summaryrefslogtreecommitdiff
path: root/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q31.c
diff options
context:
space:
mode:
Diffstat (limited to 'platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q31.c')
-rw-r--r--platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q31.c504
1 files changed, 504 insertions, 0 deletions
diff --git a/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q31.c b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q31.c
new file mode 100644
index 0000000..5ddbb36
--- /dev/null
+++ b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q31.c
@@ -0,0 +1,504 @@
+/*-----------------------------------------------------------------------------
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
+*
+* $Date: 12. March 2014
+* $Revision: V1.4.4
+*
+* Project: CMSIS DSP Library
+* Title: arm_fir_interpolate_q31.c
+*
+* Description: Q31 FIR interpolation.
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* ---------------------------------------------------------------------------*/
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup FIR_Interpolate
+ * @{
+ */
+
+/**
+ * @brief Processing function for the Q31 FIR interpolator.
+ * @param[in] *S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by <code>1/(numTaps/L)</code>.
+ * since <code>numTaps/L</code> additions occur per output sample.
+ * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
+ */
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+ q63_t sum0; /* Accumulators */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t i, blkCnt, j; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
+
+ uint32_t blkCntN2;
+ q63_t acc0, acc1;
+ q31_t x1;
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + ((q31_t) phaseLen - 1);
+
+ /* Initialise blkCnt */
+ blkCnt = blockSize / 2;
+ blkCntN2 = blockSize - (2 * blkCnt);
+
+ /* Samples loop unrolled by 2 */
+ while(blkCnt > 0u)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Address modifier index of coefficient buffer */
+ j = 1u;
+
+ /* Loop over the Interpolation factor. */
+ i = (S->L);
+
+ while(i > 0u)
+ {
+ /* Set accumulator to zero */
+ acc0 = 0;
+ acc1 = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (S->L - j);
+
+ /* Loop over the polyPhase length. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
+ tapCnt = phaseLen >> 2u;
+
+ x0 = *(ptr1++);
+
+ while(tapCnt > 0u)
+ {
+
+ /* Read the input sample */
+ x1 = *(ptr1++);
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x0 *c0;
+ acc1 += (q63_t) x1 *c0;
+
+
+ /* Read the coefficient */
+ c0 = *(ptr2 + S->L);
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x1 *c0;
+ acc1 += (q63_t) x0 *c0;
+
+
+ /* Read the coefficient */
+ c0 = *(ptr2 + S->L * 2);
+
+ /* Read the input sample */
+ x1 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x0 *c0;
+ acc1 += (q63_t) x1 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2 + S->L * 3);
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x1 *c0;
+ acc1 += (q63_t) x0 *c0;
+
+
+ /* Upsampling is done by stuffing L-1 zeros between each sample.
+ * So instead of multiplying zeros with coefficients,
+ * Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += 4 * S->L;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = phaseLen % 0x4u;
+
+ while(tapCnt > 0u)
+ {
+
+ /* Read the input sample */
+ x1 = *(ptr1++);
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Perform the multiply-accumulate */
+ acc0 += (q63_t) x0 *c0;
+ acc1 += (q63_t) x1 *c0;
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* update states for next sample processing */
+ x0 = x1;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst = (q31_t) (acc0 >> 31);
+ *(pDst + S->L) = (q31_t) (acc1 >> 31);
+
+
+ pDst++;
+
+ /* Increment the address modifier index of coefficient buffer */
+ j++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 2;
+
+ pDst += S->L;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blkCntN2;
+
+ /* Loop over the blockSize. */
+ while(blkCnt > 0u)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Address modifier index of coefficient buffer */
+ j = 1u;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+ while(i > 0u)
+ {
+ /* Set accumulator to zero */
+ sum0 = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (S->L - j);
+
+ /* Loop over the polyPhase length. Unroll by a factor of 4.
+ ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
+ tapCnt = phaseLen >> 2;
+ while(tapCnt > 0u)
+ {
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Upsampling is done by stuffing L-1 zeros between each sample.
+ * So instead of multiplying zeros with coefficients,
+ * Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
+ tapCnt = phaseLen & 0x3u;
+
+ while(tapCnt > 0u)
+ {
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *(ptr1++);
+
+ /* Perform the multiply-accumulate */
+ sum0 += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t) (sum0 >> 31);
+
+ /* Increment the address modifier index of coefficient buffer */
+ j++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = (phaseLen - 1u) >> 2u;
+
+ /* copy data */
+ while(tapCnt > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (phaseLen - 1u) % 0x04u;
+
+ /* copy data */
+ while(tapCnt > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+
+#else
+
+void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
+
+ /* Run the below code for Cortex-M0 */
+
+ q63_t sum; /* Accumulator */
+ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t i, blkCnt; /* Loop counters */
+ uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */
+
+
+ /* S->pState buffer contains previous frame (phaseLen - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = S->pState + ((q31_t) phaseLen - 1);
+
+ /* Total number of intput samples */
+ blkCnt = blockSize;
+
+ /* Loop over the blockSize. */
+ while(blkCnt > 0u)
+ {
+ /* Copy new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Loop over the Interpolation factor. */
+ i = S->L;
+
+ while(i > 0u)
+ {
+ /* Set accumulator to zero */
+ sum = 0;
+
+ /* Initialize state pointer */
+ ptr1 = pState;
+
+ /* Initialize coefficient pointer */
+ ptr2 = pCoeffs + (i - 1u);
+
+ tapCnt = phaseLen;
+
+ while(tapCnt > 0u)
+ {
+ /* Read the coefficient */
+ c0 = *(ptr2);
+
+ /* Increment the coefficient pointer by interpolation factor times. */
+ ptr2 += S->L;
+
+ /* Read the input sample */
+ x0 = *ptr1++;
+
+ /* Perform the multiply-accumulate */
+ sum += (q63_t) x0 *c0;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* The result is in the accumulator, store in the destination buffer. */
+ *pDst++ = (q31_t) (sum >> 31);
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Advance the state pointer by 1
+ * to process the next group of interpolation factor number samples */
+ pState = pState + 1;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = phaseLen - 1u;
+
+ /* copy data */
+ while(tapCnt > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+
+ /**
+ * @} end of FIR_Interpolate group
+ */