summaryrefslogtreecommitdiff
path: root/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_opt_q7.c
diff options
context:
space:
mode:
Diffstat (limited to 'platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_opt_q7.c')
-rw-r--r--platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_opt_q7.c803
1 files changed, 803 insertions, 0 deletions
diff --git a/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_opt_q7.c b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_opt_q7.c
new file mode 100644
index 0000000..559bfa4
--- /dev/null
+++ b/platform/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_opt_q7.c
@@ -0,0 +1,803 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
+*
+* $Date: 12. March 2014
+* $Revision: V1.4.4
+*
+* Project: CMSIS DSP Library
+* Title: arm_conv_partial_opt_q7.c
+*
+* Description: Partial convolution of Q7 sequences.
+*
+* Target Processor: Cortex-M4/Cortex-M3
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupFilters
+ */
+
+/**
+ * @addtogroup PartialConv
+ * @{
+ */
+
+/**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written.
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ *
+ * \par Restrictions
+ * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
+ *
+ *
+ *
+ */
+
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+arm_status arm_conv_partial_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+
+ q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */
+ q15_t x4; /* Temporary input variable */
+ q7_t *pIn1, *pIn2; /* inputA and inputB pointer */
+ uint32_t j, k, blkCnt, tapCnt; /* loop counter */
+ q7_t *px; /* Temporary input1 pointer */
+ q15_t *py; /* Temporary input2 pointer */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulator */
+ q31_t x1, x2, x3, y1; /* Temporary input variables */
+ arm_status status;
+ q7_t *pOut = pDst; /* output pointer */
+ q7_t out0, out1, out2, out3; /* temporary variables */
+
+ /* Check for range of output samples to be calculated */
+ if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if(srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2;
+
+ /* points to smaller length sequence */
+ px = pIn2 + srcBLen - 1;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2u;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while(k > 0u)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4u;
+
+ while(k > 0u)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Fill (srcBLen - 1u) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1u));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1u);
+
+ /* Copy (srcALen) samples in scratch buffer */
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcALen >> 2u;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while(k > 0u)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4u;
+
+ while(k > 0u)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1u));
+
+ /* Update pointer */
+ pScr1 += (srcBLen - 1u);
+
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = (q7_t *) py;
+
+ pScr2 = py;
+
+ pOut = pDst + firstIndex;
+
+ pScratch1 += firstIndex;
+
+ /* Actual convolution process starts here */
+ blkCnt = (numPoints) >> 2;
+
+
+ while(blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read next two samples from scratch1 buffer */
+ x2 = *__SIMD32(pScr1)++;
+
+ tapCnt = (srcBLen) >> 2u;
+
+ while(tapCnt > 0u)
+ {
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pScr2);
+
+ /* multiply and accumlate */
+ acc0 = __SMLAD(x1, y1, acc0);
+ acc2 = __SMLAD(x2, y1, acc2);
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ /* multiply and accumlate */
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x1, x2, 0);
+#else
+ x3 = __PKHBT(x2, x1, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ /* Read four samples from smaller buffer */
+ y1 = _SIMD32_OFFSET(pScr2 + 2u);
+
+ acc0 = __SMLAD(x2, y1, acc0);
+
+ acc2 = __SMLAD(x1, y1, acc2);
+
+ acc1 = __SMLADX(x3, y1, acc1);
+
+ x2 = *__SIMD32(pScr1)++;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ x3 = __PKHBT(x2, x1, 0);
+#else
+ x3 = __PKHBT(x1, x2, 0);
+#endif
+
+ acc3 = __SMLADX(x3, y1, acc3);
+
+ pScr2 += 4u;
+
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4u;
+
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3u;
+
+ while(tapCnt > 0u)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2);
+ acc1 += (*pScr1++ * *pScr2);
+ acc2 += (*pScr1++ * *pScr2);
+ acc3 += (*pScr1++ * *pScr2++);
+
+ pScr1 -= 3u;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ out0 = (q7_t) (__SSAT(acc0 >> 7u, 8));
+ out1 = (q7_t) (__SSAT(acc1 >> 7u, 8));
+ out2 = (q7_t) (__SSAT(acc2 >> 7u, 8));
+ out3 = (q7_t) (__SSAT(acc3 >> 7u, 8));
+
+ *__SIMD32(pOut)++ = __PACKq7(out0, out1, out2, out3);
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 4u;
+
+ }
+
+ blkCnt = (numPoints) & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while(blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1u;
+
+ while(tapCnt > 0u)
+ {
+
+ /* Read next two samples from scratch1 buffer */
+ x1 = *__SIMD32(pScr1)++;
+
+ /* Read two samples from smaller buffer */
+ y1 = *__SIMD32(pScr2)++;
+
+ acc0 = __SMLAD(x1, y1, acc0);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1u;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while(tapCnt > 0u)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 1u;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+
+
+ }
+
+ return (status);
+
+}
+
+#else
+
+arm_status arm_conv_partial_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2)
+{
+
+ q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */
+ q15_t x4; /* Temporary input variable */
+ q7_t *pIn1, *pIn2; /* inputA and inputB pointer */
+ uint32_t j, k, blkCnt, tapCnt; /* loop counter */
+ q7_t *px; /* Temporary input1 pointer */
+ q15_t *py; /* Temporary input2 pointer */
+ q31_t acc0, acc1, acc2, acc3; /* Accumulator */
+ arm_status status;
+ q7_t *pOut = pDst; /* output pointer */
+ q15_t x10, x11, x20, x21; /* Temporary input variables */
+ q15_t y10, y11; /* Temporary input variables */
+
+ /* Check for range of output samples to be calculated */
+ if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
+ {
+ /* Set status as ARM_MATH_ARGUMENT_ERROR */
+ status = ARM_MATH_ARGUMENT_ERROR;
+ }
+ else
+ {
+
+ /* The algorithm implementation is based on the lengths of the inputs. */
+ /* srcB is always made to slide across srcA. */
+ /* So srcBLen is always considered as shorter or equal to srcALen */
+ if(srcALen >= srcBLen)
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcA;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcB;
+ }
+ else
+ {
+ /* Initialization of inputA pointer */
+ pIn1 = pSrcB;
+
+ /* Initialization of inputB pointer */
+ pIn2 = pSrcA;
+
+ /* srcBLen is always considered as shorter or equal to srcALen */
+ j = srcBLen;
+ srcBLen = srcALen;
+ srcALen = j;
+ }
+
+ /* pointer to take end of scratch2 buffer */
+ pScr2 = pScratch2;
+
+ /* points to smaller length sequence */
+ px = pIn2 + srcBLen - 1;
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcBLen >> 2u;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while(k > 0u)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcBLen % 0x4u;
+
+ while(k > 0u)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * px--;
+ *pScr2++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Initialze temporary scratch pointer */
+ pScr1 = pScratch1;
+
+ /* Fill (srcBLen - 1u) zeros in scratch buffer */
+ arm_fill_q15(0, pScr1, (srcBLen - 1u));
+
+ /* Update temporary scratch pointer */
+ pScr1 += (srcBLen - 1u);
+
+ /* Copy (srcALen) samples in scratch buffer */
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = srcALen >> 2u;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while(k > 0u)
+ {
+ /* copy second buffer in reversal manner */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = srcALen % 0x4u;
+
+ while(k > 0u)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ x4 = (q15_t) * pIn1++;
+ *pScr1++ = x4;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* Apply loop unrolling and do 4 Copies simultaneously. */
+ k = (srcBLen - 1u) >> 2u;
+
+ /* First part of the processing with loop unrolling copies 4 data points at a time.
+ ** a second loop below copies for the remaining 1 to 3 samples. */
+ while(k > 0u)
+ {
+ /* copy second buffer in reversal manner */
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+ /* If the count is not a multiple of 4, copy remaining samples here.
+ ** No loop unrolling is used. */
+ k = (srcBLen - 1u) % 0x4u;
+
+ while(k > 0u)
+ {
+ /* copy second buffer in reversal manner for remaining samples */
+ *pScr1++ = 0;
+
+ /* Decrement the loop counter */
+ k--;
+ }
+
+
+ /* Temporary pointer for scratch2 */
+ py = pScratch2;
+
+ /* Initialization of pIn2 pointer */
+ pIn2 = (q7_t *) py;
+
+ pScr2 = py;
+
+ pOut = pDst + firstIndex;
+
+ pScratch1 += firstIndex;
+
+ /* Actual convolution process starts here */
+ blkCnt = (numPoints) >> 2;
+
+
+ while(blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+ acc1 = 0;
+ acc2 = 0;
+ acc3 = 0;
+
+ /* Read two samples from scratch1 buffer */
+ x10 = *pScr1++;
+ x11 = *pScr1++;
+
+ /* Read next two samples from scratch1 buffer */
+ x20 = *pScr1++;
+ x21 = *pScr1++;
+
+ tapCnt = (srcBLen) >> 2u;
+
+ while(tapCnt > 0u)
+ {
+
+ /* Read four samples from smaller buffer */
+ y10 = *pScr2;
+ y11 = *(pScr2 + 1u);
+
+ /* multiply and accumlate */
+ acc0 += (q31_t) x10 *y10;
+ acc0 += (q31_t) x11 *y11;
+ acc2 += (q31_t) x20 *y10;
+ acc2 += (q31_t) x21 *y11;
+
+
+ acc1 += (q31_t) x11 *y10;
+ acc1 += (q31_t) x20 *y11;
+
+ /* Read next two samples from scratch1 buffer */
+ x10 = *pScr1;
+ x11 = *(pScr1 + 1u);
+
+ /* multiply and accumlate */
+ acc3 += (q31_t) x21 *y10;
+ acc3 += (q31_t) x10 *y11;
+
+ /* Read next two samples from scratch2 buffer */
+ y10 = *(pScr2 + 2u);
+ y11 = *(pScr2 + 3u);
+
+ /* multiply and accumlate */
+ acc0 += (q31_t) x20 *y10;
+ acc0 += (q31_t) x21 *y11;
+ acc2 += (q31_t) x10 *y10;
+ acc2 += (q31_t) x11 *y11;
+ acc1 += (q31_t) x21 *y10;
+ acc1 += (q31_t) x10 *y11;
+
+ /* Read next two samples from scratch1 buffer */
+ x20 = *(pScr1 + 2);
+ x21 = *(pScr1 + 3);
+
+ /* multiply and accumlate */
+ acc3 += (q31_t) x11 *y10;
+ acc3 += (q31_t) x20 *y11;
+
+ /* update scratch pointers */
+
+ pScr1 += 4u;
+ pScr2 += 4u;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+
+
+ /* Update scratch pointer for remaining samples of smaller length sequence */
+ pScr1 -= 4u;
+
+
+ /* apply same above for remaining samples of smaller length sequence */
+ tapCnt = (srcBLen) & 3u;
+
+ while(tapCnt > 0u)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2);
+ acc1 += (*pScr1++ * *pScr2);
+ acc2 += (*pScr1++ * *pScr2);
+ acc3 += (*pScr1++ * *pScr2++);
+
+ pScr1 -= 3u;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));
+ *pOut++ = (q7_t) (__SSAT(acc1 >> 7u, 8));
+ *pOut++ = (q7_t) (__SSAT(acc2 >> 7u, 8));
+ *pOut++ = (q7_t) (__SSAT(acc3 >> 7u, 8));
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 4u;
+
+ }
+
+ blkCnt = (numPoints) & 0x3;
+
+ /* Calculate convolution for remaining samples of Bigger length sequence */
+ while(blkCnt > 0)
+ {
+ /* Initialze temporary scratch pointer as scratch1 */
+ pScr1 = pScratch1;
+
+ /* Clear Accumlators */
+ acc0 = 0;
+
+ tapCnt = (srcBLen) >> 1u;
+
+ while(tapCnt > 0u)
+ {
+
+ /* Read next two samples from scratch1 buffer */
+ x10 = *pScr1++;
+ x11 = *pScr1++;
+
+ /* Read two samples from smaller buffer */
+ y10 = *pScr2++;
+ y11 = *pScr2++;
+
+ /* multiply and accumlate */
+ acc0 += (q31_t) x10 *y10;
+ acc0 += (q31_t) x11 *y11;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ tapCnt = (srcBLen) & 1u;
+
+ /* apply same above for remaining samples of smaller length sequence */
+ while(tapCnt > 0u)
+ {
+
+ /* accumlate the results */
+ acc0 += (*pScr1++ * *pScr2++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ blkCnt--;
+
+ /* Store the result in the accumulator in the destination buffer. */
+ *pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));
+
+ /* Initialization of inputB pointer */
+ pScr2 = py;
+
+ pScratch1 += 1u;
+
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+
+ }
+
+ return (status);
+
+}
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+
+
+/**
+ * @} end of PartialConv group
+ */