and deinitialization (for example, in the
reference implementation).

For bare metal environments: These APIs
are stubs that do nothing.

env_allocate_memory, env_deallocate_memory Implements environment-specific dynamic
memory allocation and de-allocation
primitives.

env_memset, env_memcpy, env_strlen,
env_strcpy, env_strcmp, env_strncpy,
env_strncmp, env_print

Implements env-layer mapping for the
toolset and provides C library primitives
used by the OpenAMP Framework. You
can provide your own implementation of
these APIs to enable the OpenAMP
Framework to be used in embedded
environments that do not have toolset-
provided C libraries available.

env_map_vatopa, env_map_patova Implements environment-provided
primitives to convert physical address to
virtual address and the other way around as
well.

env_mb, env_rmb, env_wmb Implements memory barriers using
environment-provided primitives.

env_create_mutex, env_lock_mutex,
env_unlock_mutex, env_delete_mutex

Implements protection mechanisms
depending on the software environment.
In the case of RTOS, this API can use
RTOS provided mutex or binary semaphore
primitives to provide env-layer abstractions
for protecting access to shared resources.

In the case of bare metal environments
where threading capability is typically not
present, this API can disable interrupts
globally to protect access to shared
resources.

OpemAMP Framework User Reference,70

OpenAMP Framework Porting Guidelines
Environment Porting

env_create_sync_lock, env_acquire_sync_lock,
env_release_sync_lock, env_delete_sync_lock

Implements synchronization mechanisms
depending on the software environment.
In the case of RTOS, this API can use
RTOS-provided blocking primitives like
semaphores to enable synchronization.

In the case of bare metal, this API can use
atomic spinlocks to enable synchronization.

env_disable_interrupts, env_restore_interrupts Implements global interrupt enablement and
disablement abstractions using
environment-provided primitives.

env_sleep_msec Implements timed sleep abstraction using
environment-provided primitives.

env_enable_interrupt, env_disable_interrupt,
env_register_isr

Implements environmental abstraction to
control processor interrupts on a per
interrupt basis using environment-provided
primitives.

env_map_memory Implements environment abstraction to
create a MMU tlb entry for a user-specified
memory region using environment-
provided primitives.

Table 6-4. Environment Porting APIs (cont.)

OpemAMP Framework User Reference, 71

Appendix A
Virtio Concepts and RPMsg Usage

The virtio transport abstraction was originally developed for para-virtualization of Linux-based
guests for lguest and KVM hypervisors. It serves as a standardized interface that lguest, KVM,
and Mentor Embedded Hypervisors provide for IO virtualization of system resources for the
guest operating systems like Linux and Nucleus RTOS. The Linux rpmsg bus driver leverages
the virtio implementation in the Linux kernel to enable IPC for Linux in master and remote
configurations.

Figure A-1. Virtio Concepts

The RPMsg framework’s virtio implementation is adopted from the FreeBSD kernel with the
addition of a couple of APIs. The rpmsg component uses virtio-provided interfaces to transmit
and receive data with its counterpart. As a transport abstraction, virtio provides two key
interfaces to upper level users (illustrated in Figure A-1):

OpemAMP Framework User Reference,72

Virtio Concepts and RPMsg Usage

• It provides a “virtio device” abstraction that allows a user driver to instantiate its own
instance of a virtio device. It also allows for negotiation of the features and functionality
supported by this user device (such as the rpmsg driver) by providing implementations
of functions in virtio device config operations.

• It provides a “virtqueue” API that allows user drivers to transmit and receive data with
the communicating counterpart using the virtqueue vring infrastructure.

The virtio implementation in the RPMsg framework (and in Linux) consists of the following:

• A buffer management component called “VRING,” which is a ring data structure to
manage buffer descriptors located in shared memory (Figure A-2)

• A notification mechanism to notify the communicating counterpart the availability of
data to processed in the associated VRING.

Inter-Processor Interrupts (IPIs) are normally used for notifications. The virtqueue is a user
abstraction that includes the VRING data structure with some supplemental fields, and APIs to
allow user drivers to transmit and receive shared memory buffers. Each rpmsg channel contains
two virtqueues associated with it: a tx virtqueue for master to uni-directionally transmit data to
remote, and a rx virtqueue for remote to uni-directionally transmit data to master.

During the initialization of rpmsg, the following tasks are performed:

• The master context creates both the TX and RX virtqueues, and initializes the
corresponding VRINGs with buffers from shared memory.

• A dedicated shared memory manager component within the RPMsg framework provides
fixed-size buffers from a predefined shared memory space defined in HIL.

• The master transmits data to the remote by obtaining buffers referenced by descriptors in
the TX virtqueue

• The master populates the virtque buffers with data, and notifies the corresponding
remote using notification mechanisms defined in the HIL.

Virtio Concepts and RPMsg Usage

OpemAMP Framework User Reference, 73

Figure A-2. The Virtqueue and Vring

The remote transmits data to master by obtaining buffers referenced by descriptors in RX
virtqueue, populating them with data, and notifying the master using notification mechanisms
defined in the HIL. On receiving data, virtio calls the rpmsg driver registered RX call back with
reference to data received. The data is further processed by the RPMsg driver for delivery to
application registered callbacks.

OpemAMP Framework User Reference,74

Virtio Concepts and RPMsg Usage

Third-Party Information

This software application may include zlib version 1.2.5 third-party software, which is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied.

This software application may include libfdt version 17 third-party software, which is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. libfdt version 17 may be subject to the following
copyrights:

For the below copyright notice Mentor elects to distribute libfdt under the terms of the BSD license.

© 2006 David Gibson, IBM Corporation.

© 2012 Kim Phillips, Freescale Semiconductor.

libfdt is dual licensed: you can use it either under the terms of the GPL, or the BSD license, at your option.

a) This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Alternatively,

b) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Mentor Graphics BSD License, v1.0

To the extent an Open Source license does not otherwise apply to any component of the Software, the below BSD license
shall apply.

Copyright (c) 2014, Mentor Graphics Corporation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of Mentor Graphics Corporation nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL MENTOR GRAPHICS CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 OpenAMP Framework Overview
	Abbreviations, Terminology, and Definitions
	Overview
	Components and Capabilities

	Chapter 2 System-Wide Considerations for Using OpenAMP Framework
	Chapter 3 The remoteproc Component
	Concepts
	Creation and Boot of Remote Firmware Using remoteproc
	Defining the Resource Table and Creating the Remote ELF Image
	Making Remote Firmware Accessible to the Master

	remoteproc API Usage
	Using remoteproc APIs From the Master Software Context
	Using remoteproc APIs From Remote Software Context

	remoteproc API Functions
	remoteproc_init
	remoteproc_deinit
	remoteproc_boot
	remoteproc_shutdown
	remoteproc_resource_init
	remoteproc_resource_deinit
	remoteproc Configurable Options

	Chapter 4 The RPMsg Component
	RPMsg Channel
	RPMsg Endpoint
	RPMsg Header
	OpenAMP Framework RPMsg Driver
	RPMsg API Usage
	RPMsg API Usage From the Master Software Context
	RPMsg API Usage From Remote Software Context

	RPMsg API Functions
	rpmsg_send
	rpmsg_sendto
	rpmsg_send_offchannel
	rpmsg_trysend
	rpmsg_trysendto
	rpmsg_trysendoffchannel
	rpmsg_get_buffer_size
	rpmsg_create_ept
	rpmsg_destroy_ept
	rpmsg_chnl_cb_t
	rpmsg_rx_cb_t
	RPMsg Configurable Options

	Chapter 5 Proxy Infrastructure
	Proxy Infrastructure Overview
	Usage of Proxy Infrastructure on Master
	Usage of Proxy Infrastructure on Remote

	Chapter 6 OpenAMP Framework Porting Guidelines
	Platform Porting Overview
	Platform-Specific APIs
	APIs to Implement to Provide Platform-Specific Functionality

	Configuration Porting
	Environment Porting

	Appendix A Virtio Concepts and RPMsg Usage
	Third-Party Information
	Mentor Graphics BSD License, v1.0
	Documentation Feedback

