/** * Copyright (c) 2014 Redpine Signals Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "rsi_debugfs.h" #include "rsi_mgmt.h" #include "rsi_sdio.h" #include "rsi_common.h" #include "rsi_ps.h" static const struct ieee80211_channel rsi_2ghz_channels[] = { { .band = NL80211_BAND_2GHZ, .center_freq = 2412, .hw_value = 1 }, /* Channel 1 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2417, .hw_value = 2 }, /* Channel 2 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2422, .hw_value = 3 }, /* Channel 3 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2427, .hw_value = 4 }, /* Channel 4 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2432, .hw_value = 5 }, /* Channel 5 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2437, .hw_value = 6 }, /* Channel 6 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2442, .hw_value = 7 }, /* Channel 7 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2447, .hw_value = 8 }, /* Channel 8 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2452, .hw_value = 9 }, /* Channel 9 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2457, .hw_value = 10 }, /* Channel 10 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2462, .hw_value = 11 }, /* Channel 11 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2467, .hw_value = 12 }, /* Channel 12 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2472, .hw_value = 13 }, /* Channel 13 */ { .band = NL80211_BAND_2GHZ, .center_freq = 2484, .hw_value = 14 }, /* Channel 14 */ }; static const struct ieee80211_channel rsi_5ghz_channels[] = { { .band = NL80211_BAND_5GHZ, .center_freq = 5180, .hw_value = 36, }, /* Channel 36 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5200, .hw_value = 40, }, /* Channel 40 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5220, .hw_value = 44, }, /* Channel 44 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5240, .hw_value = 48, }, /* Channel 48 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5260, .hw_value = 52, }, /* Channel 52 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5280, .hw_value = 56, }, /* Channel 56 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5300, .hw_value = 60, }, /* Channel 60 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5320, .hw_value = 64, }, /* Channel 64 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5500, .hw_value = 100, }, /* Channel 100 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5520, .hw_value = 104, }, /* Channel 104 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5540, .hw_value = 108, }, /* Channel 108 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5560, .hw_value = 112, }, /* Channel 112 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5580, .hw_value = 116, }, /* Channel 116 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5600, .hw_value = 120, }, /* Channel 120 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5620, .hw_value = 124, }, /* Channel 124 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5640, .hw_value = 128, }, /* Channel 128 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5660, .hw_value = 132, }, /* Channel 132 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5680, .hw_value = 136, }, /* Channel 136 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5700, .hw_value = 140, }, /* Channel 140 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5745, .hw_value = 149, }, /* Channel 149 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5765, .hw_value = 153, }, /* Channel 153 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5785, .hw_value = 157, }, /* Channel 157 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5805, .hw_value = 161, }, /* Channel 161 */ { .band = NL80211_BAND_5GHZ, .center_freq = 5825, .hw_value = 165, }, /* Channel 165 */ }; struct ieee80211_rate rsi_rates[12] = { { .bitrate = STD_RATE_01 * 5, .hw_value = RSI_RATE_1 }, { .bitrate = STD_RATE_02 * 5, .hw_value = RSI_RATE_2 }, { .bitrate = STD_RATE_5_5 * 5, .hw_value = RSI_RATE_5_5 }, { .bitrate = STD_RATE_11 * 5, .hw_value = RSI_RATE_11 }, { .bitrate = STD_RATE_06 * 5, .hw_value = RSI_RATE_6 }, { .bitrate = STD_RATE_09 * 5, .hw_value = RSI_RATE_9 }, { .bitrate = STD_RATE_12 * 5, .hw_value = RSI_RATE_12 }, { .bitrate = STD_RATE_18 * 5, .hw_value = RSI_RATE_18 }, { .bitrate = STD_RATE_24 * 5, .hw_value = RSI_RATE_24 }, { .bitrate = STD_RATE_36 * 5, .hw_value = RSI_RATE_36 }, { .bitrate = STD_RATE_48 * 5, .hw_value = RSI_RATE_48 }, { .bitrate = STD_RATE_54 * 5, .hw_value = RSI_RATE_54 }, }; const u16 rsi_mcsrates[8] = { RSI_RATE_MCS0, RSI_RATE_MCS1, RSI_RATE_MCS2, RSI_RATE_MCS3, RSI_RATE_MCS4, RSI_RATE_MCS5, RSI_RATE_MCS6, RSI_RATE_MCS7 }; static const u32 rsi_max_ap_stas[16] = { 32, /* 1 - Wi-Fi alone */ 0, /* 2 */ 0, /* 3 */ 0, /* 4 - BT EDR alone */ 4, /* 5 - STA + BT EDR */ 32, /* 6 - AP + BT EDR */ 0, /* 7 */ 0, /* 8 - BT LE alone */ 4, /* 9 - STA + BE LE */ 0, /* 10 */ 0, /* 11 */ 0, /* 12 */ 1, /* 13 - STA + BT Dual */ 4, /* 14 - AP + BT Dual */ }; static const struct ieee80211_iface_limit rsi_iface_limits[] = { { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, { .max = 1, .types = BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO), }, { .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE), }, }; static const struct ieee80211_iface_combination rsi_iface_combinations[] = { { .num_different_channels = 1, .max_interfaces = 3, .limits = rsi_iface_limits, .n_limits = ARRAY_SIZE(rsi_iface_limits), }, }; /** * rsi_is_cipher_wep() - This function determines if the cipher is WEP or not. * @common: Pointer to the driver private structure. * * Return: If cipher type is WEP, a value of 1 is returned, else 0. */ bool rsi_is_cipher_wep(struct rsi_common *common) { if (((common->secinfo.gtk_cipher == WLAN_CIPHER_SUITE_WEP104) || (common->secinfo.gtk_cipher == WLAN_CIPHER_SUITE_WEP40)) && (!common->secinfo.ptk_cipher)) return true; else return false; } /** * rsi_register_rates_channels() - This function registers channels and rates. * @adapter: Pointer to the adapter structure. * @band: Operating band to be set. * * Return: None. */ static void rsi_register_rates_channels(struct rsi_hw *adapter, int band) { struct ieee80211_supported_band *sbands = &adapter->sbands[band]; void *channels = NULL; if (band == NL80211_BAND_2GHZ) { channels = kmalloc(sizeof(rsi_2ghz_channels), GFP_KERNEL); memcpy(channels, rsi_2ghz_channels, sizeof(rsi_2ghz_channels)); sbands->band = NL80211_BAND_2GHZ; sbands->n_channels = ARRAY_SIZE(rsi_2ghz_channels); sbands->bitrates = rsi_rates; sbands->n_bitrates = ARRAY_SIZE(rsi_rates); } else { channels = kmalloc(sizeof(rsi_5ghz_channels), GFP_KERNEL); memcpy(channels, rsi_5ghz_channels, sizeof(rsi_5ghz_channels)); sbands->band = NL80211_BAND_5GHZ; sbands->n_channels = ARRAY_SIZE(rsi_5ghz_channels); sbands->bitrates = &rsi_rates[4]; sbands->n_bitrates = ARRAY_SIZE(rsi_rates) - 4; } sbands->channels = channels; memset(&sbands->ht_cap, 0, sizeof(struct ieee80211_sta_ht_cap)); sbands->ht_cap.ht_supported = true; sbands->ht_cap.cap = (IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40); sbands->ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_16K; sbands->ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE; sbands->ht_cap.mcs.rx_mask[0] = 0xff; sbands->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; /* sbands->ht_cap.mcs.rx_highest = 0x82; */ } /** * rsi_mac80211_detach() - This function is used to de-initialize the * Mac80211 stack. * @adapter: Pointer to the adapter structure. * * Return: None. */ void rsi_mac80211_detach(struct rsi_hw *adapter) { struct ieee80211_hw *hw = adapter->hw; enum nl80211_band band; if (hw) { ieee80211_stop_queues(hw); ieee80211_unregister_hw(hw); ieee80211_free_hw(hw); adapter->hw = NULL; } for (band = 0; band < NUM_NL80211_BANDS; band++) { struct ieee80211_supported_band *sband = &adapter->sbands[band]; kfree(sband->channels); } #ifdef CPTCFG_RSI_DEBUGFS rsi_remove_dbgfs(adapter); kfree(adapter->dfsentry); #endif } EXPORT_SYMBOL_GPL(rsi_mac80211_detach); /** * rsi_indicate_tx_status() - This function indicates the transmit status. * @adapter: Pointer to the adapter structure. * @skb: Pointer to the socket buffer structure. * @status: Status * * Return: None. */ void rsi_indicate_tx_status(struct rsi_hw *adapter, struct sk_buff *skb, int status) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct skb_info *tx_params; if (!adapter->hw) { rsi_dbg(ERR_ZONE, "##### No MAC #####\n"); return; } if (!status) info->flags |= IEEE80211_TX_STAT_ACK; tx_params = (struct skb_info *)info->driver_data; skb_pull(skb, tx_params->internal_hdr_size); memset(info->driver_data, 0, IEEE80211_TX_INFO_DRIVER_DATA_SIZE); ieee80211_tx_status_irqsafe(adapter->hw, skb); } /** * rsi_mac80211_tx() - This is the handler that 802.11 module calls for each * transmitted frame.SKB contains the buffer starting * from the IEEE 802.11 header. * @hw: Pointer to the ieee80211_hw structure. * @control: Pointer to the ieee80211_tx_control structure * @skb: Pointer to the socket buffer structure. * * Return: None */ static void rsi_mac80211_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; rsi_core_xmit(common, skb); } /** * rsi_mac80211_start() - This is first handler that 802.11 module calls, since * the driver init is complete by then, just * returns success. * @hw: Pointer to the ieee80211_hw structure. * * Return: 0 as success. */ static int rsi_mac80211_start(struct ieee80211_hw *hw) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; rsi_dbg(ERR_ZONE, "===> Interface UP <===\n"); mutex_lock(&common->mutex); if (common->hibernate_resume) { common->reinit_hw = true; adapter->host_intf_ops->reinit_device(adapter); wait_for_completion(&adapter->priv->wlan_init_completion); } common->iface_down = false; wiphy_rfkill_start_polling(hw->wiphy); rsi_send_rx_filter_frame(common, 0); mutex_unlock(&common->mutex); return 0; } /** * rsi_mac80211_stop() - This is the last handler that 802.11 module calls. * @hw: Pointer to the ieee80211_hw structure. * * Return: None. */ static void rsi_mac80211_stop(struct ieee80211_hw *hw) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; rsi_dbg(ERR_ZONE, "===> Interface DOWN <===\n"); mutex_lock(&common->mutex); common->iface_down = true; wiphy_rfkill_stop_polling(hw->wiphy); /* Block all rx frames */ rsi_send_rx_filter_frame(common, 0xffff); mutex_unlock(&common->mutex); } static int rsi_map_intf_mode(enum nl80211_iftype vif_type) { switch (vif_type) { case NL80211_IFTYPE_STATION: return RSI_OPMODE_STA; case NL80211_IFTYPE_AP: return RSI_OPMODE_AP; case NL80211_IFTYPE_P2P_DEVICE: return RSI_OPMODE_P2P_CLIENT; case NL80211_IFTYPE_P2P_CLIENT: return RSI_OPMODE_P2P_CLIENT; case NL80211_IFTYPE_P2P_GO: return RSI_OPMODE_P2P_GO; default: return RSI_OPMODE_UNSUPPORTED; } } /** * rsi_mac80211_add_interface() - This function is called when a netdevice * attached to the hardware is enabled. * @hw: Pointer to the ieee80211_hw structure. * @vif: Pointer to the ieee80211_vif structure. * * Return: ret: 0 on success, negative error code on failure. */ static int rsi_mac80211_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; struct vif_priv *vif_info = (struct vif_priv *)vif->drv_priv; enum opmode intf_mode; enum vap_status vap_status; int vap_idx = -1, i; vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD; mutex_lock(&common->mutex); intf_mode = rsi_map_intf_mode(vif->type); if (intf_mode == RSI_OPMODE_UNSUPPORTED) { rsi_dbg(ERR_ZONE, "%s: Interface type %d not supported\n", __func__, vif->type); mutex_unlock(&common->mutex); return -EOPNOTSUPP; } if ((vif->type == NL80211_IFTYPE_P2P_DEVICE) || (vif->type == NL80211_IFTYPE_P2P_CLIENT) || (vif->type == NL80211_IFTYPE_P2P_GO)) common->p2p_enabled = true; /* Get free vap index */ for (i = 0; i < RSI_MAX_VIFS; i++) { if (!adapter->vifs[i] || !memcmp(vif->addr, adapter->vifs[i]->addr, ETH_ALEN)) { vap_idx = i; break; } } if (vap_idx < 0) { rsi_dbg(ERR_ZONE, "Reject: Max VAPs reached\n"); mutex_unlock(&common->mutex); return -EOPNOTSUPP; } vif_info->vap_id = vap_idx; adapter->vifs[vap_idx] = vif; adapter->sc_nvifs++; vap_status = VAP_ADD; if (rsi_set_vap_capabilities(common, intf_mode, vif->addr, vif_info->vap_id, vap_status)) { rsi_dbg(ERR_ZONE, "Failed to set VAP capabilities\n"); mutex_unlock(&common->mutex); return -EINVAL; } if ((vif->type == NL80211_IFTYPE_AP) || (vif->type == NL80211_IFTYPE_P2P_GO)) { rsi_send_rx_filter_frame(common, DISALLOW_BEACONS); common->min_rate = RSI_RATE_AUTO; for (i = 0; i < common->max_stations; i++) common->stations[i].sta = NULL; } mutex_unlock(&common->mutex); return 0; } /** * rsi_mac80211_remove_interface() - This function notifies driver that an * interface is going down. * @hw: Pointer to the ieee80211_hw structure. * @vif: Pointer to the ieee80211_vif structure. * * Return: None. */ static void rsi_mac80211_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; enum opmode opmode; int i; rsi_dbg(INFO_ZONE, "Remove Interface Called\n"); mutex_lock(&common->mutex); if (adapter->sc_nvifs <= 0) { mutex_unlock(&common->mutex); return; } opmode = rsi_map_intf_mode(vif->type); if (opmode == RSI_OPMODE_UNSUPPORTED) { rsi_dbg(ERR_ZONE, "Opmode error : %d\n", opmode); mutex_unlock(&common->mutex); return; } for (i = 0; i < RSI_MAX_VIFS; i++) { if (!adapter->vifs[i]) continue; if (vif == adapter->vifs[i]) { rsi_set_vap_capabilities(common, opmode, vif->addr, i, VAP_DELETE); adapter->sc_nvifs--; adapter->vifs[i] = NULL; } } mutex_unlock(&common->mutex); } /** * rsi_channel_change() - This function is a performs the checks * required for changing a channel and sets * the channel accordingly. * @hw: Pointer to the ieee80211_hw structure. * * Return: 0 on success, negative error code on failure. */ static int rsi_channel_change(struct ieee80211_hw *hw) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; int status = -EOPNOTSUPP; struct ieee80211_channel *curchan = hw->conf.chandef.chan; u16 channel = curchan->hw_value; struct ieee80211_vif *vif; struct ieee80211_bss_conf *bss; bool assoc = false; int i; rsi_dbg(INFO_ZONE, "%s: Set channel: %d MHz type: %d channel_no %d\n", __func__, curchan->center_freq, curchan->flags, channel); for (i = 0; i < RSI_MAX_VIFS; i++) { vif = adapter->vifs[i]; if (!vif) continue; if (vif->type == NL80211_IFTYPE_STATION) { bss = &vif->bss_conf; if (bss->assoc) { assoc = true; break; } } } if (assoc) { if (!common->hw_data_qs_blocked && (rsi_get_connected_channel(vif) != channel)) { rsi_dbg(INFO_ZONE, "blk data q %d\n", channel); if (!rsi_send_block_unblock_frame(common, true)) common->hw_data_qs_blocked = true; } } status = rsi_band_check(common, curchan); if (!status) status = rsi_set_channel(adapter->priv, curchan); if (assoc) { if (common->hw_data_qs_blocked && (rsi_get_connected_channel(vif) == channel)) { rsi_dbg(INFO_ZONE, "unblk data q %d\n", channel); if (!rsi_send_block_unblock_frame(common, false)) common->hw_data_qs_blocked = false; } } return status; } /** * rsi_config_power() - This function configures tx power to device * @hw: Pointer to the ieee80211_hw structure. * * Return: 0 on success, negative error code on failure. */ static int rsi_config_power(struct ieee80211_hw *hw) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; struct ieee80211_conf *conf = &hw->conf; if (adapter->sc_nvifs <= 0) { rsi_dbg(ERR_ZONE, "%s: No virtual interface found\n", __func__); return -EINVAL; } rsi_dbg(INFO_ZONE, "%s: Set tx power: %d dBM\n", __func__, conf->power_level); if (conf->power_level == common->tx_power) return 0; common->tx_power = conf->power_level; return rsi_send_radio_params_update(common); } /** * rsi_mac80211_config() - This function is a handler for configuration * requests. The stack calls this function to * change hardware configuration, e.g., channel. * @hw: Pointer to the ieee80211_hw structure. * @changed: Changed flags set. * * Return: 0 on success, negative error code on failure. */ static int rsi_mac80211_config(struct ieee80211_hw *hw, u32 changed) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; struct ieee80211_conf *conf = &hw->conf; int status = -EOPNOTSUPP; mutex_lock(&common->mutex); if (changed & IEEE80211_CONF_CHANGE_CHANNEL) status = rsi_channel_change(hw); /* tx power */ if (changed & IEEE80211_CONF_CHANGE_POWER) { rsi_dbg(INFO_ZONE, "%s: Configuring Power\n", __func__); status = rsi_config_power(hw); } /* Power save parameters */ if (changed & IEEE80211_CONF_CHANGE_PS) { struct ieee80211_vif *vif, *sta_vif = NULL; unsigned long flags; int i, set_ps = 1; for (i = 0; i < RSI_MAX_VIFS; i++) { vif = adapter->vifs[i]; if (!vif) continue; /* Don't go to power save if AP vap exists */ if ((vif->type == NL80211_IFTYPE_AP) || (vif->type == NL80211_IFTYPE_P2P_GO)) { set_ps = 0; break; } if ((vif->type == NL80211_IFTYPE_STATION || vif->type == NL80211_IFTYPE_P2P_CLIENT) && (!sta_vif || vif->bss_conf.assoc)) sta_vif = vif; } if (set_ps && sta_vif) { spin_lock_irqsave(&adapter->ps_lock, flags); if (conf->flags & IEEE80211_CONF_PS) rsi_enable_ps(adapter, sta_vif); else rsi_disable_ps(adapter, sta_vif); spin_unlock_irqrestore(&adapter->ps_lock, flags); } } /* RTS threshold */ if (changed & WIPHY_PARAM_RTS_THRESHOLD) { rsi_dbg(INFO_ZONE, "RTS threshold\n"); if ((common->rts_threshold) <= IEEE80211_MAX_RTS_THRESHOLD) { rsi_dbg(INFO_ZONE, "%s: Sending vap updates....\n", __func__); status = rsi_send_vap_dynamic_update(common); } } mutex_unlock(&common->mutex); return status; } /** * rsi_get_connected_channel() - This function is used to get the current * connected channel number. * @adapter: Pointer to the adapter structure. * * Return: Current connected AP's channel number is returned. */ u16 rsi_get_connected_channel(struct ieee80211_vif *vif) { struct ieee80211_bss_conf *bss; struct ieee80211_channel *channel; if (!vif) return 0; bss = &vif->bss_conf; channel = bss->chandef.chan; if (!channel) return 0; return channel->hw_value; } static void rsi_switch_channel(struct rsi_hw *adapter, struct ieee80211_vif *vif) { struct rsi_common *common = adapter->priv; struct ieee80211_channel *channel; if (common->iface_down) return; if (!vif) return; channel = vif->bss_conf.chandef.chan; if (!channel) return; rsi_band_check(common, channel); rsi_set_channel(common, channel); rsi_dbg(INFO_ZONE, "Switched to channel - %d\n", channel->hw_value); } /** * rsi_mac80211_bss_info_changed() - This function is a handler for config * requests related to BSS parameters that * may vary during BSS's lifespan. * @hw: Pointer to the ieee80211_hw structure. * @vif: Pointer to the ieee80211_vif structure. * @bss_conf: Pointer to the ieee80211_bss_conf structure. * @changed: Changed flags set. * * Return: None. */ static void rsi_mac80211_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u32 changed) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; struct ieee80211_bss_conf *bss = &vif->bss_conf; struct ieee80211_conf *conf = &hw->conf; u16 rx_filter_word = 0; mutex_lock(&common->mutex); if (changed & BSS_CHANGED_ASSOC) { rsi_dbg(INFO_ZONE, "%s: Changed Association status: %d\n", __func__, bss_conf->assoc); if (bss_conf->assoc) { /* Send the RX filter frame */ rx_filter_word = (ALLOW_DATA_ASSOC_PEER | ALLOW_CTRL_ASSOC_PEER | ALLOW_MGMT_ASSOC_PEER); rsi_send_rx_filter_frame(common, rx_filter_word); } rsi_inform_bss_status(common, RSI_OPMODE_STA, bss_conf->assoc, bss_conf->bssid, bss_conf->qos, bss_conf->aid, NULL, 0, bss_conf->assoc_capability, vif); adapter->ps_info.dtim_interval_duration = bss->dtim_period; adapter->ps_info.listen_interval = conf->listen_interval; /* If U-APSD is updated, send ps parameters to firmware */ if (bss->assoc) { if (common->uapsd_bitmap) { rsi_dbg(INFO_ZONE, "Configuring UAPSD\n"); rsi_conf_uapsd(adapter, vif); } } else { common->uapsd_bitmap = 0; } } if (changed & BSS_CHANGED_CQM) { common->cqm_info.last_cqm_event_rssi = 0; common->cqm_info.rssi_thold = bss_conf->cqm_rssi_thold; common->cqm_info.rssi_hyst = bss_conf->cqm_rssi_hyst; rsi_dbg(INFO_ZONE, "RSSI throld & hysteresis are: %d %d\n", common->cqm_info.rssi_thold, common->cqm_info.rssi_hyst); } if ((changed & BSS_CHANGED_BEACON_ENABLED) && ((vif->type == NL80211_IFTYPE_AP) || (vif->type == NL80211_IFTYPE_P2P_GO))) { if (bss->enable_beacon) { rsi_dbg(INFO_ZONE, "===> BEACON ENABLED <===\n"); common->beacon_enabled = 1; } else { rsi_dbg(INFO_ZONE, "===> BEACON DISABLED <===\n"); common->beacon_enabled = 0; } } mutex_unlock(&common->mutex); } /** * rsi_mac80211_conf_filter() - This function configure the device's RX filter. * @hw: Pointer to the ieee80211_hw structure. * @changed: Changed flags set. * @total_flags: Total initial flags set. * @multicast: Multicast. * * Return: None. */ static void rsi_mac80211_conf_filter(struct ieee80211_hw *hw, u32 changed_flags, u32 *total_flags, u64 multicast) { /* Not doing much here as of now */ *total_flags &= RSI_SUPP_FILTERS; } /** * rsi_mac80211_conf_tx() - This function configures TX queue parameters * (EDCF (aifs, cw_min, cw_max), bursting) * for a hardware TX queue. * @hw: Pointer to the ieee80211_hw structure * @vif: Pointer to the ieee80211_vif structure. * @queue: Queue number. * @params: Pointer to ieee80211_tx_queue_params structure. * * Return: 0 on success, negative error code on failure. */ static int rsi_mac80211_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, const struct ieee80211_tx_queue_params *params) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; u8 idx = 0; if (queue >= IEEE80211_NUM_ACS) return 0; rsi_dbg(INFO_ZONE, "%s: Conf queue %d, aifs: %d, cwmin: %d cwmax: %d, txop: %d\n", __func__, queue, params->aifs, params->cw_min, params->cw_max, params->txop); mutex_lock(&common->mutex); /* Map into the way the f/w expects */ switch (queue) { case IEEE80211_AC_VO: idx = VO_Q; break; case IEEE80211_AC_VI: idx = VI_Q; break; case IEEE80211_AC_BE: idx = BE_Q; break; case IEEE80211_AC_BK: idx = BK_Q; break; default: idx = BE_Q; break; } memcpy(&common->edca_params[idx], params, sizeof(struct ieee80211_tx_queue_params)); if (params->uapsd) common->uapsd_bitmap |= idx; else common->uapsd_bitmap &= (~idx); mutex_unlock(&common->mutex); return 0; } /** * rsi_hal_key_config() - This function loads the keys into the firmware. * @hw: Pointer to the ieee80211_hw structure. * @vif: Pointer to the ieee80211_vif structure. * @key: Pointer to the ieee80211_key_conf structure. * * Return: status: 0 on success, negative error codes on failure. */ static int rsi_hal_key_config(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_key_conf *key, struct ieee80211_sta *sta) { struct rsi_hw *adapter = hw->priv; struct rsi_sta *rsta = NULL; int status; u8 key_type; s16 sta_id = 0; if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) key_type = RSI_PAIRWISE_KEY; else key_type = RSI_GROUP_KEY; rsi_dbg(ERR_ZONE, "%s: Cipher 0x%x key_type: %d key_len: %d\n", __func__, key->cipher, key_type, key->keylen); if ((vif->type == NL80211_IFTYPE_AP) || (vif->type == NL80211_IFTYPE_P2P_GO)) { if (sta) { rsta = rsi_find_sta(adapter->priv, sta->addr); if (rsta) sta_id = rsta->sta_id; } adapter->priv->key = key; } else { if ((key->cipher == WLAN_CIPHER_SUITE_WEP104) || (key->cipher == WLAN_CIPHER_SUITE_WEP40)) { status = rsi_hal_load_key(adapter->priv, key->key, key->keylen, RSI_PAIRWISE_KEY, key->keyidx, key->cipher, sta_id, vif); if (status) return status; } } status = rsi_hal_load_key(adapter->priv, key->key, key->keylen, key_type, key->keyidx, key->cipher, sta_id, vif); if (status) return status; if (vif->type == NL80211_IFTYPE_STATION && key->key && (key->cipher == WLAN_CIPHER_SUITE_WEP104 || key->cipher == WLAN_CIPHER_SUITE_WEP40)) { if (!rsi_send_block_unblock_frame(adapter->priv, false)) adapter->priv->hw_data_qs_blocked = false; } return 0; } /** * rsi_mac80211_set_key() - This function sets type of key to be loaded. * @hw: Pointer to the ieee80211_hw structure. * @cmd: enum set_key_cmd. * @vif: Pointer to the ieee80211_vif structure. * @sta: Pointer to the ieee80211_sta structure. * @key: Pointer to the ieee80211_key_conf structure. * * Return: status: 0 on success, negative error code on failure. */ static int rsi_mac80211_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; struct security_info *secinfo = &common->secinfo; int status; mutex_lock(&common->mutex); switch (cmd) { case SET_KEY: secinfo->security_enable = true; status = rsi_hal_key_config(hw, vif, key, sta); if (status) { mutex_unlock(&common->mutex); return status; } if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) secinfo->ptk_cipher = key->cipher; else secinfo->gtk_cipher = key->cipher; key->hw_key_idx = key->keyidx; key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; rsi_dbg(ERR_ZONE, "%s: RSI set_key\n", __func__); break; case DISABLE_KEY: if (vif->type == NL80211_IFTYPE_STATION) secinfo->security_enable = false; rsi_dbg(ERR_ZONE, "%s: RSI del key\n", __func__); memset(key, 0, sizeof(struct ieee80211_key_conf)); status = rsi_hal_key_config(hw, vif, key, sta); break; default: status = -EOPNOTSUPP; break; } mutex_unlock(&common->mutex); return status; } /** * rsi_mac80211_ampdu_action() - This function selects the AMPDU action for * the corresponding mlme_action flag and * informs the f/w regarding this. * @hw: Pointer to the ieee80211_hw structure. * @vif: Pointer to the ieee80211_vif structure. * @params: Pointer to A-MPDU action parameters * * Return: status: 0 on success, negative error code on failure. */ static int rsi_mac80211_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { int status = -EOPNOTSUPP; struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; struct rsi_sta *rsta = NULL; u16 seq_no = 0, seq_start = 0; u8 ii = 0; struct ieee80211_sta *sta = params->sta; u8 sta_id = 0; enum ieee80211_ampdu_mlme_action action = params->action; u16 tid = params->tid; u16 *ssn = ¶ms->ssn; u8 buf_size = params->buf_size; for (ii = 0; ii < RSI_MAX_VIFS; ii++) { if (vif == adapter->vifs[ii]) break; } mutex_lock(&common->mutex); if (ssn != NULL) seq_no = *ssn; if ((vif->type == NL80211_IFTYPE_AP) || (vif->type == NL80211_IFTYPE_P2P_GO)) { rsta = rsi_find_sta(common, sta->addr); if (!rsta) { rsi_dbg(ERR_ZONE, "No station mapped\n"); status = 0; goto unlock; } sta_id = rsta->sta_id; } rsi_dbg(INFO_ZONE, "%s: AMPDU action tid=%d ssn=0x%x, buf_size=%d sta_id=%d\n", __func__, tid, seq_no, buf_size, sta_id); switch (action) { case IEEE80211_AMPDU_RX_START: status = rsi_send_aggregation_params_frame(common, tid, seq_no, buf_size, STA_RX_ADDBA_DONE, sta_id); break; case IEEE80211_AMPDU_RX_STOP: status = rsi_send_aggregation_params_frame(common, tid, 0, buf_size, STA_RX_DELBA, sta_id); break; case IEEE80211_AMPDU_TX_START: if ((vif->type == NL80211_IFTYPE_STATION) || (vif->type == NL80211_IFTYPE_P2P_CLIENT)) common->vif_info[ii].seq_start = seq_no; else if ((vif->type == NL80211_IFTYPE_AP) || (vif->type == NL80211_IFTYPE_P2P_GO)) rsta->seq_start[tid] = seq_no; ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid); status = 0; break; case IEEE80211_AMPDU_TX_STOP_CONT: case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: status = rsi_send_aggregation_params_frame(common, tid, seq_no, buf_size, STA_TX_DELBA, sta_id); if (!status) ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; case IEEE80211_AMPDU_TX_OPERATIONAL: if ((vif->type == NL80211_IFTYPE_STATION) || (vif->type == NL80211_IFTYPE_P2P_CLIENT)) seq_start = common->vif_info[ii].seq_start; else if ((vif->type == NL80211_IFTYPE_AP) || (vif->type == NL80211_IFTYPE_P2P_GO)) seq_start = rsta->seq_start[tid]; status = rsi_send_aggregation_params_frame(common, tid, seq_start, buf_size, STA_TX_ADDBA_DONE, sta_id); break; default: rsi_dbg(ERR_ZONE, "%s: Unknown AMPDU action\n", __func__); break; } unlock: mutex_unlock(&common->mutex); return status; } /** * rsi_mac80211_set_rts_threshold() - This function sets rts threshold value. * @hw: Pointer to the ieee80211_hw structure. * @value: Rts threshold value. * * Return: 0 on success. */ static int rsi_mac80211_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; mutex_lock(&common->mutex); common->rts_threshold = value; mutex_unlock(&common->mutex); return 0; } /** * rsi_mac80211_set_rate_mask() - This function sets bitrate_mask to be used. * @hw: Pointer to the ieee80211_hw structure * @vif: Pointer to the ieee80211_vif structure. * @mask: Pointer to the cfg80211_bitrate_mask structure. * * Return: 0 on success. */ static int rsi_mac80211_set_rate_mask(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct cfg80211_bitrate_mask *mask) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; enum nl80211_band band = hw->conf.chandef.chan->band; mutex_lock(&common->mutex); common->fixedrate_mask[band] = 0; if (mask->control[band].legacy == 0xfff) { common->fixedrate_mask[band] = (mask->control[band].ht_mcs[0] << 12); } else { common->fixedrate_mask[band] = mask->control[band].legacy; } mutex_unlock(&common->mutex); return 0; } /** * rsi_perform_cqm() - This function performs cqm. * @common: Pointer to the driver private structure. * @bssid: pointer to the bssid. * @rssi: RSSI value. */ static void rsi_perform_cqm(struct rsi_common *common, u8 *bssid, s8 rssi, struct ieee80211_vif *vif) { s8 last_event = common->cqm_info.last_cqm_event_rssi; int thold = common->cqm_info.rssi_thold; u32 hyst = common->cqm_info.rssi_hyst; enum nl80211_cqm_rssi_threshold_event event; if (rssi < thold && (last_event == 0 || rssi < (last_event - hyst))) event = NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW; else if (rssi > thold && (last_event == 0 || rssi > (last_event + hyst))) event = NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH; else return; common->cqm_info.last_cqm_event_rssi = rssi; rsi_dbg(INFO_ZONE, "CQM: Notifying event: %d\n", event); ieee80211_cqm_rssi_notify(vif, event, rssi, GFP_KERNEL); return; } /** * rsi_fill_rx_status() - This function fills rx status in * ieee80211_rx_status structure. * @hw: Pointer to the ieee80211_hw structure. * @skb: Pointer to the socket buffer structure. * @common: Pointer to the driver private structure. * @rxs: Pointer to the ieee80211_rx_status structure. * * Return: None. */ static void rsi_fill_rx_status(struct ieee80211_hw *hw, struct sk_buff *skb, struct rsi_common *common, struct ieee80211_rx_status *rxs) { struct rsi_hw *adapter = common->priv; struct ieee80211_vif *vif; struct ieee80211_bss_conf *bss = NULL; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct skb_info *rx_params = (struct skb_info *)info->driver_data; struct ieee80211_hdr *hdr; char rssi = rx_params->rssi; u8 hdrlen = 0; u8 channel = rx_params->channel; s32 freq; int i; hdr = ((struct ieee80211_hdr *)(skb->data)); hdrlen = ieee80211_hdrlen(hdr->frame_control); memset(info, 0, sizeof(struct ieee80211_tx_info)); rxs->signal = -(rssi); rxs->band = common->band; freq = ieee80211_channel_to_frequency(channel, rxs->band); if (freq) rxs->freq = freq; if (ieee80211_has_protected(hdr->frame_control)) { if (rsi_is_cipher_wep(common)) { memmove(skb->data + 4, skb->data, hdrlen); skb_pull(skb, 4); } else { memmove(skb->data + 8, skb->data, hdrlen); skb_pull(skb, 8); rxs->flag |= RX_FLAG_MMIC_STRIPPED; } rxs->flag |= RX_FLAG_DECRYPTED; rxs->flag |= RX_FLAG_IV_STRIPPED; } for (i = 0; i < RSI_MAX_VIFS; i++) { vif = adapter->vifs[i]; if (!vif) continue; if (vif->type == NL80211_IFTYPE_STATION) { bss = &vif->bss_conf; break; } } if (!bss) return; /* CQM only for connected AP beacons, the RSSI is a weighted avg */ if (bss->assoc && !(memcmp(bss->bssid, hdr->addr2, ETH_ALEN))) { if (ieee80211_is_beacon(hdr->frame_control)) rsi_perform_cqm(common, hdr->addr2, rxs->signal, vif); } return; } /** * rsi_indicate_pkt_to_os() - This function sends recieved packet to mac80211. * @common: Pointer to the driver private structure. * @skb: Pointer to the socket buffer structure. * * Return: None. */ void rsi_indicate_pkt_to_os(struct rsi_common *common, struct sk_buff *skb) { struct rsi_hw *adapter = common->priv; struct ieee80211_hw *hw = adapter->hw; struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); if ((common->iface_down) || (!adapter->sc_nvifs)) { dev_kfree_skb(skb); return; } /* filling in the ieee80211_rx_status flags */ rsi_fill_rx_status(hw, skb, common, rx_status); ieee80211_rx_irqsafe(hw, skb); } static void rsi_set_min_rate(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct rsi_common *common) { u8 band = hw->conf.chandef.chan->band; u8 ii; u32 rate_bitmap; bool matched = false; common->bitrate_mask[band] = sta->supp_rates[band]; rate_bitmap = (common->fixedrate_mask[band] & sta->supp_rates[band]); if (rate_bitmap & 0xfff) { /* Find out the min rate */ for (ii = 0; ii < ARRAY_SIZE(rsi_rates); ii++) { if (rate_bitmap & BIT(ii)) { common->min_rate = rsi_rates[ii].hw_value; matched = true; break; } } } common->vif_info[0].is_ht = sta->ht_cap.ht_supported; if ((common->vif_info[0].is_ht) && (rate_bitmap >> 12)) { for (ii = 0; ii < ARRAY_SIZE(rsi_mcsrates); ii++) { if ((rate_bitmap >> 12) & BIT(ii)) { common->min_rate = rsi_mcsrates[ii]; matched = true; break; } } } if (!matched) common->min_rate = 0xffff; } /** * rsi_mac80211_sta_add() - This function notifies driver about a peer getting * connected. * @hw: pointer to the ieee80211_hw structure. * @vif: Pointer to the ieee80211_vif structure. * @sta: Pointer to the ieee80211_sta structure. * * Return: 0 on success, negative error codes on failure. */ static int rsi_mac80211_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; bool sta_exist = false; struct rsi_sta *rsta; int status = 0; rsi_dbg(INFO_ZONE, "Station Add: %pM\n", sta->addr); mutex_lock(&common->mutex); if ((vif->type == NL80211_IFTYPE_AP) || (vif->type == NL80211_IFTYPE_P2P_GO)) { u8 cnt; int sta_idx = -1; int free_index = -1; /* Check if max stations reached */ if (common->num_stations >= common->max_stations) { rsi_dbg(ERR_ZONE, "Reject: Max Stations exists\n"); status = -EOPNOTSUPP; goto unlock; } for (cnt = 0; cnt < common->max_stations; cnt++) { rsta = &common->stations[cnt]; if (!rsta->sta) { if (free_index < 0) free_index = cnt; continue; } if (!memcmp(rsta->sta->addr, sta->addr, ETH_ALEN)) { rsi_dbg(INFO_ZONE, "Station exists\n"); sta_idx = cnt; sta_exist = true; break; } } if (!sta_exist) { if (free_index >= 0) sta_idx = free_index; } if (sta_idx < 0) { rsi_dbg(ERR_ZONE, "%s: Some problem reaching here...\n", __func__); status = -EINVAL; goto unlock; } rsta = &common->stations[sta_idx]; rsta->sta = sta; rsta->sta_id = sta_idx; for (cnt = 0; cnt < IEEE80211_NUM_TIDS; cnt++) rsta->start_tx_aggr[cnt] = false; for (cnt = 0; cnt < IEEE80211_NUM_TIDS; cnt++) rsta->seq_start[cnt] = 0; if (!sta_exist) { rsi_dbg(INFO_ZONE, "New Station\n"); /* Send peer notify to device */ rsi_dbg(INFO_ZONE, "Indicate bss status to device\n"); rsi_inform_bss_status(common, RSI_OPMODE_AP, 1, sta->addr, sta->wme, sta->aid, sta, sta_idx, 0, vif); if (common->key) { struct ieee80211_key_conf *key = common->key; if ((key->cipher == WLAN_CIPHER_SUITE_WEP104) || (key->cipher == WLAN_CIPHER_SUITE_WEP40)) rsi_hal_load_key(adapter->priv, key->key, key->keylen, RSI_PAIRWISE_KEY, key->keyidx, key->cipher, sta_idx, vif); } common->num_stations++; } } if ((vif->type == NL80211_IFTYPE_STATION) || (vif->type == NL80211_IFTYPE_P2P_CLIENT)) { rsi_set_min_rate(hw, sta, common); if (sta->ht_cap.ht_supported) { common->vif_info[0].is_ht = true; common->bitrate_mask[NL80211_BAND_2GHZ] = sta->supp_rates[NL80211_BAND_2GHZ]; if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) || (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)) common->vif_info[0].sgi = true; ieee80211_start_tx_ba_session(sta, 0, 0); } } unlock: mutex_unlock(&common->mutex); return status; } /** * rsi_mac80211_sta_remove() - This function notifies driver about a peer * getting disconnected. * @hw: Pointer to the ieee80211_hw structure. * @vif: Pointer to the ieee80211_vif structure. * @sta: Pointer to the ieee80211_sta structure. * * Return: 0 on success, negative error codes on failure. */ static int rsi_mac80211_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; struct ieee80211_bss_conf *bss = &vif->bss_conf; struct rsi_sta *rsta; rsi_dbg(INFO_ZONE, "Station Remove: %pM\n", sta->addr); mutex_lock(&common->mutex); if ((vif->type == NL80211_IFTYPE_AP) || (vif->type == NL80211_IFTYPE_P2P_GO)) { u8 sta_idx, cnt; /* Send peer notify to device */ rsi_dbg(INFO_ZONE, "Indicate bss status to device\n"); for (sta_idx = 0; sta_idx < common->max_stations; sta_idx++) { rsta = &common->stations[sta_idx]; if (!rsta->sta) continue; if (!memcmp(rsta->sta->addr, sta->addr, ETH_ALEN)) { rsi_inform_bss_status(common, RSI_OPMODE_AP, 0, sta->addr, sta->wme, sta->aid, sta, sta_idx, 0, vif); rsta->sta = NULL; rsta->sta_id = -1; for (cnt = 0; cnt < IEEE80211_NUM_TIDS; cnt++) rsta->start_tx_aggr[cnt] = false; if (common->num_stations > 0) common->num_stations--; break; } } if (sta_idx >= common->max_stations) rsi_dbg(ERR_ZONE, "%s: No station found\n", __func__); } if ((vif->type == NL80211_IFTYPE_STATION) || (vif->type == NL80211_IFTYPE_P2P_CLIENT)) { /* Resetting all the fields to default values */ memcpy((u8 *)bss->bssid, (u8 *)sta->addr, ETH_ALEN); bss->qos = sta->wme; common->bitrate_mask[NL80211_BAND_2GHZ] = 0; common->bitrate_mask[NL80211_BAND_5GHZ] = 0; common->min_rate = 0xffff; common->vif_info[0].is_ht = false; common->vif_info[0].sgi = false; common->vif_info[0].seq_start = 0; common->secinfo.ptk_cipher = 0; common->secinfo.gtk_cipher = 0; if (!common->iface_down) rsi_send_rx_filter_frame(common, 0); } mutex_unlock(&common->mutex); return 0; } /** * rsi_mac80211_set_antenna() - This function is used to configure * tx and rx antennas. * @hw: Pointer to the ieee80211_hw structure. * @tx_ant: Bitmap for tx antenna * @rx_ant: Bitmap for rx antenna * * Return: 0 on success, Negative error code on failure. */ static int rsi_mac80211_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; u8 antenna = 0; if (tx_ant > 1 || rx_ant > 1) { rsi_dbg(ERR_ZONE, "Invalid antenna selection (tx: %d, rx:%d)\n", tx_ant, rx_ant); rsi_dbg(ERR_ZONE, "Use 0 for int_ant, 1 for ext_ant\n"); return -EINVAL; } rsi_dbg(INFO_ZONE, "%s: Antenna map Tx %x Rx %d\n", __func__, tx_ant, rx_ant); mutex_lock(&common->mutex); antenna = tx_ant ? ANTENNA_SEL_UFL : ANTENNA_SEL_INT; if (common->ant_in_use != antenna) if (rsi_set_antenna(common, antenna)) goto fail_set_antenna; rsi_dbg(INFO_ZONE, "(%s) Antenna path configured successfully\n", tx_ant ? "UFL" : "INT"); common->ant_in_use = antenna; mutex_unlock(&common->mutex); return 0; fail_set_antenna: rsi_dbg(ERR_ZONE, "%s: Failed.\n", __func__); mutex_unlock(&common->mutex); return -EINVAL; } /** * rsi_mac80211_get_antenna() - This function is used to configure * tx and rx antennas. * * @hw: Pointer to the ieee80211_hw structure. * @tx_ant: Bitmap for tx antenna * @rx_ant: Bitmap for rx antenna * * Return: 0 on success, negative error codes on failure. */ static int rsi_mac80211_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; mutex_lock(&common->mutex); *tx_ant = (common->ant_in_use == ANTENNA_SEL_UFL) ? 1 : 0; *rx_ant = 0; mutex_unlock(&common->mutex); return 0; } static int rsi_map_region_code(enum nl80211_dfs_regions region_code) { switch (region_code) { case NL80211_DFS_FCC: return RSI_REGION_FCC; case NL80211_DFS_ETSI: return RSI_REGION_ETSI; case NL80211_DFS_JP: return RSI_REGION_TELEC; case NL80211_DFS_UNSET: return RSI_REGION_WORLD; } return RSI_REGION_WORLD; } static void rsi_reg_notify(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_supported_band *sband; struct ieee80211_channel *ch; struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct rsi_hw * adapter = hw->priv; struct rsi_common *common = adapter->priv; int i; mutex_lock(&common->mutex); rsi_dbg(INFO_ZONE, "country = %s dfs_region = %d\n", request->alpha2, request->dfs_region); if (common->num_supp_bands > 1) { sband = wiphy->bands[NL80211_BAND_5GHZ]; for (i = 0; i < sband->n_channels; i++) { ch = &sband->channels[i]; if (ch->flags & IEEE80211_CHAN_DISABLED) continue; if (ch->flags & IEEE80211_CHAN_RADAR) ch->flags |= IEEE80211_CHAN_NO_IR; } } adapter->dfs_region = rsi_map_region_code(request->dfs_region); rsi_dbg(INFO_ZONE, "RSI region code = %d\n", adapter->dfs_region); adapter->country[0] = request->alpha2[0]; adapter->country[1] = request->alpha2[1]; mutex_unlock(&common->mutex); } static void rsi_mac80211_rfkill_poll(struct ieee80211_hw *hw) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; mutex_lock(&common->mutex); if (common->fsm_state != FSM_MAC_INIT_DONE) wiphy_rfkill_set_hw_state(hw->wiphy, true); else wiphy_rfkill_set_hw_state(hw->wiphy, false); mutex_unlock(&common->mutex); } static void rsi_resume_conn_channel(struct rsi_common *common) { struct rsi_hw *adapter = common->priv; struct ieee80211_vif *vif; int cnt; for (cnt = 0; cnt < RSI_MAX_VIFS; cnt++) { vif = adapter->vifs[cnt]; if (!vif) continue; if ((vif->type == NL80211_IFTYPE_AP) || (vif->type == NL80211_IFTYPE_P2P_GO)) { rsi_switch_channel(adapter, vif); break; } if (((vif->type == NL80211_IFTYPE_STATION) || (vif->type == NL80211_IFTYPE_P2P_CLIENT)) && vif->bss_conf.assoc) { rsi_switch_channel(adapter, vif); break; } } } void rsi_roc_timeout(struct timer_list *t) { struct rsi_common *common = from_timer(common, t, roc_timer); rsi_dbg(INFO_ZONE, "Remain on channel expired\n"); mutex_lock(&common->mutex); ieee80211_remain_on_channel_expired(common->priv->hw); if (timer_pending(&common->roc_timer)) del_timer(&common->roc_timer); rsi_resume_conn_channel(common); mutex_unlock(&common->mutex); } static int rsi_mac80211_roc(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel *chan, int duration, enum ieee80211_roc_type type) { struct rsi_hw *adapter = (struct rsi_hw *)hw->priv; struct rsi_common *common = (struct rsi_common *)adapter->priv; int status = 0; rsi_dbg(INFO_ZONE, "***** Remain on channel *****\n"); mutex_lock(&common->mutex); rsi_dbg(INFO_ZONE, "%s: channel: %d duration: %dms\n", __func__, chan->hw_value, duration); if (timer_pending(&common->roc_timer)) { rsi_dbg(INFO_ZONE, "Stop on-going ROC\n"); del_timer(&common->roc_timer); } common->roc_timer.expires = msecs_to_jiffies(duration) + jiffies; add_timer(&common->roc_timer); /* Configure band */ if (rsi_band_check(common, chan)) { rsi_dbg(ERR_ZONE, "Failed to set band\n"); status = -EINVAL; goto out; } /* Configure channel */ if (rsi_set_channel(common, chan)) { rsi_dbg(ERR_ZONE, "Failed to set the channel\n"); status = -EINVAL; goto out; } common->roc_vif = vif; ieee80211_ready_on_channel(hw); rsi_dbg(INFO_ZONE, "%s: Ready on channel :%d\n", __func__, chan->hw_value); out: mutex_unlock(&common->mutex); return status; } static int rsi_mac80211_cancel_roc(struct ieee80211_hw *hw) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; rsi_dbg(INFO_ZONE, "Cancel remain on channel\n"); mutex_lock(&common->mutex); if (!timer_pending(&common->roc_timer)) { mutex_unlock(&common->mutex); return 0; } del_timer(&common->roc_timer); rsi_resume_conn_channel(common); mutex_unlock(&common->mutex); return 0; } #ifdef CONFIG_PM static const struct wiphy_wowlan_support rsi_wowlan_support = { .flags = WIPHY_WOWLAN_ANY | WIPHY_WOWLAN_MAGIC_PKT | WIPHY_WOWLAN_DISCONNECT | WIPHY_WOWLAN_GTK_REKEY_FAILURE | WIPHY_WOWLAN_SUPPORTS_GTK_REKEY | WIPHY_WOWLAN_EAP_IDENTITY_REQ | WIPHY_WOWLAN_4WAY_HANDSHAKE, }; static u16 rsi_wow_map_triggers(struct rsi_common *common, struct cfg80211_wowlan *wowlan) { u16 wow_triggers = 0; rsi_dbg(INFO_ZONE, "Mapping wowlan triggers\n"); if (wowlan->any) wow_triggers |= RSI_WOW_ANY; if (wowlan->magic_pkt) wow_triggers |= RSI_WOW_MAGIC_PKT; if (wowlan->disconnect) wow_triggers |= RSI_WOW_DISCONNECT; if (wowlan->gtk_rekey_failure || wowlan->eap_identity_req || wowlan->four_way_handshake) wow_triggers |= RSI_WOW_GTK_REKEY; return wow_triggers; } int rsi_config_wowlan(struct rsi_hw *adapter, struct cfg80211_wowlan *wowlan) { struct rsi_common *common = adapter->priv; u16 triggers = 0; u16 rx_filter_word = 0; struct ieee80211_bss_conf *bss = NULL; rsi_dbg(INFO_ZONE, "Config WoWLAN to device\n"); if (!adapter->vifs[0]) return -EINVAL; bss = &adapter->vifs[0]->bss_conf; if (WARN_ON(!wowlan)) { rsi_dbg(ERR_ZONE, "WoW triggers not enabled\n"); return -EINVAL; } common->wow_flags |= RSI_WOW_ENABLED; triggers = rsi_wow_map_triggers(common, wowlan); if (!triggers) { rsi_dbg(ERR_ZONE, "%s:No valid WoW triggers\n", __func__); return -EINVAL; } if (!bss->assoc) { rsi_dbg(ERR_ZONE, "Cannot configure WoWLAN (Station not connected)\n"); common->wow_flags |= RSI_WOW_NO_CONNECTION; return 0; } rsi_dbg(INFO_ZONE, "TRIGGERS %x\n", triggers); rsi_send_wowlan_request(common, triggers, 1); /** * Increase the beacon_miss threshold & keep-alive timers in * vap_update frame */ rsi_send_vap_dynamic_update(common); rx_filter_word = (ALLOW_DATA_ASSOC_PEER | DISALLOW_BEACONS); rsi_send_rx_filter_frame(common, rx_filter_word); return 0; } EXPORT_SYMBOL(rsi_config_wowlan); static int rsi_mac80211_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan) { struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; rsi_dbg(INFO_ZONE, "%s: mac80211 suspend\n", __func__); mutex_lock(&common->mutex); if (rsi_config_wowlan(adapter, wowlan)) { rsi_dbg(ERR_ZONE, "Failed to configure WoWLAN\n"); mutex_unlock(&common->mutex); return 1; } mutex_unlock(&common->mutex); return 0; } static int rsi_mac80211_resume(struct ieee80211_hw *hw) { u16 rx_filter_word = 0; struct rsi_hw *adapter = hw->priv; struct rsi_common *common = adapter->priv; common->wow_flags = 0; rsi_dbg(INFO_ZONE, "%s: mac80211 resume\n", __func__); if (common->hibernate_resume) return 0; mutex_lock(&common->mutex); rsi_send_wowlan_request(common, 0, 0); rx_filter_word = (ALLOW_DATA_ASSOC_PEER | ALLOW_CTRL_ASSOC_PEER | ALLOW_MGMT_ASSOC_PEER); rsi_send_rx_filter_frame(common, rx_filter_word); mutex_unlock(&common->mutex); return 0; } #endif static const struct ieee80211_ops mac80211_ops = { .tx = rsi_mac80211_tx, .start = rsi_mac80211_start, .stop = rsi_mac80211_stop, .add_interface = rsi_mac80211_add_interface, .remove_interface = rsi_mac80211_remove_interface, .config = rsi_mac80211_config, .bss_info_changed = rsi_mac80211_bss_info_changed, .conf_tx = rsi_mac80211_conf_tx, .configure_filter = rsi_mac80211_conf_filter, .set_key = rsi_mac80211_set_key, .set_rts_threshold = rsi_mac80211_set_rts_threshold, .set_bitrate_mask = rsi_mac80211_set_rate_mask, .ampdu_action = rsi_mac80211_ampdu_action, .sta_add = rsi_mac80211_sta_add, .sta_remove = rsi_mac80211_sta_remove, .set_antenna = rsi_mac80211_set_antenna, .get_antenna = rsi_mac80211_get_antenna, .rfkill_poll = rsi_mac80211_rfkill_poll, .remain_on_channel = rsi_mac80211_roc, .cancel_remain_on_channel = rsi_mac80211_cancel_roc, #ifdef CONFIG_PM .suspend = rsi_mac80211_suspend, .resume = rsi_mac80211_resume, #endif }; /** * rsi_mac80211_attach() - This function is used to initialize Mac80211 stack. * @common: Pointer to the driver private structure. * * Return: 0 on success, negative error codes on failure. */ int rsi_mac80211_attach(struct rsi_common *common) { int status = 0; struct ieee80211_hw *hw = NULL; struct wiphy *wiphy = NULL; struct rsi_hw *adapter = common->priv; u8 addr_mask[ETH_ALEN] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x3}; rsi_dbg(INIT_ZONE, "%s: Performing mac80211 attach\n", __func__); hw = ieee80211_alloc_hw(sizeof(struct rsi_hw), &mac80211_ops); if (!hw) { rsi_dbg(ERR_ZONE, "%s: ieee80211 hw alloc failed\n", __func__); return -ENOMEM; } wiphy = hw->wiphy; SET_IEEE80211_DEV(hw, adapter->device); hw->priv = adapter; adapter->hw = hw; ieee80211_hw_set(hw, SIGNAL_DBM); ieee80211_hw_set(hw, HAS_RATE_CONTROL); ieee80211_hw_set(hw, AMPDU_AGGREGATION); ieee80211_hw_set(hw, SUPPORTS_PS); ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); hw->queues = MAX_HW_QUEUES; hw->extra_tx_headroom = RSI_NEEDED_HEADROOM; hw->max_rates = 1; hw->max_rate_tries = MAX_RETRIES; hw->uapsd_queues = RSI_IEEE80211_UAPSD_QUEUES; hw->uapsd_max_sp_len = IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL; hw->max_tx_aggregation_subframes = RSI_MAX_TX_AGGR_FRMS; hw->max_rx_aggregation_subframes = RSI_MAX_RX_AGGR_FRMS; hw->rate_control_algorithm = "AARF"; SET_IEEE80211_PERM_ADDR(hw, common->mac_addr); ether_addr_copy(hw->wiphy->addr_mask, addr_mask); wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_P2P_DEVICE) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO); wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wiphy->retry_short = RETRY_SHORT; wiphy->retry_long = RETRY_LONG; wiphy->frag_threshold = IEEE80211_MAX_FRAG_THRESHOLD; wiphy->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; wiphy->flags = 0; wiphy->available_antennas_rx = 1; wiphy->available_antennas_tx = 1; rsi_register_rates_channels(adapter, NL80211_BAND_2GHZ); wiphy->bands[NL80211_BAND_2GHZ] = &adapter->sbands[NL80211_BAND_2GHZ]; if (common->num_supp_bands > 1) { rsi_register_rates_channels(adapter, NL80211_BAND_5GHZ); wiphy->bands[NL80211_BAND_5GHZ] = &adapter->sbands[NL80211_BAND_5GHZ]; } /* AP Parameters */ wiphy->max_ap_assoc_sta = rsi_max_ap_stas[common->oper_mode - 1]; common->max_stations = wiphy->max_ap_assoc_sta; rsi_dbg(ERR_ZONE, "Max Stations Allowed = %d\n", common->max_stations); hw->sta_data_size = sizeof(struct rsi_sta); wiphy->flags = WIPHY_FLAG_REPORTS_OBSS; wiphy->flags |= WIPHY_FLAG_AP_UAPSD; wiphy->features |= NL80211_FEATURE_INACTIVITY_TIMER; wiphy->reg_notifier = rsi_reg_notify; #ifdef CONFIG_PM wiphy->wowlan = &rsi_wowlan_support; #endif wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); /* Wi-Fi direct parameters */ wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX; wiphy->max_remain_on_channel_duration = 10000; hw->max_listen_interval = 10; wiphy->iface_combinations = rsi_iface_combinations; wiphy->n_iface_combinations = ARRAY_SIZE(rsi_iface_combinations); if (common->coex_mode > 1) wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT; status = ieee80211_register_hw(hw); if (status) return status; return rsi_init_dbgfs(adapter); }