summaryrefslogtreecommitdiff
path: root/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_sparse_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_sparse_q15.c')
-rw-r--r--platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_sparse_q15.c481
1 files changed, 481 insertions, 0 deletions
diff --git a/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_sparse_q15.c b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_sparse_q15.c
new file mode 100644
index 0000000..909266f
--- /dev/null
+++ b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_sparse_q15.c
@@ -0,0 +1,481 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
+*
+* $Date: 12. March 2014
+* $Revision: V1.4.4
+*
+* Project: CMSIS DSP Library
+* Title: arm_fir_sparse_q15.c
+*
+* Description: Q15 sparse FIR filter processing function.
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* ------------------------------------------------------------------- */
+#include "arm_math.h"
+
+/**
+ * @addtogroup FIR_Sparse
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q15 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The 1.15 x 1.15 multiplications yield a 2.30 result and these are added to a 2.30 accumulator.
+ * Thus the full precision of the multiplications is maintained but there is only a single guard bit in the accumulator.
+ * If the accumulator result overflows it will wrap around rather than saturate.
+ * After all multiply-accumulates are performed, the 2.30 accumulator is truncated to 2.15 format and then saturated to 1.15 format.
+ * In order to avoid overflows the input signal or coefficients must be scaled down by log2(numTaps) bits.
+ */
+
+
+void arm_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize)
+{
+
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pIn = pSrc; /* Working pointer for input */
+ q15_t *pOut = pDst; /* Working pointer for output */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *px; /* Temporary pointers for scratch buffer */
+ q15_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
+ q15_t *py = pState; /* Temporary pointers for state buffer */
+ int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
+ uint32_t delaySize = S->maxDelay + blockSize; /* state length */
+ uint16_t numTaps = S->numTaps; /* Filter order */
+ int32_t readIndex; /* Read index of the state buffer */
+ uint32_t tapCnt, blkCnt; /* loop counters */
+ q15_t coeff = *pCoeffs++; /* Read the first coefficient value */
+ q31_t *pScr2 = pScratchOut; /* Working pointer for pScratchOut */
+
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ q31_t in1, in2; /* Temporary variables */
+
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_q15(py, delaySize, &S->stateIndex, 1, pIn, 1, blockSize);
+
+ /* Loop over the number of taps. */
+ tapCnt = numTaps;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if(readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 multiplications at a time. */
+ blkCnt = blockSize >> 2;
+
+ while(blkCnt > 0u)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4u;
+
+ while(blkCnt > 0u)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if(readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 2u;
+
+ while(tapCnt > 0u)
+ {
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 MACS at a time. */
+ blkCnt = blockSize >> 2;
+
+ while(blkCnt > 0u)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4u;
+
+ while(blkCnt > 0u)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if(readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Compute last tap without the final read of pTapDelay */
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ /* Loop over the blockSize. Unroll by a factor of 4.
+ * Compute 4 MACS at a time. */
+ blkCnt = blockSize >> 2;
+
+ while(blkCnt > 0u)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ * compute the remaining samples */
+ blkCnt = blockSize % 0x4u;
+
+ while(blkCnt > 0u)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* All the output values are in pScratchOut buffer.
+ Convert them into 1.15 format, saturate and store in the destination buffer. */
+ /* Loop over the blockSize. */
+ blkCnt = blockSize >> 2;
+
+ while(blkCnt > 0u)
+ {
+ in1 = *pScr2++;
+ in2 = *pScr2++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT((q15_t) __SSAT(in1 >> 15, 16), (q15_t) __SSAT(in2 >> 15, 16),
+ 16);
+
+#else
+ *__SIMD32(pOut)++ =
+ __PKHBT((q15_t) __SSAT(in2 >> 15, 16), (q15_t) __SSAT(in1 >> 15, 16),
+ 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ in1 = *pScr2++;
+
+ in2 = *pScr2++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pOut)++ =
+ __PKHBT((q15_t) __SSAT(in1 >> 15, 16), (q15_t) __SSAT(in2 >> 15, 16),
+ 16);
+
+#else
+
+ *__SIMD32(pOut)++ =
+ __PKHBT((q15_t) __SSAT(in2 >> 15, 16), (q15_t) __SSAT(in1 >> 15, 16),
+ 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+
+ blkCnt--;
+
+ }
+
+ /* If the blockSize is not a multiple of 4,
+ remaining samples are processed in the below loop */
+ blkCnt = blockSize % 0x4u;
+
+ while(blkCnt > 0u)
+ {
+ *pOut++ = (q15_t) __SSAT(*pScr2++ >> 15, 16);
+ blkCnt--;
+ }
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ /* BlockSize of Input samples are copied into the state buffer */
+ /* StateIndex points to the starting position to write in the state buffer */
+ arm_circularWrite_q15(py, delaySize, &S->stateIndex, 1, pIn, 1, blockSize);
+
+ /* Loop over the number of taps. */
+ tapCnt = numTaps;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if(readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ blkCnt = blockSize;
+
+ while(blkCnt > 0u)
+ {
+ /* Perform multiplication and store in the scratch buffer */
+ *pScratchOut++ = ((q31_t) * px++ * coeff);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if(readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Loop over the number of taps. */
+ tapCnt = (uint32_t) numTaps - 2u;
+
+ while(tapCnt > 0u)
+ {
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ blkCnt = blockSize;
+
+ while(blkCnt > 0u)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Load the coefficient value and
+ * increment the coefficient buffer for the next set of state values */
+ coeff = *pCoeffs++;
+
+ /* Read Index, from where the state buffer should be read, is calculated. */
+ readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
+
+ /* Wraparound of readIndex */
+ if(readIndex < 0)
+ {
+ readIndex += (int32_t) delaySize;
+ }
+
+ /* Decrement the tap loop counter */
+ tapCnt--;
+ }
+
+ /* Compute last tap without the final read of pTapDelay */
+
+ /* Working pointer for state buffer is updated */
+ py = pState;
+
+ /* blockSize samples are read from the state buffer */
+ arm_circularRead_q15(py, delaySize, &readIndex, 1,
+ pb, pb, blockSize, 1, blockSize);
+
+ /* Working pointer for the scratch buffer of state values */
+ px = pb;
+
+ /* Working pointer for scratch buffer of output values */
+ pScratchOut = pScr2;
+
+ blkCnt = blockSize;
+
+ while(blkCnt > 0u)
+ {
+ /* Perform Multiply-Accumulate */
+ *pScratchOut++ += (q31_t) * px++ * coeff;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* All the output values are in pScratchOut buffer.
+ Convert them into 1.15 format, saturate and store in the destination buffer. */
+ /* Loop over the blockSize. */
+ blkCnt = blockSize;
+
+ while(blkCnt > 0u)
+ {
+ *pOut++ = (q15_t) __SSAT(*pScr2++ >> 15, 16);
+ blkCnt--;
+ }
+
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+
+}
+
+/**
+ * @} end of FIR_Sparse group
+ */