/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. * Copyright (c) 2018 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hif.h" #include "ce.h" #include "debug.h" /* * Support for Copy Engine hardware, which is mainly used for * communication between Host and Target over a PCIe interconnect. */ /* * A single CopyEngine (CE) comprises two "rings": * a source ring * a destination ring * * Each ring consists of a number of descriptors which specify * an address, length, and meta-data. * * Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target) * controls one ring and the other side controls the other ring. * The source side chooses when to initiate a transfer and it * chooses what to send (buffer address, length). The destination * side keeps a supply of "anonymous receive buffers" available and * it handles incoming data as it arrives (when the destination * receives an interrupt). * * The sender may send a simple buffer (address/length) or it may * send a small list of buffers. When a small list is sent, hardware * "gathers" these and they end up in a single destination buffer * with a single interrupt. * * There are several "contexts" managed by this layer -- more, it * may seem -- than should be needed. These are provided mainly for * maximum flexibility and especially to facilitate a simpler HIF * implementation. There are per-CopyEngine recv, send, and watermark * contexts. These are supplied by the caller when a recv, send, * or watermark handler is established and they are echoed back to * the caller when the respective callbacks are invoked. There is * also a per-transfer context supplied by the caller when a buffer * (or sendlist) is sent and when a buffer is enqueued for recv. * These per-transfer contexts are echoed back to the caller when * the buffer is sent/received. */ static inline u32 shadow_sr_wr_ind_addr(struct ath10k *ar, struct ath10k_ce_pipe *ce_state) { u32 ce_id = ce_state->id; u32 addr = 0; switch (ce_id) { case 0: addr = 0x00032000; break; case 3: addr = 0x0003200C; break; case 4: addr = 0x00032010; break; case 5: addr = 0x00032014; break; case 7: addr = 0x0003201C; break; default: ath10k_warn(ar, "invalid CE id: %d", ce_id); break; } return addr; } static inline u32 shadow_dst_wr_ind_addr(struct ath10k *ar, struct ath10k_ce_pipe *ce_state) { u32 ce_id = ce_state->id; u32 addr = 0; switch (ce_id) { case 1: addr = 0x00032034; break; case 2: addr = 0x00032038; break; case 5: addr = 0x00032044; break; case 7: addr = 0x0003204C; break; case 8: addr = 0x00032050; break; case 9: addr = 0x00032054; break; case 10: addr = 0x00032058; break; case 11: addr = 0x0003205C; break; default: ath10k_warn(ar, "invalid CE id: %d", ce_id); break; } return addr; } static inline unsigned int ath10k_set_ring_byte(unsigned int offset, struct ath10k_hw_ce_regs_addr_map *addr_map) { return ((offset << addr_map->lsb) & addr_map->mask); } static inline unsigned int ath10k_get_ring_byte(unsigned int offset, struct ath10k_hw_ce_regs_addr_map *addr_map) { return ((offset & addr_map->mask) >> (addr_map->lsb)); } static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset) { struct ath10k_ce *ce = ath10k_ce_priv(ar); return ce->bus_ops->read32(ar, offset); } static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value) { struct ath10k_ce *ce = ath10k_ce_priv(ar); ce->bus_ops->write32(ar, offset, value); } static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->dst_wr_index_addr, n); } static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { return ath10k_ce_read32(ar, ce_ctrl_addr + ar->hw_ce_regs->dst_wr_index_addr); } static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->sr_wr_index_addr, n); } static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { return ath10k_ce_read32(ar, ce_ctrl_addr + ar->hw_ce_regs->sr_wr_index_addr); } static inline u32 ath10k_ce_src_ring_read_index_from_ddr(struct ath10k *ar, u32 ce_id) { struct ath10k_ce *ce = ath10k_ce_priv(ar); return ce->vaddr_rri[ce_id] & CE_DDR_RRI_MASK; } static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { struct ath10k_ce *ce = ath10k_ce_priv(ar); u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr); struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id]; u32 index; if (ar->hw_params.rri_on_ddr && (ce_state->attr_flags & CE_ATTR_DIS_INTR)) index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_id); else index = ath10k_ce_read32(ar, ce_ctrl_addr + ar->hw_ce_regs->current_srri_addr); return index; } static inline void ath10k_ce_shadow_src_ring_write_index_set(struct ath10k *ar, struct ath10k_ce_pipe *ce_state, unsigned int value) { ath10k_ce_write32(ar, shadow_sr_wr_ind_addr(ar, ce_state), value); } static inline void ath10k_ce_shadow_dest_ring_write_index_set(struct ath10k *ar, struct ath10k_ce_pipe *ce_state, unsigned int value) { ath10k_ce_write32(ar, shadow_dst_wr_ind_addr(ar, ce_state), value); } static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int addr) { ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->sr_base_addr, addr); } static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->sr_size_addr, n); } static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs; u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr + ctrl_regs->addr); ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr, (ctrl1_addr & ~(ctrl_regs->dmax->mask)) | ath10k_set_ring_byte(n, ctrl_regs->dmax)); } static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs; u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr + ctrl_regs->addr); ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr, (ctrl1_addr & ~(ctrl_regs->src_ring->mask)) | ath10k_set_ring_byte(n, ctrl_regs->src_ring)); } static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs; u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr + ctrl_regs->addr); ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr, (ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) | ath10k_set_ring_byte(n, ctrl_regs->dst_ring)); } static inline u32 ath10k_ce_dest_ring_read_index_from_ddr(struct ath10k *ar, u32 ce_id) { struct ath10k_ce *ce = ath10k_ce_priv(ar); return (ce->vaddr_rri[ce_id] >> CE_DDR_DRRI_SHIFT) & CE_DDR_RRI_MASK; } static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { struct ath10k_ce *ce = ath10k_ce_priv(ar); u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr); struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id]; u32 index; if (ar->hw_params.rri_on_ddr && (ce_state->attr_flags & CE_ATTR_DIS_INTR)) index = ath10k_ce_dest_ring_read_index_from_ddr(ar, ce_id); else index = ath10k_ce_read32(ar, ce_ctrl_addr + ar->hw_ce_regs->current_drri_addr); return index; } static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar, u32 ce_ctrl_addr, u32 addr) { ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->dr_base_addr, addr); } static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->dr_size_addr, n); } static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr; u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr); ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr, (addr & ~(srcr_wm->wm_high->mask)) | (ath10k_set_ring_byte(n, srcr_wm->wm_high))); } static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr; u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr); ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr, (addr & ~(srcr_wm->wm_low->mask)) | (ath10k_set_ring_byte(n, srcr_wm->wm_low))); } static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr; u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr); ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr, (addr & ~(dstr_wm->wm_high->mask)) | (ath10k_set_ring_byte(n, dstr_wm->wm_high))); } static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr; u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr); ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr, (addr & ~(dstr_wm->wm_low->mask)) | (ath10k_set_ring_byte(n, dstr_wm->wm_low))); } static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar, u32 ce_ctrl_addr) { struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie; u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr); ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr, host_ie_addr | host_ie->copy_complete->mask); } static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar, u32 ce_ctrl_addr) { struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie; u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr); ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr, host_ie_addr & ~(host_ie->copy_complete->mask)); } static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar, u32 ce_ctrl_addr) { struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs; u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr); ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr, host_ie_addr & ~(wm_regs->wm_mask)); } static inline void ath10k_ce_error_intr_enable(struct ath10k *ar, u32 ce_ctrl_addr) { struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs; u32 misc_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr); ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr, misc_ie_addr | misc_regs->err_mask); } static inline void ath10k_ce_error_intr_disable(struct ath10k *ar, u32 ce_ctrl_addr) { struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs; u32 misc_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr); ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr, misc_ie_addr & ~(misc_regs->err_mask)); } static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int mask) { struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs; ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask); } /* * Guts of ath10k_ce_send. * The caller takes responsibility for any needed locking. */ static int _ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state, void *per_transfer_context, dma_addr_t buffer, unsigned int nbytes, unsigned int transfer_id, unsigned int flags) { struct ath10k *ar = ce_state->ar; struct ath10k_ce_ring *src_ring = ce_state->src_ring; struct ce_desc *desc, sdesc; unsigned int nentries_mask = src_ring->nentries_mask; unsigned int sw_index = src_ring->sw_index; unsigned int write_index = src_ring->write_index; u32 ctrl_addr = ce_state->ctrl_addr; u32 desc_flags = 0; int ret = 0; if (nbytes > ce_state->src_sz_max) ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n", __func__, nbytes, ce_state->src_sz_max); if (unlikely(CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) <= 0)) { ret = -ENOSR; goto exit; } desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space, write_index); desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA); if (flags & CE_SEND_FLAG_GATHER) desc_flags |= CE_DESC_FLAGS_GATHER; if (flags & CE_SEND_FLAG_BYTE_SWAP) desc_flags |= CE_DESC_FLAGS_BYTE_SWAP; sdesc.addr = __cpu_to_le32(buffer); sdesc.nbytes = __cpu_to_le16(nbytes); sdesc.flags = __cpu_to_le16(desc_flags); *desc = sdesc; src_ring->per_transfer_context[write_index] = per_transfer_context; /* Update Source Ring Write Index */ write_index = CE_RING_IDX_INCR(nentries_mask, write_index); /* WORKAROUND */ if (!(flags & CE_SEND_FLAG_GATHER)) ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index); src_ring->write_index = write_index; exit: return ret; } static int _ath10k_ce_send_nolock_64(struct ath10k_ce_pipe *ce_state, void *per_transfer_context, dma_addr_t buffer, unsigned int nbytes, unsigned int transfer_id, unsigned int flags) { struct ath10k *ar = ce_state->ar; struct ath10k_ce_ring *src_ring = ce_state->src_ring; struct ce_desc_64 *desc, sdesc; unsigned int nentries_mask = src_ring->nentries_mask; unsigned int sw_index; unsigned int write_index = src_ring->write_index; u32 ctrl_addr = ce_state->ctrl_addr; __le32 *addr; u32 desc_flags = 0; int ret = 0; if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) return -ESHUTDOWN; if (nbytes > ce_state->src_sz_max) ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n", __func__, nbytes, ce_state->src_sz_max); if (ar->hw_params.rri_on_ddr) sw_index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_state->id); else sw_index = src_ring->sw_index; if (unlikely(CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) <= 0)) { ret = -ENOSR; goto exit; } desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space, write_index); desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA); if (flags & CE_SEND_FLAG_GATHER) desc_flags |= CE_DESC_FLAGS_GATHER; if (flags & CE_SEND_FLAG_BYTE_SWAP) desc_flags |= CE_DESC_FLAGS_BYTE_SWAP; addr = (__le32 *)&sdesc.addr; flags |= upper_32_bits(buffer) & CE_DESC_FLAGS_GET_MASK; addr[0] = __cpu_to_le32(buffer); addr[1] = __cpu_to_le32(flags); if (flags & CE_SEND_FLAG_GATHER) addr[1] |= __cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER); else addr[1] &= ~(__cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER)); sdesc.nbytes = __cpu_to_le16(nbytes); sdesc.flags = __cpu_to_le16(desc_flags); *desc = sdesc; src_ring->per_transfer_context[write_index] = per_transfer_context; /* Update Source Ring Write Index */ write_index = CE_RING_IDX_INCR(nentries_mask, write_index); if (!(flags & CE_SEND_FLAG_GATHER)) { if (ar->hw_params.shadow_reg_support) ath10k_ce_shadow_src_ring_write_index_set(ar, ce_state, write_index); else ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index); } src_ring->write_index = write_index; exit: return ret; } int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state, void *per_transfer_context, dma_addr_t buffer, unsigned int nbytes, unsigned int transfer_id, unsigned int flags) { return ce_state->ops->ce_send_nolock(ce_state, per_transfer_context, buffer, nbytes, transfer_id, flags); } EXPORT_SYMBOL(ath10k_ce_send_nolock); void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe) { struct ath10k *ar = pipe->ar; struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_ring *src_ring = pipe->src_ring; u32 ctrl_addr = pipe->ctrl_addr; lockdep_assert_held(&ce->ce_lock); /* * This function must be called only if there is an incomplete * scatter-gather transfer (before index register is updated) * that needs to be cleaned up. */ if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index)) return; if (WARN_ON_ONCE(src_ring->write_index == ath10k_ce_src_ring_write_index_get(ar, ctrl_addr))) return; src_ring->write_index--; src_ring->write_index &= src_ring->nentries_mask; src_ring->per_transfer_context[src_ring->write_index] = NULL; } EXPORT_SYMBOL(__ath10k_ce_send_revert); int ath10k_ce_send(struct ath10k_ce_pipe *ce_state, void *per_transfer_context, dma_addr_t buffer, unsigned int nbytes, unsigned int transfer_id, unsigned int flags) { struct ath10k *ar = ce_state->ar; struct ath10k_ce *ce = ath10k_ce_priv(ar); int ret; spin_lock_bh(&ce->ce_lock); ret = ath10k_ce_send_nolock(ce_state, per_transfer_context, buffer, nbytes, transfer_id, flags); spin_unlock_bh(&ce->ce_lock); return ret; } EXPORT_SYMBOL(ath10k_ce_send); int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe) { struct ath10k *ar = pipe->ar; struct ath10k_ce *ce = ath10k_ce_priv(ar); int delta; spin_lock_bh(&ce->ce_lock); delta = CE_RING_DELTA(pipe->src_ring->nentries_mask, pipe->src_ring->write_index, pipe->src_ring->sw_index - 1); spin_unlock_bh(&ce->ce_lock); return delta; } EXPORT_SYMBOL(ath10k_ce_num_free_src_entries); int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe) { struct ath10k *ar = pipe->ar; struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_ring *dest_ring = pipe->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int write_index = dest_ring->write_index; unsigned int sw_index = dest_ring->sw_index; lockdep_assert_held(&ce->ce_lock); return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1); } EXPORT_SYMBOL(__ath10k_ce_rx_num_free_bufs); static int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, dma_addr_t paddr) { struct ath10k *ar = pipe->ar; struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_ring *dest_ring = pipe->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int write_index = dest_ring->write_index; unsigned int sw_index = dest_ring->sw_index; struct ce_desc *base = dest_ring->base_addr_owner_space; struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index); u32 ctrl_addr = pipe->ctrl_addr; lockdep_assert_held(&ce->ce_lock); if ((pipe->id != 5) && CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0) return -ENOSPC; desc->addr = __cpu_to_le32(paddr); desc->nbytes = 0; dest_ring->per_transfer_context[write_index] = ctx; write_index = CE_RING_IDX_INCR(nentries_mask, write_index); ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index); dest_ring->write_index = write_index; return 0; } static int __ath10k_ce_rx_post_buf_64(struct ath10k_ce_pipe *pipe, void *ctx, dma_addr_t paddr) { struct ath10k *ar = pipe->ar; struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_ring *dest_ring = pipe->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int write_index = dest_ring->write_index; unsigned int sw_index = dest_ring->sw_index; struct ce_desc_64 *base = dest_ring->base_addr_owner_space; struct ce_desc_64 *desc = CE_DEST_RING_TO_DESC_64(base, write_index); u32 ctrl_addr = pipe->ctrl_addr; lockdep_assert_held(&ce->ce_lock); if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0) return -ENOSPC; desc->addr = __cpu_to_le64(paddr); desc->addr &= __cpu_to_le64(CE_DESC_37BIT_ADDR_MASK); desc->nbytes = 0; dest_ring->per_transfer_context[write_index] = ctx; write_index = CE_RING_IDX_INCR(nentries_mask, write_index); ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index); dest_ring->write_index = write_index; return 0; } void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries) { struct ath10k *ar = pipe->ar; struct ath10k_ce_ring *dest_ring = pipe->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int write_index = dest_ring->write_index; u32 ctrl_addr = pipe->ctrl_addr; u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr); /* Prevent CE ring stuck issue that will occur when ring is full. * Make sure that write index is 1 less than read index. */ if (((cur_write_idx + nentries) & nentries_mask) == dest_ring->sw_index) nentries -= 1; write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries); ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index); dest_ring->write_index = write_index; } EXPORT_SYMBOL(ath10k_ce_rx_update_write_idx); int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, dma_addr_t paddr) { struct ath10k *ar = pipe->ar; struct ath10k_ce *ce = ath10k_ce_priv(ar); int ret; spin_lock_bh(&ce->ce_lock); ret = pipe->ops->ce_rx_post_buf(pipe, ctx, paddr); spin_unlock_bh(&ce->ce_lock); return ret; } EXPORT_SYMBOL(ath10k_ce_rx_post_buf); /* * Guts of ath10k_ce_completed_recv_next. * The caller takes responsibility for any necessary locking. */ static int _ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, unsigned int *nbytesp) { struct ath10k_ce_ring *dest_ring = ce_state->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int sw_index = dest_ring->sw_index; struct ce_desc *base = dest_ring->base_addr_owner_space; struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index); struct ce_desc sdesc; u16 nbytes; /* Copy in one go for performance reasons */ sdesc = *desc; nbytes = __le16_to_cpu(sdesc.nbytes); if (nbytes == 0) { /* * This closes a relatively unusual race where the Host * sees the updated DRRI before the update to the * corresponding descriptor has completed. We treat this * as a descriptor that is not yet done. */ return -EIO; } desc->nbytes = 0; /* Return data from completed destination descriptor */ *nbytesp = nbytes; if (per_transfer_contextp) *per_transfer_contextp = dest_ring->per_transfer_context[sw_index]; /* Copy engine 5 (HTT Rx) will reuse the same transfer context. * So update transfer context all CEs except CE5. */ if (ce_state->id != 5) dest_ring->per_transfer_context[sw_index] = NULL; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); dest_ring->sw_index = sw_index; return 0; } static int _ath10k_ce_completed_recv_next_nolock_64(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, unsigned int *nbytesp) { struct ath10k_ce_ring *dest_ring = ce_state->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int sw_index = dest_ring->sw_index; struct ce_desc_64 *base = dest_ring->base_addr_owner_space; struct ce_desc_64 *desc = CE_DEST_RING_TO_DESC_64(base, sw_index); struct ce_desc_64 sdesc; u16 nbytes; /* Copy in one go for performance reasons */ sdesc = *desc; nbytes = __le16_to_cpu(sdesc.nbytes); if (nbytes == 0) { /* This closes a relatively unusual race where the Host * sees the updated DRRI before the update to the * corresponding descriptor has completed. We treat this * as a descriptor that is not yet done. */ return -EIO; } desc->nbytes = 0; /* Return data from completed destination descriptor */ *nbytesp = nbytes; if (per_transfer_contextp) *per_transfer_contextp = dest_ring->per_transfer_context[sw_index]; /* Copy engine 5 (HTT Rx) will reuse the same transfer context. * So update transfer context all CEs except CE5. */ if (ce_state->id != 5) dest_ring->per_transfer_context[sw_index] = NULL; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); dest_ring->sw_index = sw_index; return 0; } int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state, void **per_transfer_ctx, unsigned int *nbytesp) { return ce_state->ops->ce_completed_recv_next_nolock(ce_state, per_transfer_ctx, nbytesp); } EXPORT_SYMBOL(ath10k_ce_completed_recv_next_nolock); int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, unsigned int *nbytesp) { struct ath10k *ar = ce_state->ar; struct ath10k_ce *ce = ath10k_ce_priv(ar); int ret; spin_lock_bh(&ce->ce_lock); ret = ce_state->ops->ce_completed_recv_next_nolock(ce_state, per_transfer_contextp, nbytesp); spin_unlock_bh(&ce->ce_lock); return ret; } EXPORT_SYMBOL(ath10k_ce_completed_recv_next); static int _ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, dma_addr_t *bufferp) { struct ath10k_ce_ring *dest_ring; unsigned int nentries_mask; unsigned int sw_index; unsigned int write_index; int ret; struct ath10k *ar; struct ath10k_ce *ce; dest_ring = ce_state->dest_ring; if (!dest_ring) return -EIO; ar = ce_state->ar; ce = ath10k_ce_priv(ar); spin_lock_bh(&ce->ce_lock); nentries_mask = dest_ring->nentries_mask; sw_index = dest_ring->sw_index; write_index = dest_ring->write_index; if (write_index != sw_index) { struct ce_desc *base = dest_ring->base_addr_owner_space; struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index); /* Return data from completed destination descriptor */ *bufferp = __le32_to_cpu(desc->addr); if (per_transfer_contextp) *per_transfer_contextp = dest_ring->per_transfer_context[sw_index]; /* sanity */ dest_ring->per_transfer_context[sw_index] = NULL; desc->nbytes = 0; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); dest_ring->sw_index = sw_index; ret = 0; } else { ret = -EIO; } spin_unlock_bh(&ce->ce_lock); return ret; } static int _ath10k_ce_revoke_recv_next_64(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, dma_addr_t *bufferp) { struct ath10k_ce_ring *dest_ring; unsigned int nentries_mask; unsigned int sw_index; unsigned int write_index; int ret; struct ath10k *ar; struct ath10k_ce *ce; dest_ring = ce_state->dest_ring; if (!dest_ring) return -EIO; ar = ce_state->ar; ce = ath10k_ce_priv(ar); spin_lock_bh(&ce->ce_lock); nentries_mask = dest_ring->nentries_mask; sw_index = dest_ring->sw_index; write_index = dest_ring->write_index; if (write_index != sw_index) { struct ce_desc_64 *base = dest_ring->base_addr_owner_space; struct ce_desc_64 *desc = CE_DEST_RING_TO_DESC_64(base, sw_index); /* Return data from completed destination descriptor */ *bufferp = __le64_to_cpu(desc->addr); if (per_transfer_contextp) *per_transfer_contextp = dest_ring->per_transfer_context[sw_index]; /* sanity */ dest_ring->per_transfer_context[sw_index] = NULL; desc->nbytes = 0; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); dest_ring->sw_index = sw_index; ret = 0; } else { ret = -EIO; } spin_unlock_bh(&ce->ce_lock); return ret; } int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, dma_addr_t *bufferp) { return ce_state->ops->ce_revoke_recv_next(ce_state, per_transfer_contextp, bufferp); } EXPORT_SYMBOL(ath10k_ce_revoke_recv_next); /* * Guts of ath10k_ce_completed_send_next. * The caller takes responsibility for any necessary locking. */ int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp) { struct ath10k_ce_ring *src_ring = ce_state->src_ring; u32 ctrl_addr = ce_state->ctrl_addr; struct ath10k *ar = ce_state->ar; unsigned int nentries_mask = src_ring->nentries_mask; unsigned int sw_index = src_ring->sw_index; unsigned int read_index; struct ce_desc *desc; if (src_ring->hw_index == sw_index) { /* * The SW completion index has caught up with the cached * version of the HW completion index. * Update the cached HW completion index to see whether * the SW has really caught up to the HW, or if the cached * value of the HW index has become stale. */ read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); if (read_index == 0xffffffff) return -ENODEV; read_index &= nentries_mask; src_ring->hw_index = read_index; } if (ar->hw_params.rri_on_ddr) read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); else read_index = src_ring->hw_index; if (read_index == sw_index) return -EIO; if (per_transfer_contextp) *per_transfer_contextp = src_ring->per_transfer_context[sw_index]; /* sanity */ src_ring->per_transfer_context[sw_index] = NULL; desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space, sw_index); desc->nbytes = 0; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); src_ring->sw_index = sw_index; return 0; } EXPORT_SYMBOL(ath10k_ce_completed_send_next_nolock); static void ath10k_ce_extract_desc_data(struct ath10k *ar, struct ath10k_ce_ring *src_ring, u32 sw_index, dma_addr_t *bufferp, u32 *nbytesp, u32 *transfer_idp) { struct ce_desc *base = src_ring->base_addr_owner_space; struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index); /* Return data from completed source descriptor */ *bufferp = __le32_to_cpu(desc->addr); *nbytesp = __le16_to_cpu(desc->nbytes); *transfer_idp = MS(__le16_to_cpu(desc->flags), CE_DESC_FLAGS_META_DATA); } static void ath10k_ce_extract_desc_data_64(struct ath10k *ar, struct ath10k_ce_ring *src_ring, u32 sw_index, dma_addr_t *bufferp, u32 *nbytesp, u32 *transfer_idp) { struct ce_desc_64 *base = src_ring->base_addr_owner_space; struct ce_desc_64 *desc = CE_SRC_RING_TO_DESC_64(base, sw_index); /* Return data from completed source descriptor */ *bufferp = __le64_to_cpu(desc->addr); *nbytesp = __le16_to_cpu(desc->nbytes); *transfer_idp = MS(__le16_to_cpu(desc->flags), CE_DESC_FLAGS_META_DATA); } /* NB: Modeled after ath10k_ce_completed_send_next */ int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, dma_addr_t *bufferp, unsigned int *nbytesp, unsigned int *transfer_idp) { struct ath10k_ce_ring *src_ring; unsigned int nentries_mask; unsigned int sw_index; unsigned int write_index; int ret; struct ath10k *ar; struct ath10k_ce *ce; src_ring = ce_state->src_ring; if (!src_ring) return -EIO; ar = ce_state->ar; ce = ath10k_ce_priv(ar); spin_lock_bh(&ce->ce_lock); nentries_mask = src_ring->nentries_mask; sw_index = src_ring->sw_index; write_index = src_ring->write_index; if (write_index != sw_index) { ce_state->ops->ce_extract_desc_data(ar, src_ring, sw_index, bufferp, nbytesp, transfer_idp); if (per_transfer_contextp) *per_transfer_contextp = src_ring->per_transfer_context[sw_index]; /* sanity */ src_ring->per_transfer_context[sw_index] = NULL; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); src_ring->sw_index = sw_index; ret = 0; } else { ret = -EIO; } spin_unlock_bh(&ce->ce_lock); return ret; } EXPORT_SYMBOL(ath10k_ce_cancel_send_next); int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp) { struct ath10k *ar = ce_state->ar; struct ath10k_ce *ce = ath10k_ce_priv(ar); int ret; spin_lock_bh(&ce->ce_lock); ret = ath10k_ce_completed_send_next_nolock(ce_state, per_transfer_contextp); spin_unlock_bh(&ce->ce_lock); return ret; } EXPORT_SYMBOL(ath10k_ce_completed_send_next); /* * Guts of interrupt handler for per-engine interrupts on a particular CE. * * Invokes registered callbacks for recv_complete, * send_complete, and watermarks. */ void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id) { struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id]; struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs; u32 ctrl_addr = ce_state->ctrl_addr; spin_lock_bh(&ce->ce_lock); /* Clear the copy-complete interrupts that will be handled here. */ ath10k_ce_engine_int_status_clear(ar, ctrl_addr, wm_regs->cc_mask); spin_unlock_bh(&ce->ce_lock); if (ce_state->recv_cb) ce_state->recv_cb(ce_state); if (ce_state->send_cb) ce_state->send_cb(ce_state); spin_lock_bh(&ce->ce_lock); /* * Misc CE interrupts are not being handled, but still need * to be cleared. */ ath10k_ce_engine_int_status_clear(ar, ctrl_addr, wm_regs->wm_mask); spin_unlock_bh(&ce->ce_lock); } EXPORT_SYMBOL(ath10k_ce_per_engine_service); /* * Handler for per-engine interrupts on ALL active CEs. * This is used in cases where the system is sharing a * single interrput for all CEs */ void ath10k_ce_per_engine_service_any(struct ath10k *ar) { int ce_id; u32 intr_summary; intr_summary = ath10k_ce_interrupt_summary(ar); for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) { if (intr_summary & (1 << ce_id)) intr_summary &= ~(1 << ce_id); else /* no intr pending on this CE */ continue; ath10k_ce_per_engine_service(ar, ce_id); } } EXPORT_SYMBOL(ath10k_ce_per_engine_service_any); /* * Adjust interrupts for the copy complete handler. * If it's needed for either send or recv, then unmask * this interrupt; otherwise, mask it. * * Called with ce_lock held. */ static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state) { u32 ctrl_addr = ce_state->ctrl_addr; struct ath10k *ar = ce_state->ar; bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR; if ((!disable_copy_compl_intr) && (ce_state->send_cb || ce_state->recv_cb)) ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr); else ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); ath10k_ce_watermark_intr_disable(ar, ctrl_addr); } int ath10k_ce_disable_interrupts(struct ath10k *ar) { int ce_id; for (ce_id = 0; ce_id < CE_COUNT; ce_id++) { u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id); ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); ath10k_ce_error_intr_disable(ar, ctrl_addr); ath10k_ce_watermark_intr_disable(ar, ctrl_addr); } return 0; } EXPORT_SYMBOL(ath10k_ce_disable_interrupts); void ath10k_ce_enable_interrupts(struct ath10k *ar) { struct ath10k_ce *ce = ath10k_ce_priv(ar); int ce_id; struct ath10k_ce_pipe *ce_state; /* Skip the last copy engine, CE7 the diagnostic window, as that * uses polling and isn't initialized for interrupts. */ for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++) { ce_state = &ce->ce_states[ce_id]; ath10k_ce_per_engine_handler_adjust(ce_state); } } EXPORT_SYMBOL(ath10k_ce_enable_interrupts); static int ath10k_ce_init_src_ring(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id]; struct ath10k_ce_ring *src_ring = ce_state->src_ring; u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id); nentries = roundup_pow_of_two(attr->src_nentries); if (ar->hw_params.target_64bit) memset(src_ring->base_addr_owner_space, 0, nentries * sizeof(struct ce_desc_64)); else memset(src_ring->base_addr_owner_space, 0, nentries * sizeof(struct ce_desc)); src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); src_ring->sw_index &= src_ring->nentries_mask; src_ring->hw_index = src_ring->sw_index; src_ring->write_index = ath10k_ce_src_ring_write_index_get(ar, ctrl_addr); src_ring->write_index &= src_ring->nentries_mask; ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, src_ring->base_addr_ce_space); ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries); ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max); ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot init ce src ring id %d entries %d base_addr %pK\n", ce_id, nentries, src_ring->base_addr_owner_space); return 0; } static int ath10k_ce_init_dest_ring(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id]; struct ath10k_ce_ring *dest_ring = ce_state->dest_ring; u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id); nentries = roundup_pow_of_two(attr->dest_nentries); if (ar->hw_params.target_64bit) memset(dest_ring->base_addr_owner_space, 0, nentries * sizeof(struct ce_desc_64)); else memset(dest_ring->base_addr_owner_space, 0, nentries * sizeof(struct ce_desc)); dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr); dest_ring->sw_index &= dest_ring->nentries_mask; dest_ring->write_index = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr); dest_ring->write_index &= dest_ring->nentries_mask; ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, dest_ring->base_addr_ce_space); ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries); ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0); ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0); ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot ce dest ring id %d entries %d base_addr %pK\n", ce_id, nentries, dest_ring->base_addr_owner_space); return 0; } static int ath10k_ce_alloc_shadow_base(struct ath10k *ar, struct ath10k_ce_ring *src_ring, u32 nentries) { src_ring->shadow_base_unaligned = kcalloc(nentries, sizeof(struct ce_desc_64), GFP_KERNEL); if (!src_ring->shadow_base_unaligned) return -ENOMEM; src_ring->shadow_base = (struct ce_desc_64 *) PTR_ALIGN(src_ring->shadow_base_unaligned, CE_DESC_RING_ALIGN); return 0; } static struct ath10k_ce_ring * ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_ce_ring *src_ring; u32 nentries = attr->src_nentries; dma_addr_t base_addr; int ret; nentries = roundup_pow_of_two(nentries); src_ring = kzalloc(sizeof(*src_ring) + (nentries * sizeof(*src_ring->per_transfer_context)), GFP_KERNEL); if (src_ring == NULL) return ERR_PTR(-ENOMEM); src_ring->nentries = nentries; src_ring->nentries_mask = nentries - 1; /* * Legacy platforms that do not support cache * coherent DMA are unsupported */ src_ring->base_addr_owner_space_unaligned = dma_alloc_coherent(ar->dev, (nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), &base_addr, GFP_KERNEL); if (!src_ring->base_addr_owner_space_unaligned) { kfree(src_ring); return ERR_PTR(-ENOMEM); } src_ring->base_addr_ce_space_unaligned = base_addr; src_ring->base_addr_owner_space = PTR_ALIGN(src_ring->base_addr_owner_space_unaligned, CE_DESC_RING_ALIGN); src_ring->base_addr_ce_space = ALIGN(src_ring->base_addr_ce_space_unaligned, CE_DESC_RING_ALIGN); if (ar->hw_params.shadow_reg_support) { ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries); if (ret) { dma_free_coherent(ar->dev, (nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN), src_ring->base_addr_owner_space_unaligned, base_addr); kfree(src_ring); return ERR_PTR(ret); } } return src_ring; } static struct ath10k_ce_ring * ath10k_ce_alloc_src_ring_64(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_ce_ring *src_ring; u32 nentries = attr->src_nentries; dma_addr_t base_addr; int ret; nentries = roundup_pow_of_two(nentries); src_ring = kzalloc(sizeof(*src_ring) + (nentries * sizeof(*src_ring->per_transfer_context)), GFP_KERNEL); if (!src_ring) return ERR_PTR(-ENOMEM); src_ring->nentries = nentries; src_ring->nentries_mask = nentries - 1; /* Legacy platforms that do not support cache * coherent DMA are unsupported */ src_ring->base_addr_owner_space_unaligned = dma_alloc_coherent(ar->dev, (nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN), &base_addr, GFP_KERNEL); if (!src_ring->base_addr_owner_space_unaligned) { kfree(src_ring); return ERR_PTR(-ENOMEM); } src_ring->base_addr_ce_space_unaligned = base_addr; src_ring->base_addr_owner_space = PTR_ALIGN(src_ring->base_addr_owner_space_unaligned, CE_DESC_RING_ALIGN); src_ring->base_addr_ce_space = ALIGN(src_ring->base_addr_ce_space_unaligned, CE_DESC_RING_ALIGN); if (ar->hw_params.shadow_reg_support) { ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries); if (ret) { dma_free_coherent(ar->dev, (nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN), src_ring->base_addr_owner_space_unaligned, base_addr); kfree(src_ring); return ERR_PTR(ret); } } return src_ring; } static struct ath10k_ce_ring * ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_ce_ring *dest_ring; u32 nentries; dma_addr_t base_addr; nentries = roundup_pow_of_two(attr->dest_nentries); dest_ring = kzalloc(sizeof(*dest_ring) + (nentries * sizeof(*dest_ring->per_transfer_context)), GFP_KERNEL); if (dest_ring == NULL) return ERR_PTR(-ENOMEM); dest_ring->nentries = nentries; dest_ring->nentries_mask = nentries - 1; /* * Legacy platforms that do not support cache * coherent DMA are unsupported */ dest_ring->base_addr_owner_space_unaligned = dma_zalloc_coherent(ar->dev, (nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), &base_addr, GFP_KERNEL); if (!dest_ring->base_addr_owner_space_unaligned) { kfree(dest_ring); return ERR_PTR(-ENOMEM); } dest_ring->base_addr_ce_space_unaligned = base_addr; dest_ring->base_addr_owner_space = PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned, CE_DESC_RING_ALIGN); dest_ring->base_addr_ce_space = ALIGN(dest_ring->base_addr_ce_space_unaligned, CE_DESC_RING_ALIGN); return dest_ring; } static struct ath10k_ce_ring * ath10k_ce_alloc_dest_ring_64(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_ce_ring *dest_ring; u32 nentries; dma_addr_t base_addr; nentries = roundup_pow_of_two(attr->dest_nentries); dest_ring = kzalloc(sizeof(*dest_ring) + (nentries * sizeof(*dest_ring->per_transfer_context)), GFP_KERNEL); if (!dest_ring) return ERR_PTR(-ENOMEM); dest_ring->nentries = nentries; dest_ring->nentries_mask = nentries - 1; /* Legacy platforms that do not support cache * coherent DMA are unsupported */ dest_ring->base_addr_owner_space_unaligned = dma_alloc_coherent(ar->dev, (nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN), &base_addr, GFP_KERNEL); if (!dest_ring->base_addr_owner_space_unaligned) { kfree(dest_ring); return ERR_PTR(-ENOMEM); } dest_ring->base_addr_ce_space_unaligned = base_addr; /* Correctly initialize memory to 0 to prevent garbage * data crashing system when download firmware */ memset(dest_ring->base_addr_owner_space_unaligned, 0, nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN); dest_ring->base_addr_owner_space = PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned, CE_DESC_RING_ALIGN); dest_ring->base_addr_ce_space = ALIGN(dest_ring->base_addr_ce_space_unaligned, CE_DESC_RING_ALIGN); return dest_ring; } /* * Initialize a Copy Engine based on caller-supplied attributes. * This may be called once to initialize both source and destination * rings or it may be called twice for separate source and destination * initialization. It may be that only one side or the other is * initialized by software/firmware. */ int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { int ret; if (attr->src_nentries) { ret = ath10k_ce_init_src_ring(ar, ce_id, attr); if (ret) { ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n", ce_id, ret); return ret; } } if (attr->dest_nentries) { ret = ath10k_ce_init_dest_ring(ar, ce_id, attr); if (ret) { ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n", ce_id, ret); return ret; } } return 0; } EXPORT_SYMBOL(ath10k_ce_init_pipe); static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id) { u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id); ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0); } static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id) { u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id); ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0); ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0); ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0); } void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id) { ath10k_ce_deinit_src_ring(ar, ce_id); ath10k_ce_deinit_dest_ring(ar, ce_id); } EXPORT_SYMBOL(ath10k_ce_deinit_pipe); static void _ath10k_ce_free_pipe(struct ath10k *ar, int ce_id) { struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id]; if (ce_state->src_ring) { if (ar->hw_params.shadow_reg_support) kfree(ce_state->src_ring->shadow_base_unaligned); dma_free_coherent(ar->dev, (ce_state->src_ring->nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), ce_state->src_ring->base_addr_owner_space, ce_state->src_ring->base_addr_ce_space); kfree(ce_state->src_ring); } if (ce_state->dest_ring) { dma_free_coherent(ar->dev, (ce_state->dest_ring->nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), ce_state->dest_ring->base_addr_owner_space, ce_state->dest_ring->base_addr_ce_space); kfree(ce_state->dest_ring); } ce_state->src_ring = NULL; ce_state->dest_ring = NULL; } static void _ath10k_ce_free_pipe_64(struct ath10k *ar, int ce_id) { struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id]; if (ce_state->src_ring) { if (ar->hw_params.shadow_reg_support) kfree(ce_state->src_ring->shadow_base_unaligned); dma_free_coherent(ar->dev, (ce_state->src_ring->nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN), ce_state->src_ring->base_addr_owner_space, ce_state->src_ring->base_addr_ce_space); kfree(ce_state->src_ring); } if (ce_state->dest_ring) { dma_free_coherent(ar->dev, (ce_state->dest_ring->nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN), ce_state->dest_ring->base_addr_owner_space, ce_state->dest_ring->base_addr_ce_space); kfree(ce_state->dest_ring); } ce_state->src_ring = NULL; ce_state->dest_ring = NULL; } void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id) { struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id]; ce_state->ops->ce_free_pipe(ar, ce_id); } EXPORT_SYMBOL(ath10k_ce_free_pipe); void ath10k_ce_dump_registers(struct ath10k *ar, struct ath10k_fw_crash_data *crash_data) { struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_crash_data ce_data; u32 addr, id; lockdep_assert_held(&ar->data_lock); ath10k_err(ar, "Copy Engine register dump:\n"); spin_lock_bh(&ce->ce_lock); for (id = 0; id < CE_COUNT; id++) { addr = ath10k_ce_base_address(ar, id); ce_data.base_addr = cpu_to_le32(addr); ce_data.src_wr_idx = cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr)); ce_data.src_r_idx = cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr)); ce_data.dst_wr_idx = cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr)); ce_data.dst_r_idx = cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr)); if (crash_data) crash_data->ce_crash_data[id] = ce_data; ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id, le32_to_cpu(ce_data.base_addr), le32_to_cpu(ce_data.src_wr_idx), le32_to_cpu(ce_data.src_r_idx), le32_to_cpu(ce_data.dst_wr_idx), le32_to_cpu(ce_data.dst_r_idx)); } spin_unlock_bh(&ce->ce_lock); } EXPORT_SYMBOL(ath10k_ce_dump_registers); static const struct ath10k_ce_ops ce_ops = { .ce_alloc_src_ring = ath10k_ce_alloc_src_ring, .ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring, .ce_rx_post_buf = __ath10k_ce_rx_post_buf, .ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock, .ce_revoke_recv_next = _ath10k_ce_revoke_recv_next, .ce_extract_desc_data = ath10k_ce_extract_desc_data, .ce_free_pipe = _ath10k_ce_free_pipe, .ce_send_nolock = _ath10k_ce_send_nolock, }; static const struct ath10k_ce_ops ce_64_ops = { .ce_alloc_src_ring = ath10k_ce_alloc_src_ring_64, .ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring_64, .ce_rx_post_buf = __ath10k_ce_rx_post_buf_64, .ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock_64, .ce_revoke_recv_next = _ath10k_ce_revoke_recv_next_64, .ce_extract_desc_data = ath10k_ce_extract_desc_data_64, .ce_free_pipe = _ath10k_ce_free_pipe_64, .ce_send_nolock = _ath10k_ce_send_nolock_64, }; static void ath10k_ce_set_ops(struct ath10k *ar, struct ath10k_ce_pipe *ce_state) { switch (ar->hw_rev) { case ATH10K_HW_WCN3990: ce_state->ops = &ce_64_ops; break; default: ce_state->ops = &ce_ops; break; } } int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id, const struct ce_attr *attr) { struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id]; int ret; ath10k_ce_set_ops(ar, ce_state); /* Make sure there's enough CE ringbuffer entries for HTT TX to avoid * additional TX locking checks. * * For the lack of a better place do the check here. */ BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC > (CE_HTT_H2T_MSG_SRC_NENTRIES - 1)); BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC > (CE_HTT_H2T_MSG_SRC_NENTRIES - 1)); BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC > (CE_HTT_H2T_MSG_SRC_NENTRIES - 1)); ce_state->ar = ar; ce_state->id = ce_id; ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id); ce_state->attr_flags = attr->flags; ce_state->src_sz_max = attr->src_sz_max; if (attr->src_nentries) ce_state->send_cb = attr->send_cb; if (attr->dest_nentries) ce_state->recv_cb = attr->recv_cb; if (attr->src_nentries) { ce_state->src_ring = ce_state->ops->ce_alloc_src_ring(ar, ce_id, attr); if (IS_ERR(ce_state->src_ring)) { ret = PTR_ERR(ce_state->src_ring); ath10k_err(ar, "failed to alloc CE src ring %d: %d\n", ce_id, ret); ce_state->src_ring = NULL; return ret; } } if (attr->dest_nentries) { ce_state->dest_ring = ce_state->ops->ce_alloc_dst_ring(ar, ce_id, attr); if (IS_ERR(ce_state->dest_ring)) { ret = PTR_ERR(ce_state->dest_ring); ath10k_err(ar, "failed to alloc CE dest ring %d: %d\n", ce_id, ret); ce_state->dest_ring = NULL; return ret; } } return 0; } EXPORT_SYMBOL(ath10k_ce_alloc_pipe); void ath10k_ce_alloc_rri(struct ath10k *ar) { int i; u32 value; u32 ctrl1_regs; u32 ce_base_addr; struct ath10k_ce *ce = ath10k_ce_priv(ar); ce->vaddr_rri = dma_alloc_coherent(ar->dev, (CE_COUNT * sizeof(u32)), &ce->paddr_rri, GFP_KERNEL); if (!ce->vaddr_rri) return; ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_low, lower_32_bits(ce->paddr_rri)); ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_high, (upper_32_bits(ce->paddr_rri) & CE_DESC_FLAGS_GET_MASK)); for (i = 0; i < CE_COUNT; i++) { ctrl1_regs = ar->hw_ce_regs->ctrl1_regs->addr; ce_base_addr = ath10k_ce_base_address(ar, i); value = ath10k_ce_read32(ar, ce_base_addr + ctrl1_regs); value |= ar->hw_ce_regs->upd->mask; ath10k_ce_write32(ar, ce_base_addr + ctrl1_regs, value); } memset(ce->vaddr_rri, 0, CE_COUNT * sizeof(u32)); } EXPORT_SYMBOL(ath10k_ce_alloc_rri); void ath10k_ce_free_rri(struct ath10k *ar) { struct ath10k_ce *ce = ath10k_ce_priv(ar); dma_free_coherent(ar->dev, (CE_COUNT * sizeof(u32)), ce->vaddr_rri, ce->paddr_rri); } EXPORT_SYMBOL(ath10k_ce_free_rri);