/* * (c) Copyright 2002-2010, Ralink Technology, Inc. * Copyright (C) 2014 Felix Fietkau * Copyright (C) 2015 Jakub Kicinski * Copyright (C) 2018 Stanislaw Gruszka * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "mt76x0.h" #include "eeprom.h" #include "trace.h" #include "mcu.h" #include "usb.h" #include "initvals.h" static void mt76x0_set_wlan_state(struct mt76x0_dev *dev, u32 val, bool enable) { int i; /* Note: we don't turn off WLAN_CLK because that makes the device * not respond properly on the probe path. * In case anyone (PSM?) wants to use this function we can * bring the clock stuff back and fixup the probe path. */ if (enable) val |= (MT_WLAN_FUN_CTRL_WLAN_EN | MT_WLAN_FUN_CTRL_WLAN_CLK_EN); else val &= ~(MT_WLAN_FUN_CTRL_WLAN_EN); mt76_wr(dev, MT_WLAN_FUN_CTRL, val); udelay(20); if (!enable) return; for (i = 200; i; i--) { val = mt76_rr(dev, MT_CMB_CTRL); if (val & MT_CMB_CTRL_XTAL_RDY && val & MT_CMB_CTRL_PLL_LD) break; udelay(20); } /* Note: vendor driver tries to disable/enable wlan here and retry * but the code which does it is so buggy it must have never * triggered, so don't bother. */ if (!i) dev_err(dev->mt76.dev, "Error: PLL and XTAL check failed!\n"); } void mt76x0_chip_onoff(struct mt76x0_dev *dev, bool enable, bool reset) { u32 val; mutex_lock(&dev->hw_atomic_mutex); val = mt76_rr(dev, MT_WLAN_FUN_CTRL); if (reset) { val |= MT_WLAN_FUN_CTRL_GPIO_OUT_EN; val &= ~MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL; if (val & MT_WLAN_FUN_CTRL_WLAN_EN) { val |= (MT_WLAN_FUN_CTRL_WLAN_RESET | MT_WLAN_FUN_CTRL_WLAN_RESET_RF); mt76_wr(dev, MT_WLAN_FUN_CTRL, val); udelay(20); val &= ~(MT_WLAN_FUN_CTRL_WLAN_RESET | MT_WLAN_FUN_CTRL_WLAN_RESET_RF); } } mt76_wr(dev, MT_WLAN_FUN_CTRL, val); udelay(20); mt76x0_set_wlan_state(dev, val, enable); mutex_unlock(&dev->hw_atomic_mutex); } static void mt76x0_reset_csr_bbp(struct mt76x0_dev *dev) { u32 val; val = mt76_rr(dev, MT_PBF_SYS_CTRL); val &= ~0x2000; mt76_wr(dev, MT_PBF_SYS_CTRL, val); mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR | MT_MAC_SYS_CTRL_RESET_BBP); msleep(200); } static void mt76x0_init_usb_dma(struct mt76x0_dev *dev) { u32 val; val = mt76_rr(dev, MT_USB_DMA_CFG); val |= FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_TOUT, MT_USB_AGGR_TIMEOUT) | FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_LMT, MT_USB_AGGR_SIZE_LIMIT) | MT_USB_DMA_CFG_RX_BULK_EN | MT_USB_DMA_CFG_TX_BULK_EN; if (dev->in_max_packet == 512) val |= MT_USB_DMA_CFG_RX_BULK_AGG_EN; mt76_wr(dev, MT_USB_DMA_CFG, val); val = mt76_rr(dev, MT_COM_REG0); if (val & 1) dev_dbg(dev->mt76.dev, "MCU not ready\n"); val = mt76_rr(dev, MT_USB_DMA_CFG); val |= MT_USB_DMA_CFG_RX_DROP_OR_PADDING; mt76_wr(dev, MT_USB_DMA_CFG, val); val &= ~MT_USB_DMA_CFG_RX_DROP_OR_PADDING; mt76_wr(dev, MT_USB_DMA_CFG, val); } #define RANDOM_WRITE(dev, tab) \ mt76x0_write_reg_pairs(dev, MT_MCU_MEMMAP_WLAN, tab, ARRAY_SIZE(tab)); static int mt76x0_init_bbp(struct mt76x0_dev *dev) { int ret, i; ret = mt76x0_wait_bbp_ready(dev); if (ret) return ret; RANDOM_WRITE(dev, mt76x0_bbp_init_tab); for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) { const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i]; const struct mt76_reg_pair *pair = &item->reg_pair; if (((RF_G_BAND | RF_BW_20) & item->bw_band) == (RF_G_BAND | RF_BW_20)) mt76_wr(dev, pair->reg, pair->value); } RANDOM_WRITE(dev, mt76x0_dcoc_tab); return 0; } static void mt76_init_beacon_offsets(struct mt76x0_dev *dev) { u16 base = MT_BEACON_BASE; u32 regs[4] = {}; int i; for (i = 0; i < 16; i++) { u16 addr = dev->beacon_offsets[i]; regs[i / 4] |= ((addr - base) / 64) << (8 * (i % 4)); } for (i = 0; i < 4; i++) mt76_wr(dev, MT_BCN_OFFSET(i), regs[i]); } static void mt76x0_init_mac_registers(struct mt76x0_dev *dev) { u32 reg; RANDOM_WRITE(dev, common_mac_reg_table); mt76_init_beacon_offsets(dev); /* Enable PBF and MAC clock SYS_CTRL[11:10] = 0x3 */ RANDOM_WRITE(dev, mt76x0_mac_reg_table); /* Release BBP and MAC reset MAC_SYS_CTRL[1:0] = 0x0 */ reg = mt76_rr(dev, MT_MAC_SYS_CTRL); reg &= ~0x3; mt76_wr(dev, MT_MAC_SYS_CTRL, reg); if (is_mt7610e(dev)) { /* Disable COEX_EN */ reg = mt76_rr(dev, MT_COEXCFG0); reg &= 0xFFFFFFFE; mt76_wr(dev, MT_COEXCFG0, reg); } /* Set 0x141C[15:12]=0xF */ reg = mt76_rr(dev, MT_EXT_CCA_CFG); reg |= 0x0000F000; mt76_wr(dev, MT_EXT_CCA_CFG, reg); mt76_clear(dev, MT_FCE_L2_STUFF, MT_FCE_L2_STUFF_WR_MPDU_LEN_EN); /* TxRing 9 is for Mgmt frame. TxRing 8 is for In-band command frame. WMM_RG0_TXQMA: This register setting is for FCE to define the rule of TxRing 9. WMM_RG1_TXQMA: This register setting is for FCE to define the rule of TxRing 8. */ reg = mt76_rr(dev, MT_WMM_CTRL); reg &= ~0x000003FF; reg |= 0x00000201; mt76_wr(dev, MT_WMM_CTRL, reg); /* TODO: Probably not needed */ mt76_wr(dev, 0x7028, 0); mt76_wr(dev, 0x7010, 0); mt76_wr(dev, 0x7024, 0); msleep(10); } static int mt76x0_init_wcid_mem(struct mt76x0_dev *dev) { u32 *vals; int i, ret; vals = kmalloc(sizeof(*vals) * N_WCIDS * 2, GFP_KERNEL); if (!vals) return -ENOMEM; for (i = 0; i < N_WCIDS; i++) { vals[i * 2] = 0xffffffff; vals[i * 2 + 1] = 0x00ffffff; } ret = mt76x0_burst_write_regs(dev, MT_WCID_ADDR_BASE, vals, N_WCIDS * 2); kfree(vals); return ret; } static int mt76x0_init_key_mem(struct mt76x0_dev *dev) { u32 vals[4] = {}; return mt76x0_burst_write_regs(dev, MT_SKEY_MODE_BASE_0, vals, ARRAY_SIZE(vals)); } static int mt76x0_init_wcid_attr_mem(struct mt76x0_dev *dev) { u32 *vals; int i, ret; vals = kmalloc(sizeof(*vals) * N_WCIDS * 2, GFP_KERNEL); if (!vals) return -ENOMEM; for (i = 0; i < N_WCIDS * 2; i++) vals[i] = 1; ret = mt76x0_burst_write_regs(dev, MT_WCID_ATTR_BASE, vals, N_WCIDS * 2); kfree(vals); return ret; } static void mt76x0_reset_counters(struct mt76x0_dev *dev) { mt76_rr(dev, MT_RX_STA_CNT0); mt76_rr(dev, MT_RX_STA_CNT1); mt76_rr(dev, MT_RX_STA_CNT2); mt76_rr(dev, MT_TX_STA_CNT0); mt76_rr(dev, MT_TX_STA_CNT1); mt76_rr(dev, MT_TX_STA_CNT2); } int mt76x0_mac_start(struct mt76x0_dev *dev) { mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX); if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY | MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 200000)) return -ETIMEDOUT; dev->rxfilter = MT_RX_FILTR_CFG_CRC_ERR | MT_RX_FILTR_CFG_PHY_ERR | MT_RX_FILTR_CFG_PROMISC | MT_RX_FILTR_CFG_VER_ERR | MT_RX_FILTR_CFG_DUP | MT_RX_FILTR_CFG_CFACK | MT_RX_FILTR_CFG_CFEND | MT_RX_FILTR_CFG_ACK | MT_RX_FILTR_CFG_CTS | MT_RX_FILTR_CFG_RTS | MT_RX_FILTR_CFG_PSPOLL | MT_RX_FILTR_CFG_BA | MT_RX_FILTR_CFG_CTRL_RSV; mt76_wr(dev, MT_RX_FILTR_CFG, dev->rxfilter); mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX | MT_MAC_SYS_CTRL_ENABLE_RX); if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY | MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 50)) return -ETIMEDOUT; return 0; } static void mt76x0_mac_stop_hw(struct mt76x0_dev *dev) { int i, ok; if (test_bit(MT76_REMOVED, &dev->mt76.state)) return; mt76_clear(dev, MT_BEACON_TIME_CFG, MT_BEACON_TIME_CFG_TIMER_EN | MT_BEACON_TIME_CFG_SYNC_MODE | MT_BEACON_TIME_CFG_TBTT_EN | MT_BEACON_TIME_CFG_BEACON_TX); if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_TX_BUSY, 0, 1000)) dev_warn(dev->mt76.dev, "Warning: TX DMA did not stop!\n"); /* Page count on TxQ */ i = 200; while (i-- && ((mt76_rr(dev, 0x0438) & 0xffffffff) || (mt76_rr(dev, 0x0a30) & 0x000000ff) || (mt76_rr(dev, 0x0a34) & 0x00ff00ff))) msleep(10); if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_TX, 0, 1000)) dev_warn(dev->mt76.dev, "Warning: MAC TX did not stop!\n"); mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_RX | MT_MAC_SYS_CTRL_ENABLE_TX); /* Page count on RxQ */ ok = 0; i = 200; while (i--) { if (!(mt76_rr(dev, MT_RXQ_STA) & 0x00ff0000) && !mt76_rr(dev, 0x0a30) && !mt76_rr(dev, 0x0a34)) { if (ok++ > 5) break; continue; } msleep(1); } if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_RX, 0, 1000)) dev_warn(dev->mt76.dev, "Warning: MAC RX did not stop!\n"); if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_RX_BUSY, 0, 1000)) dev_warn(dev->mt76.dev, "Warning: RX DMA did not stop!\n"); } void mt76x0_mac_stop(struct mt76x0_dev *dev) { mt76x0_mac_stop_hw(dev); flush_delayed_work(&dev->stat_work); cancel_delayed_work_sync(&dev->stat_work); } static void mt76x0_stop_hardware(struct mt76x0_dev *dev) { mt76x0_chip_onoff(dev, false, false); } int mt76x0_init_hardware(struct mt76x0_dev *dev) { static const u16 beacon_offsets[16] = { /* 512 byte per beacon */ 0xc000, 0xc200, 0xc400, 0xc600, 0xc800, 0xca00, 0xcc00, 0xce00, 0xd000, 0xd200, 0xd400, 0xd600, 0xd800, 0xda00, 0xdc00, 0xde00 }; int ret; dev->beacon_offsets = beacon_offsets; mt76x0_chip_onoff(dev, true, true); ret = mt76x0_wait_asic_ready(dev); if (ret) goto err; ret = mt76x0_mcu_init(dev); if (ret) goto err; if (!mt76_poll_msec(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY | MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 100)) { ret = -EIO; goto err; } /* Wait for ASIC ready after FW load. */ ret = mt76x0_wait_asic_ready(dev); if (ret) goto err; mt76x0_reset_csr_bbp(dev); mt76x0_init_usb_dma(dev); mt76_wr(dev, MT_HEADER_TRANS_CTRL_REG, 0x0); mt76_wr(dev, MT_TSO_CTRL, 0x0); ret = mt76x0_mcu_cmd_init(dev); if (ret) goto err; ret = mt76x0_dma_init(dev); if (ret) goto err_mcu; mt76x0_init_mac_registers(dev); if (!mt76_poll_msec(dev, MT_MAC_STATUS, MT_MAC_STATUS_TX | MT_MAC_STATUS_RX, 0, 1000)) { ret = -EIO; goto err_rx; } ret = mt76x0_init_bbp(dev); if (ret) goto err_rx; ret = mt76x0_init_wcid_mem(dev); if (ret) goto err_rx; ret = mt76x0_init_key_mem(dev); if (ret) goto err_rx; ret = mt76x0_init_wcid_attr_mem(dev); if (ret) goto err_rx; mt76_clear(dev, MT_BEACON_TIME_CFG, (MT_BEACON_TIME_CFG_TIMER_EN | MT_BEACON_TIME_CFG_SYNC_MODE | MT_BEACON_TIME_CFG_TBTT_EN | MT_BEACON_TIME_CFG_BEACON_TX)); mt76x0_reset_counters(dev); mt76_rmw(dev, MT_US_CYC_CFG, MT_US_CYC_CNT, 0x1e); mt76_wr(dev, MT_TXOP_CTRL_CFG, FIELD_PREP(MT_TXOP_TRUN_EN, 0x3f) | FIELD_PREP(MT_TXOP_EXT_CCA_DLY, 0x58)); ret = mt76x0_eeprom_init(dev); if (ret) goto err_rx; mt76x0_phy_init(dev); return 0; err_rx: mt76x0_dma_cleanup(dev); err_mcu: mt76x0_mcu_cmd_deinit(dev); err: mt76x0_chip_onoff(dev, false, false); return ret; } void mt76x0_cleanup(struct mt76x0_dev *dev) { if (!test_and_clear_bit(MT76_STATE_INITIALIZED, &dev->mt76.state)) return; mt76x0_stop_hardware(dev); mt76x0_dma_cleanup(dev); mt76x0_mcu_cmd_deinit(dev); } struct mt76x0_dev *mt76x0_alloc_device(struct device *pdev) { struct ieee80211_hw *hw; struct mt76x0_dev *dev; hw = ieee80211_alloc_hw(sizeof(*dev), &mt76x0_ops); if (!hw) return NULL; dev = hw->priv; dev->mt76.dev = pdev; dev->mt76.hw = hw; mutex_init(&dev->usb_ctrl_mtx); mutex_init(&dev->reg_atomic_mutex); mutex_init(&dev->hw_atomic_mutex); mutex_init(&dev->mutex); spin_lock_init(&dev->tx_lock); spin_lock_init(&dev->rx_lock); spin_lock_init(&dev->mt76.lock); spin_lock_init(&dev->mac_lock); spin_lock_init(&dev->con_mon_lock); atomic_set(&dev->avg_ampdu_len, 1); skb_queue_head_init(&dev->tx_skb_done); dev->stat_wq = alloc_workqueue("mt76x0", WQ_UNBOUND, 0); if (!dev->stat_wq) { ieee80211_free_hw(hw); return NULL; } return dev; } #define CHAN2G(_idx, _freq) { \ .band = NL80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 30, \ } static const struct ieee80211_channel mt76_channels_2ghz[] = { CHAN2G(1, 2412), CHAN2G(2, 2417), CHAN2G(3, 2422), CHAN2G(4, 2427), CHAN2G(5, 2432), CHAN2G(6, 2437), CHAN2G(7, 2442), CHAN2G(8, 2447), CHAN2G(9, 2452), CHAN2G(10, 2457), CHAN2G(11, 2462), CHAN2G(12, 2467), CHAN2G(13, 2472), CHAN2G(14, 2484), }; #define CHAN5G(_idx, _freq) { \ .band = NL80211_BAND_5GHZ, \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 30, \ } static const struct ieee80211_channel mt76_channels_5ghz[] = { CHAN5G(36, 5180), CHAN5G(40, 5200), CHAN5G(44, 5220), CHAN5G(46, 5230), CHAN5G(48, 5240), CHAN5G(52, 5260), CHAN5G(56, 5280), CHAN5G(60, 5300), CHAN5G(64, 5320), CHAN5G(100, 5500), CHAN5G(104, 5520), CHAN5G(108, 5540), CHAN5G(112, 5560), CHAN5G(116, 5580), CHAN5G(120, 5600), CHAN5G(124, 5620), CHAN5G(128, 5640), CHAN5G(132, 5660), CHAN5G(136, 5680), CHAN5G(140, 5700), }; #define CCK_RATE(_idx, _rate) { \ .bitrate = _rate, \ .flags = IEEE80211_RATE_SHORT_PREAMBLE, \ .hw_value = (MT_PHY_TYPE_CCK << 8) | _idx, \ .hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + _idx), \ } #define OFDM_RATE(_idx, _rate) { \ .bitrate = _rate, \ .hw_value = (MT_PHY_TYPE_OFDM << 8) | _idx, \ .hw_value_short = (MT_PHY_TYPE_OFDM << 8) | _idx, \ } static struct ieee80211_rate mt76_rates[] = { CCK_RATE(0, 10), CCK_RATE(1, 20), CCK_RATE(2, 55), CCK_RATE(3, 110), OFDM_RATE(0, 60), OFDM_RATE(1, 90), OFDM_RATE(2, 120), OFDM_RATE(3, 180), OFDM_RATE(4, 240), OFDM_RATE(5, 360), OFDM_RATE(6, 480), OFDM_RATE(7, 540), }; static int mt76_init_sband(struct mt76x0_dev *dev, struct ieee80211_supported_band *sband, const struct ieee80211_channel *chan, int n_chan, struct ieee80211_rate *rates, int n_rates) { struct ieee80211_sta_ht_cap *ht_cap; void *chanlist; int size; size = n_chan * sizeof(*chan); chanlist = devm_kmemdup(dev->mt76.dev, chan, size, GFP_KERNEL); if (!chanlist) return -ENOMEM; sband->channels = chanlist; sband->n_channels = n_chan; sband->bitrates = rates; sband->n_bitrates = n_rates; ht_cap = &sband->ht_cap; ht_cap->ht_supported = true; ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40 | (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); ht_cap->mcs.rx_mask[0] = 0xff; ht_cap->mcs.rx_mask[4] = 0x1; ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; return 0; } static int mt76_init_sband_2g(struct mt76x0_dev *dev) { dev->mt76.hw->wiphy->bands[NL80211_BAND_2GHZ] = &dev->mt76.sband_2g.sband; WARN_ON(dev->ee->reg.start - 1 + dev->ee->reg.num > ARRAY_SIZE(mt76_channels_2ghz)); return mt76_init_sband(dev, &dev->mt76.sband_2g.sband, mt76_channels_2ghz, ARRAY_SIZE(mt76_channels_2ghz), mt76_rates, ARRAY_SIZE(mt76_rates)); } static int mt76_init_sband_5g(struct mt76x0_dev *dev) { dev->mt76.hw->wiphy->bands[NL80211_BAND_5GHZ] = &dev->mt76.sband_5g.sband; return mt76_init_sband(dev, &dev->mt76.sband_5g.sband, mt76_channels_5ghz, ARRAY_SIZE(mt76_channels_5ghz), mt76_rates + 4, ARRAY_SIZE(mt76_rates) - 4); } int mt76x0_register_device(struct mt76x0_dev *dev) { struct ieee80211_hw *hw = dev->mt76.hw; struct wiphy *wiphy = hw->wiphy; int ret; /* Reserve WCID 0 for mcast - thanks to this APs WCID will go to * entry no. 1 like it does in the vendor driver. */ dev->wcid_mask[0] |= 1; /* init fake wcid for monitor interfaces */ dev->mon_wcid = devm_kmalloc(dev->mt76.dev, sizeof(*dev->mon_wcid), GFP_KERNEL); if (!dev->mon_wcid) return -ENOMEM; dev->mon_wcid->idx = 0xff; dev->mon_wcid->hw_key_idx = -1; SET_IEEE80211_DEV(hw, dev->mt76.dev); hw->queues = 4; ieee80211_hw_set(hw, SIGNAL_DBM); ieee80211_hw_set(hw, PS_NULLFUNC_STACK); ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES); ieee80211_hw_set(hw, AMPDU_AGGREGATION); ieee80211_hw_set(hw, SUPPORTS_RC_TABLE); ieee80211_hw_set(hw, MFP_CAPABLE); hw->max_rates = 1; hw->max_report_rates = 7; hw->max_rate_tries = 1; hw->sta_data_size = sizeof(struct mt76_sta); hw->vif_data_size = sizeof(struct mt76_vif); SET_IEEE80211_PERM_ADDR(hw, dev->macaddr); wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR; wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); if (dev->ee->has_2ghz) { ret = mt76_init_sband_2g(dev); if (ret) return ret; } if (dev->ee->has_5ghz) { ret = mt76_init_sband_5g(dev); if (ret) return ret; } dev->mt76.chandef.chan = &dev->mt76.sband_2g.sband.channels[0]; INIT_DELAYED_WORK(&dev->mac_work, mt76x0_mac_work); INIT_DELAYED_WORK(&dev->stat_work, mt76x0_tx_stat); ret = ieee80211_register_hw(hw); if (ret) return ret; mt76x0_init_debugfs(dev); return 0; }